Search results for: target gene database
3692 Analysis of Taxonomic Compositions, Metabolic Pathways and Antibiotic Resistance Genes in Fish Gut Microbiome by Shotgun Metagenomics
Authors: Anuj Tyagi, Balwinder Singh, Naveen Kumar B. T., Niraj K. Singh
Abstract:
Characterization of diverse microbial communities in specific environment plays a crucial role in the better understanding of their functional relationship with the ecosystem. It is now well established that gut microbiome of fish is not the simple replication of microbiota of surrounding local habitat, and extensive species, dietary, physiological and metabolic variations in fishes may have a significant impact on its composition. Moreover, overuse of antibiotics in human, veterinary and aquaculture medicine has led to rapid emergence and propagation of antibiotic resistance genes (ARGs) in the aquatic environment. Microbial communities harboring specific ARGs not only get a preferential edge during selective antibiotic exposure but also possess the significant risk of ARGs transfer to other non-resistance bacteria within the confined environments. This phenomenon may lead to the emergence of habitat-specific microbial resistomes and subsequent emergence of virulent antibiotic-resistant pathogens with severe fish and consumer health consequences. In this study, gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. Metagenomic DNA, extracted from the fish gut, was subjected to sequencing on Illumina NextSeq to generate paired-end (PE) 2 x 150 bp sequencing reads. After the QC of raw sequencing data by Trimmomatic, taxonomic analysis by Kraken2 taxonomic sequence classification system revealed the presence of 36 phyla, 326 families and 985 genera in the fish gut microbiome. At phylum level, Proteobacteria accounted for more than three-fourths of total bacterial populations followed by Actinobacteria (14%) and Cyanobacteria (3%). Commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) were found to be very less prevalent in fish gut. After sequencing data assembly by MEGAHIT v1.1.2 assembler and PROKKA automated analysis pipeline, pathway analysis revealed the presence of 1,608 Metacyc pathways in the fish gut microbiome. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy-metabolism (4%) and fermentation (2%). Almost one-third (33%) of biosynthesis pathways were involved in the synthesis of secondary metabolites. Metabolic pathways for the biosynthesis of 35 antibiotic types were also present, and these accounted for 5% of overall metabolic pathways in the fish gut microbiome. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. More than 90% ARGs in fish gut microbiome were against beta-lactams (penicillins, cephalosporins, penems, and monobactams). Resistance against tetracycline, macrolides, fluoroquinolones, and phenicols ranged from 0.7% to 1.3%. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment.Keywords: antibiotic resistance, fish gut, metabolic pathways, microbial diversity
Procedia PDF Downloads 1443691 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 503690 Targeting Matrix Metalloprotease-9 to Reduce Coronary Artery Manifestations of Kawasaki’s Disease
Authors: Mohammadjavad Sotoudeheian, Navid Farahmandian
Abstract:
Kawasaki disease (KD) is the primary cause of acquired pediatric heart disease as an acute vasculitis. In children with prolonged fever, rash, and inflammation of the mucosa KD must be considered as a clinical diagnosis. There is a persuasive suggestion of immune-mediated damage as the pathophysiologic cascade of KD. For example, the invasion of cytotoxic T-cells supports a viral etiology and the inflammasome of the innate immune system is a critical component in the vasculitis formation in KD. Animal models of KD propose the cytokine profiles, such as increased IL-1 and GM-CSF, which cause vascular damage. CRP and IFN-γ elevated expression and the upregulation of IL-6, and IL-10 production are also described in previous studies. Untreated KD is a critical risk factor for coronary artery diseases and myocardial infarction. Vascular damage may encompass amplified T-cell activity. SMAD3 is an essential molecule in down-regulating T-cells and increasing expression of FoxP3. It has a critical effect in the differentiation of regulatory T-cells. The discrepancy of regulatory T-cells and pro-inflammatory Th17 has been studied in acute coronary syndrome during KD. However in the coronary artery damaged lymphocytes and IgA plasma cells are seen at the lesion locations, the major immune cells in the coronary lesions are monocytes/macrophages and neutrophils. These cells secrete TNF-α, and activates matrix metalloprotease (MMP)-9, reducing the integrity of vessels and prompting patients to arise aneurysm. MMPs can break down the components of the extracellular matrix and assist immune cell movement. IVIG as an effective form of treatment clarified the role of the immune system, which may target pathogenic antigens and regulate cytokine production. Several reports have revealed that in the coronary arteries, high expression of MMP-9 in monocyte/macrophage results in pathologic cascades. Curcumin is a potent antioxidant and anti-inflammatory molecule. Curcumin decreases the production of reactive oxygen and nitrogen species and inhibits transcription factors like AP-1 and NF-κB. Curcumin also contains the characteristics of inhibitory effects on MMPs, especially MMP-9. The upregulation of MMP-9 is an important cellular response. Curcumin treatment caused a reverse effect and down-regulates MMP-9 gene expression which may fund the anti-inflammatory effect. Curcumin inhibits MMP-9 expression via PKC and AMPK-dependent pathways in Human monocytes cells. Elevated expression and activity of MMP-9 are correlated with advanced vascular lesions. AMPK controls lipid metabolism and oxidation, and protein synthesis. AMPK is also necessary for the MMP-9 activity and THP-1 cell adhesion to endothelial cells. Curcumin was shown to inhibit the activation of AMPKα. Compound C (AMPK inhibitor) inhibits MMP-9 expression level. Therefore, through inactivating AMPKs and PKC, curcumin decreases the MMP-9 level, which results in inhibiting monocyte/macrophage differentiation. Compound C also suppress the phosphorylation of three major classes of MAP kinase signaling, suggesting that curcumin may suppress MMP-9 level by inactivation of MAPK pathways. MAPK cascades are activated to induce the expression of MMP-9. Curcumin inhibits MAPKs phosphorylation, which contributes to the down-regulation of MMP-9. This study demonstrated that the potential inhibitory properties of curcumin over MMP-9 lead to a therapeutic strategy to reduce the risk of coronary artery involvement during KD.Keywords: MMP-9, coronary artery aneurysm, Kawasaki’s disease, curcumin, AMPK, immune system, NF-κB, MAPK
Procedia PDF Downloads 3043689 Diversity and Phylogenetic Placement of Seven Inocybe (Inocybaceae, Fungi) from Benin
Authors: Hyppolite Aignon, Souleymane Yorou, Martin Ryberg, Anneli Svanholm
Abstract:
Climate change and human actions cause the extinction of wild mushrooms. In Benin, the diversity of fungi is large and may still contain species new to science but the inventory effort remains low and focuses on particularly edible species (Russula, Lactarius, Lactifluus, and also Amanita). In addition, inventories have started recently and some groups of fungi are not sufficiently sampled, however, the degradation of fungal habitat continues to increase and some species are already disappearing. (Yorou and De Kesel, 2011), however, the degradation of fungi habitat continues to increase and some species may disappear without being known. This genus (Inocybe) overlooked has a worldwide distribution and includes more than 700 species with many undiscovered or poorly known species worldwide and particularly in tropical Africa. It is therefore important to orient the inventory to other genera or important families such as Inocybe (Fungi, Agaricales) in order to highlight their diversity and also to know their phylogenetic positions with a combined approach of gene regions. This study aims to evaluate the species richness and phylogenetic position of Inocybe species and affiliated taxa in West Africa. Thus, in North Benin, we visited the Forest Reserve of Ouémé Supérieur, the Okpara forest and the Alibori Supérieur Forest Reserve. In the center, we targeted the Forest Reserve of Toui-Kilibo. The surveys have been carried during the raining season in the study area meaning from June to October. A total of 24 taxa were collected, photographed and described. The DNA was extracted, the Polymerase Chain Reaction was carried out using primers (ITS1-F, ITS4-B) for Internal transcribed spacer (ITS), (LROR, LWRB, LR7, LR5) for nuclear ribosomal (LSU), (RPB2-f5F, RPB2-b6F, RPB2- b6R2, RPB2-b7R) for RNA polymerase II gene (RPB2) and sequenced. The ITS sequences of the 24 collections of Inocybaceae were edited in Staden and all the sequences were aligned and edited with Aliview v1.17. The sequences were examined by eye for sufficient similarity to be considered the same species. 13 different species were present in the collections. In addition, sequences similar to the ITS sequences of the thirteen final species were searched using BLAST. The nLSU and RPB2 markers for these species have been inserted in a complete alignment, where species from all major Inocybaceae clades as well as from all continents except Antarctica are present. Our new sequences for nLSU and RPB2 have been manually aligned in this dataset. Phylogenetic analysis was performed using the RAxML v7.2.6 maximum likelihood software. Bootstrap replications have been set to 100 and no partitioning of the dataset has been performed. The resulting tree was viewed and edited with FigTree v1.4.3. The preliminary tree resulting from the analysis of maximum likelihood shows us that these species coming from Benin are much diversified and are distributed in four different clades (Inosperma, Inocybe, Mallocybe and Pseudosperma) on the seven clades of Inocybaceae but the phylogeny position of 7 is currently known. This study marks the diversity of Inocybe in Benin and the investigations will continue and a protection plan will be developed in the coming years.Keywords: Benin, diversity, Inocybe, phylogeny placement
Procedia PDF Downloads 1493688 Primer Design for the Detection of Secondary Metabolite Biosynthetic Pathways in Metagenomic Data
Authors: Jeisson Alejandro Triana, Maria Fernanda Quiceno Vallejo, Patricia del Portillo, Juan Manuel Anzola
Abstract:
Most of the known antimicrobials so far discovered are secondary metabolites. The potential for new natural products of this category increases as new microbial genomes and metagenomes are being sequenced. Despite the advances, there is no systematic way to interrogate metagenomic clones for their potential to contain clusters of genes related to these pathways. Here we analyzed 52 biosynthetic pathways from the AntiSMASH database at the protein domain level in order to identify domains of high specificity and sensitivity with respect to specific biosynthetic pathways. These domains turned out to have various degrees of divergence at the DNA level. We propose PCR assays targetting such domains in-silico and corroborated one by Sanger sequencing.Keywords: bioinformatic, anti smash, antibiotics, secondary metabolites, natural products, protein domains
Procedia PDF Downloads 1793687 Estimating Age in Deceased Persons from the North Indian Population Using Ossification of the Sternoclavicular Joint
Authors: Balaji Devanathan, Gokul G., Raveena Divya, Abhishek Yadav, Sudhir K. Gupta
Abstract:
Background: Age estimation is a common problem in administrative settings, medico legal cases, and among athletes competing in different sports. Age estimation is a problem in medico legal problems that arise in hospitals when there has been a criminal abortion, when consenting to surgery or a general physical examination, when there has been infanticide, impotence, sterility, etc. Medical imaging progress has benefited forensic anthropology in various ways, most notably in the area of determining bone age. An efficient method for researching the epiphyseal union and other differences in the body's bones and joints is multi-slice computed tomography. There isn't a significant database on Indians available. So to obtain an Indian based database author has performed this original study. Methodologies: The appearance and fusion of ossification centre of sternoclavicular joint is evaluated, and grades were assigned accordingly. Using MSCT scans, we examined the relationship between the age of the deceased and alterations in the sternoclavicular joint during the appearance and union in 500 instances, 327 men and 173 females, in the age range of 0 to 25 years. Results: According to our research in both the male and female groups, the ossification centre for the medial end of the clavicle first appeared between the ages of 18.5 and 17.1 respectively. The age range of the partial union was 20.4 and 20.2 years old. The earliest age of complete fusion was 23 years for males and 22 years for females. For fusion of their sternebrae into one, age range is 11–24 years for females and 17–24 years. The fusion of the third and fourth sternebrae was completed by 11 years. The fusions of the first and second and second and third sternebrae occur by the age of 17 years. Furthermore, correlation and reliability were carried out which yielded significant results. Conclusion: With numerous exceptions, the projected values are consistent with a large number of the previously developed age charts. These variations may be caused by the ethnic or regional heterogeneity in the ossification pattern among the population under study. The pattern of bone maturation did not significantly differ between the sexes, according to the study. The study's age range was 0 to 25 years, and for obvious reasons, the majority of the occurrences occurred in the last five years, or between 20 and 25 years of age. This resulted in a comparatively smaller study population for the 12–18 age group, where age estimate is crucial because of current legal requirements. It will require specialized PMCT research in this age range to produce population standard charts for age estimate. The medial end of the clavicle is one of several ossification foci that are being thoroughly investigated since they are challenging to assess with a traditional X-ray examination. Combining the two has been shown to be a valid result when it comes to raising the age beyond eighteen.Keywords: age estimation, sternoclavicular joint, medial clavicle, computed tomography
Procedia PDF Downloads 443686 A Study on the New Weapon Requirements Analytics Using Simulations and Big Data
Authors: Won Il Jung, Gene Lee, Luis Rabelo
Abstract:
Since many weapon systems are getting more complex and diverse, various problems occur in terms of the acquisition cost, time, and performance limitation. As a matter of fact, the experiment execution in real world is costly, dangerous, and time-consuming to obtain Required Operational Characteristics (ROC) for a new weapon acquisition although enhancing the fidelity of experiment results. Also, until presently most of the research contained a large amount of assumptions so therefore a bias is present in the experiment results. At this moment, the new methodology is proposed to solve these problems without a variety of assumptions. ROC of the new weapon system is developed through the new methodology, which is a way to analyze big data generated by simulating various scenarios based on virtual and constructive models which are involving 6 Degrees of Freedom (6DoF). The new methodology enables us to identify unbiased ROC on new weapons by reducing assumptions and provide support in terms of the optimal weapon systems acquisition.Keywords: big data, required operational characteristics (ROC), virtual and constructive models, weapon acquisition
Procedia PDF Downloads 2893685 Generation of Roof Design Spectra Directly from Uniform Hazard Spectra
Authors: Amin Asgarian, Ghyslaine McClure
Abstract:
Proper seismic evaluation of Non-Structural Components (NSCs) mandates an accurate estimation of floor seismic demands (i.e. acceleration and displacement demands). Most of the current international codes incorporate empirical equations to calculate equivalent static seismic force for which NSCs and their anchorage system must be designed. These equations, in general, are functions of component mass and peak seismic acceleration to which NSCs are subjected to during the earthquake. However, recent studies have shown that these recommendations are suffered from several shortcomings such as neglecting the higher mode effect, tuning effect, NSCs damping effect, etc. which cause underestimation of the component seismic acceleration demand. This work is aimed to circumvent the aforementioned shortcomings of code provisions as well as improving them by proposing a simplified, practical, and yet accurate approach to generate acceleration Floor Design Spectra (FDS) directly from corresponding Uniform Hazard Spectra (UHS) (i.e. design spectra for structural components). A database of 27 Reinforced Concrete (RC) buildings in which Ambient Vibration Measurements (AVM) have been conducted. The database comprises 12 low-rise, 10 medium-rise, and 5 high-rise buildings all located in Montréal, Canada and designated as post-disaster buildings or emergency shelters. The buildings are subjected to a set of 20 compatible seismic records and Floor Response Spectra (FRS) in terms of pseudo acceleration are derived using the proposed approach for every floor of the building in both horizontal directions considering 4 different damping ratios of NSCs (i.e. 2, 5, 10, and 20% viscous damping). Several effective parameters on NSCs response are evaluated statistically. These parameters comprise NSCs damping ratios, tuning of NSCs natural period with one of the natural periods of supporting structure, higher modes of supporting structures, and location of NSCs. The entire spectral region is divided into three distinct segments namely short-period, fundamental period, and long period region. The derived roof floor response spectra for NSCs with 5% damping are compared with the 5% damping UHS and procedure are proposed to generate roof FDS for NSCs with 5% damping directly from 5% damped UHS in each spectral region. The generated FDS is a powerful, practical, and accurate tool for seismic design and assessment of acceleration-sensitive NSCs particularly in existing post-critical buildings which have to remain functional even after the earthquake and cannot tolerate any damage to NSCs.Keywords: earthquake engineering, operational and functional components (OFCs), operational modal analysis (OMA), seismic assessment and design
Procedia PDF Downloads 2363684 Effective Removal of Tetrodotoxin with Fiber Mat Containing Activated Charcoal
Authors: Min Sik Kim, Hwa Sung Shin
Abstract:
From 2013, small eel farms, which are located in Han River Estuary, South Korea suffer damage because of unknown massive perish. In the middle of discussion that the cause of perish could be environmental changes or waste water, a large amount of unknown nemertean was discovered during that time. Some nemerteans are known releasing neurotoxin substance. In this study, we isolated intestinal bacteria using selective media and conducted 16s rDNA microbial identification by gene alignment. As a result, there was a type of bacteria producing TTX, blocks sodium-channel inducing organism’s death. TTX production from the bacteria was confirmed by ELISA and liquid chromatography coupled with mass spectrometer. Additionally, the activated-charcoal which has an ability to absorb small molecules like toxin was applied to fibrous mesh to prevent ingestion of aquatic organisms and increase applicable area. The viability of zebrafish in the water with TTX and charcoal fiber mat were not decreased meaning it could be used for solving the perishing problem in fish farm.Keywords: nemertean, TTX, fiber mat, activated charcoal, zebrafish
Procedia PDF Downloads 2073683 A Bibliometric Analysis of the Structural Equation Modeling in Education
Authors: Lim Yi Wei
Abstract:
Structural equation modelling (SEM) is well-known in statistics due to its flexibility and accessibility. It plays an increasingly important role in the development of the education field. The number of research publications using SEM in education has increased in recent decades. However, there is a lack of scientific review conducted on SEM in education. The purpose of this study is to investigate research trends related to SEM in education. The researcher will use Vosviewer, Datawrapper, and SciMAT to do bibliometric analysis on 5549 papers that have been published in the Scopus database in the last five years. The result will show the publication trends of the most cited documents, the top contributing authors, countries, institutions, and journals in the research field. It will also look at how they relate to each other in terms of co-citation, collaboration, and co-occurrence of keywords. This study will benefit researchers and practitioners by identifying research trends and the current state of SEM in education.Keywords: structural equation modeling, education, bibliometric analysis, Vosviewer
Procedia PDF Downloads 993682 Artificial Intelligence Approach to Manage Human Resources Information System Process in the Construction Industry
Authors: Ahmed Emad Ahmed
Abstract:
This paper aims to address the concept of human resources information systems (HRIS) and how to link it to new technologies such as artificial intelligence (AI) to be implemented in two human resources processes. A literature view has been collected to cover the main points related to HRIS, AI, and BC. A study case has been presented by generating a random HRIS to apply some AI operations to it. Then, an algorithm was applied to the database to complete some human resources processes, including training and performance appraisal, using a pre-trained AI model. After that, outputs and results have been presented and discussed briefly. Finally, a conclusion has been introduced to show the ability of new technologies such as AI and ML to be applied to the human resources management processes.Keywords: human resources new technologies, HR artificial intelligence, HRIS AI models, construction AI HRIS
Procedia PDF Downloads 1703681 Tourism Satellite Account: Approach and Information System Development
Authors: Pappas Theodoros, Mihail Diakomihalis
Abstract:
Measuring the economic impact of tourism in a benchmark economy is a global concern, with previous measurements being partial and not fully integrated. Tourism is a phenomenon that requires individual consumption of visitors and which should be observed and measured to reveal, thus, the overall contribution of tourism to an economy. The Tourism Satellite Account (TSA) is a critical tool for assessing the annual growth of tourism, providing reliable measurements. This article introduces a system of TSA information that encompasses all the works of the TSA, including input, storage, management, and analysis of data, as well as additional future functions and enhances the efficiency of tourism data management and TSA collection utility. The methodology and results presented offer insights into the development and implementation of TSA.Keywords: tourism satellite account, information system, data-based tourist account, relation database
Procedia PDF Downloads 843680 A Review on Big Data Movement with Different Approaches
Authors: Nay Myo Sandar
Abstract:
With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques
Procedia PDF Downloads 863679 A Saturation Attack Simulation on a Navy Warship Based on Discrete-Event Simulation Models
Authors: Yawei Liang
Abstract:
Threat from cruise missiles is among the most dangerous considerations to a warship in the modern era: anti-ship cruise missiles are fast, accurate, and extremely destructive. In this paper, the goal was to use an object-orientated environment to program a simulation to model a scenario in which a lone frigate is attacked by a wave of missiles fired at given intervals. The parameters of the simulation are modified to examine the relationships between different variables in the situation, and an analysis is performed on various aspects of the defending ship’s equipment. Finally, the results are presented, along with a brief discussion.Keywords: discrete event simulation, Monte Carlo simulation, naval resource management, weapon-target allocation/assignment
Procedia PDF Downloads 933678 Optimized Approach for Secure Data Sharing in Distributed Database
Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal
Abstract:
In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.Keywords: ER-schema, electronic record, P2P framework, API, query formulation
Procedia PDF Downloads 3333677 Simulation of Stretching and Fragmenting DNA by Microfluidic for Optimizing Microfluidic Devices
Authors: Shuyi Wu, Chuang Li, Quanshui Zheng, Luping Xu
Abstract:
Stretching and snipping DNA molecule by microfluidic has important application value in gene analysis by lab on a chip. Movement, deformation and fragmenting of DNA in microfluidic are typical fluid-solid coupling problems. An efficient and common simulation system for researching the movement, deformation and fragmenting of DNA by microfluidic has not been well developed. In our study, Brownian dynamics-finite element method (BD-FEM) is used to simulate the dynamic process of stretching and fragmenting DNA by contraction flow. The shape and parameters of micro-channels are changed to optimize the stretching and fragmenting properties of DNA. Our results indicate that strain rate, resulting from contraction microchannel, is the main control parameter for stretching and fragmenting DNA. There is good consistency between the simulation data and previous experimental result about the single DNA molecule behavior and averaged fragmenting properties in this study. BD-FEM method is an efficient calculating tool to research stretching and fragmenting behavior of single DNA molecule and optimize microfluidic devices for manipulating, stretching and fragmenting DNA.Keywords: fragmenting, DNA, microfluidic, optimize.
Procedia PDF Downloads 3283676 Mathematical Modeling on Capturing of Magnetic Nanoparticles in an Implant Assisted Channel for Magnetic Drug Targeting
Authors: Shashi Sharma, V. K. Katiyar, Uaday Singh
Abstract:
The ability to manipulate magnetic particles in fluid flows by means of inhomogeneous magnetic fields is used in a wide range of biomedical applications including magnetic drug targeting (MDT). In MDT, magnetic carrier particles bounded with drug molecules are injected into the vascular system up-stream from the malignant tissue and attracted or retained at the specific region in the body with the help of an external magnetic field. Although the concept of MDT has been around for many years, however, wide spread acceptance of the technique is still looming despite the fact that it has shown some promise in both in vivo and clinical studies. This is because traditional MDT has some inherent limitations. Typically, the magnetic force is not very strong and it is also very short ranged. Since the magnetic force must overcome rather large hydrodynamic forces in the body, MDT applications have been limited to sites located close to the surface of the skin. Even in this most favorable situation, studies have shown that it is difficult to collect appreciable amounts of the MDCPs at the target site. To overcome these limitations of the traditional MDT approach, Ritter and co-workers reported the implant assisted magnetic drug targeting (IA-MDT). In IA-MDT, the magnetic implants are placed strategically at the target site to greatly and locally increase the magnetic force on MDCPs and help to attract and retain the MDCPs at the targeted region. In the present work, we develop a mathematical model to study the capturing of magnetic nanoparticles flowing in a fluid in an implant assisted cylindrical channel under the magnetic field. A coil of ferromagnetic SS 430 has been implanted inside the cylindrical channel to enhance the capturing of magnetic nanoparticles under the magnetic field. The dominant magnetic and drag forces, which significantly affect the capturing of nanoparticles, are incorporated in the model. It is observed through model results that capture efficiency increases from 23 to 51 % as we increase the magnetic field from 0.1 to 0.5 T, respectively. The increase in capture efficiency by increase in magnetic field is because as the magnetic field increases, the magnetization force, which is attractive in nature and responsible to attract or capture the magnetic particles, increases and results the capturing of large number of magnetic particles due to high strength of attractive magnetic force.Keywords: capture efficiency, implant assisted-magnetic drug targeting (IA-MDT), magnetic nanoparticles, modelling
Procedia PDF Downloads 4623675 Intelligent Indoor Localization Using WLAN Fingerprinting
Authors: Gideon C. Joseph
Abstract:
The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression
Procedia PDF Downloads 3473674 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring
Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra
Abstract:
Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application
Procedia PDF Downloads 1003673 Empirical Analysis of Velocity Behavior for Collaborative Robots in Transient Contact Cases
Authors: C. Schneider, M. M. Seizmeir, T. Suchanek, M. Hutter-Mironovova, M. Bdiwi, M. Putz
Abstract:
In this paper, a suitable measurement setup is presented to conduct force and pressure measurements for transient contact cases at the example of lathe machine tending. Empirical measurements were executed on a selected collaborative robot’s behavior regarding allowable operating speeds under consideration of sensor- and workpiece-specific factors. Comparisons between the theoretic calculations proposed in ISO/TS 15066 and the practical measurement results reveal a basis for future research. With the created database, preliminary risk assessment and economic assessment procedures of collaborative machine tending cells can be facilitated.Keywords: biomechanical thresholds, collaborative robots, force and pressure measurements, machine tending, transient contact
Procedia PDF Downloads 2433672 Exploitation of Terpenes as Guardians in Plant Biotechnology
Authors: Farzad Alaeimoghadam, Farnaz Alaeimoghadam
Abstract:
Plants are always being threatened by biotic and abiotic elements in their abode. Although they have inherited mechanisms to defend themselves, sometimes due to overpowering of their enemies or weakening of themselves, they just suffer from those elements. Human, as to help plants defend themselves, have developed several methods among which application of terpenes via plant biotechnology is promising. Terpenes are the most frequent and diverse secondary metabolites in plants. In these plants, terpenes are involved in different protective aspects. In this field, by utilizing biotechnological approaches on them, a delicate, precise, and an economic intervention will be achieved. In this review, first, the importance of terpenes as guardians in plants, which include their allelopathy effect, a call for alliances, and a mitigation impact on abiotic stresses will be pointed out. Second, problems concerning terpenes application in plant biotechnology comprising: damage to cell, undesirable terpene production and undesirable concentration and proportion of terpenes will be discussed. At the end, the approaches in plant biotechnology of terpenes including tampering with terpene gene sequences, compartmentalization, and localization and utilization of membrane transporters will be expressed. It is concluded with some useful notions concerning the topic.Keywords: plant biotechnology, plant protection, terpenes, terpenoids
Procedia PDF Downloads 3543671 Pioneering Technology of Night Photo-Stimulation of the Brain Lymphatic System: Therapy of Brain Diseases during Sleep
Authors: Semyachkina-Glushkovskaya Oxana, Fedosov Ivan, Blokhina Inna, Terskov Andrey, Evsukova Arina, Elovenko Daria, Adushkina Viktoria, Dubrovsky Alexander, Jürgen Kurths
Abstract:
In modern neurobiology, sleep is considered a novel biomarker and a promising therapeutic target for brain diseases. This is due to recent discoveries of the nighttime activation of the brain lymphatic system (BLS), playing an important role in the removal of wastes and toxins from the brain and contributes neuroprotection of the central nervous system (CNS). In our review, we discuss that night stimulation of BLS might be a breakthrough strategy in a new treatment of Alzheimer’s and Parkinson’s disease, stroke, brain trauma, and oncology. Although this research is in its infancy, however, there are pioneering and promising results suggesting that night transcranial photostimulation (tPBM) stimulates more effectively lymphatic removal of amyloid-beta from mouse brain than daily tPBM that is associated with a greater improvement of the neurological status and recognition memory of animals. In our previous study, we discovered that tPBM modulates the tone and permeability of the lymphatic endothelium by stimulating NO formation, promoting lymphatic clearance of wastes and toxins from the brain tissues. We also demonstrate that tPBM can also lead to angio- and lymphangiogenesis, which is another mechanism underlying tPBM-mediated stimulation of BLS. Thus, photo-augmentation of BLS might be a promising therapeutic target for preventing or delaying brain diseases associated with BLS dysfunction. Here we present pioneering technology for simultaneous tPBM in humans and sleep monitoring for stimulation of BLS to remove toxins from CNS and modulation of brain immunity. The wireless-controlled gadget includes a flexible organic light-emitting diode (LED) source that is controlled directly by a sleep-tracking device via a mobile application. The designed autonomous LED source is capable of providing the required therapeutic dose of light radiation at a certain region of the patient’s head without disturbing of sleeping patient. To minimize patients' discomfort, advanced materials like flexible organic LEDs were used. Acknowledgment: This study was supported by RSF project No. 23-75-30001.Keywords: brain diseases, brain lymphatic system, phototherapy, sleep
Procedia PDF Downloads 723670 Family Functionality in Mexican Children with Congenital and Non-Congenital Deafness
Authors: D. Estrella, A. Silva, R. Zapata, H. Rubio
Abstract:
A total of 100 primary caregivers (mothers, fathers, grandparents) with at least one child or grandchild with a diagnosis of congenital bilateral profound deafness were assessed in order to evaluate the functionality of families with a deaf member, who was evaluated by specialists in audiology, molecular biology, genetics and psychology. After confirmation of the clinical diagnosis, DNA from the patients and parents were analyzed in search of the 35delG deletion of the GJB2 gene to determine who possessed the mutation. All primary caregivers were provided psychological support, regardless of whether or not they had the mutation, and prior and subsequent, the family APGAR test was applied. All parents, grandparents were informed of the results of the genetic analysis during the psychological intervention. The family APGAR, after psychological and genetic counseling, showed that 14% perceived their families as functional, 62% moderately functional and 24% dysfunctional. This shows the importance of psychological support in family functionality that has a direct impact on the quality of life of these families.Keywords: deafness, psychological support, family, adaptation to disability
Procedia PDF Downloads 4243669 Price Control: A Comprehensive Step to Control Corruption in the Society
Authors: Muhammad Zia Ullah Baig, Atiq Uz Zama
Abstract:
The motivation of the project is to facilitate the governance body, as well as the common man in his/her daily life consuming product rates, to easily monitor the expense, to control the budget with the help of single SMS (message), e-mail facility, and to manage governance body by task management system. The system will also be capable of finding irregularities being done by the concerned department in mitigating the complaints generated by the customer and also provide a solution to overcome problems. We are building a system that easily controls the price control system of any country, we will feeling proud to give this system free of cost to Indian Government also. The system is able to easily manage and control the price control department of government all over the country. Price control department run in different cities under City District Government, so the system easily run in different cities with different SMS Code and decentralize Database ensure the non-functional requirement of system (scalability, reliability, availability, security, safety). The customer request for the government official price list with respect to his/her city SMS code (price list of all city available on website or application), the server will forward the price list through a SMS, if the product is not available according to the price list the customer generate a complaint through an SMS or using website/smartphone application, complaint is registered in complaint database and forward to inspection department when the complaint is entertained, the inspection department will forward a message about the complaint to customer. Inspection department physically checks the seller who does not follow the price list, but the major issue of the system is corruption, may be inspection officer will take a bribe and resolve the complaint (complaint is fake) in that case the customer will not use the system. The major issue of the system is to distinguish the fake and real complain and fight for corruption in the department. To counter the corruption, our strategy is to rank the complain if the same type of complaint is generated the complaint is in high rank and the higher authority will also notify about that complain, now the higher authority of department have reviewed the complaint and its history, the officer who resolve that complaint in past and the action against the complaint, these data will help in decision-making process, if the complaint was resolved because the officer takes bribe, the higher authority will take action against that officer. When the price of any good is decided the market/former representative is also there, with the mutual understanding of both party the price is decided, the system facilitate the decision-making process. The system shows the price history of any goods, inflation rate, available supply, demand, and the gap between supply and demand, these data will help to allot for the decision-making process.Keywords: price control, goods, government, inspection, department, customer, employees
Procedia PDF Downloads 4113668 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer
Authors: Binder Hans
Abstract:
Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas
Procedia PDF Downloads 1483667 Particle Size Distribution Estimation of a Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions
Authors: Ejay Nsugbe, Andrew Starr, Ian Jennions, Cristobal Ruiz-Carcel
Abstract:
This works investigates the possibility of using Acoustic Emissions (AE) to estimate the Particle Size Distribution (PSD) of a mixture of particles that comprise of particles of different densities and geometry. The experiments carried out involved the mixture of a set of glass and polyethylene particles that ranged from 150-212 microns and 150-250 microns respectively and an experimental rig that allowed the free fall of a continuous stream of particles on a target plate which the AE sensor was placed. By using a time domain based multiple threshold method, it was observed that the PSD of the particles in the mixture could be estimated.Keywords: acoustic emissions, particle sizing, process monitoring, signal processing
Procedia PDF Downloads 3523666 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 1223665 A Parametric Study on Effects of Internal Factors on Carbonation of Reinforced Concrete
Authors: Kunal Tongaria, Abhishek Mangal, S. Mandal, Devendra Mohan
Abstract:
The carbonation of concrete is a phenomenon which is a function of various interdependent parameters. Therefore, in spite of numerous literature and database, the useful generalization is not an easy task. These interdependent parameters can be grouped under the category of internal and external factors. This paper focuses on the internal parameters which govern and increase the probability of the ingress of deleterious substances into concrete. The mechanism of effects of internal parameters such as microstructure for with and without supplementary cementing materials (SCM), water/binder ratio, the age of concrete etc. has been discussed. This is followed by the comparison of various proposed mathematical models for the deterioration of concrete. Based on existing laboratory experiments as well as field results, this paper concludes the present understanding of mechanism, modeling and future research needs in this field.Keywords: carbonation, diffusion coefficient, microstructure of concrete, reinforced concrete
Procedia PDF Downloads 4073664 Corporate Life Cycle and Corporate Social Responsibility Performance: Empirical Evidence from Pharmaceutical Industry in China
Authors: Jing (Claire) LI
Abstract:
The topic of corporate social responsibility (CSR) is significant for pharmaceutical companies in China at this current stage. This is because, as a rapid growth industry in China in recent years, the pharmaceutical industry in China has been undergone continuous and terrible incidents relating to CSR. However, there is limited research and practice of CSR in Chinese pharmaceutical companies. Also, there is an urgent call for more research in an international context to understand the implications of corporate life cycle on CSR performance. To respond to the research need and research call, this study examines the relationship between corporate life cycle and CSR performance of Chinese listed companies in pharmaceutical industry. This research studies Chinese listed companies in pharmaceutical industry for the period of 2010-2017, where the data is available in database. Following the literature, this study divides CSR performance with regards to CSR dimensions, including shareholders, creditors, employees, customers, suppliers, the government, and the society. This study uses CSR scores of HEXUN database and financial measures of these CSR dimensions to measure the CSR performance. This study performed regression analysis to examine the relationship between corporate life cycle stages and CSR performance with regards to CSR dimensions for pharmaceutical listed companies in China. Using cash flow pattern as proxy of corporate life cycle to classify corporate life cycle stages, this study found that most (least) pharmaceutical companies in China are in maturity (decline) stage. This study found that CSR performance for most dimensions are highest (lowest) in maturity (decline) stage as well. Among these CSR dimensions, performing responsibilities for shareholder is the most important among all CSR responsibilities for pharmaceutical companies. This study is the first to provide important empirical evidence from Chinese pharmaceutical industry on the association between life cycle and CSR performance, supporting that corporate life cycle is a key factor in CSR performance. The study expands corporate life cycle and CSR literatures and has both empirical and theoretical contributions to the literature. From perspective of empirical contributions, the findings contribute to the argument that whether there is a relationship between CSR performance and various corporate life cycle stages in the literature. This study also provides empirical evidence that companies in different corporate life cycles have difference in CSR performance. From perspective of theoretical contributions, this study relates CSR and stakeholders to corporate life cycle stages and complements the corporate life cycle and CSR literature. This study has important implications for managers and policy makers. First, the results will be helpful for managers to have an understanding in the essence of CSR, and their company’s current and future CSR focus over corporate life cycle. This study provides a reference for their actions and may help them make more wise resources allocation decisions of CSR investment. Second, policy makers (in the government, stock exchanges, and securities commission) may consider corporate life cycle as an important factor in formulating future regulations for companies. Future research can explore the "process-based" differences in CSR performance and more industries.Keywords: China, corporate life cycle, corporate social responsibility, pharmaceutical industry
Procedia PDF Downloads 1053663 Solving Ill-Posed Initial Value Problems for Switched Differential Equations
Authors: Eugene Stepanov, Arcady Ponosov
Abstract:
To model gene regulatory networks one uses ordinary differential equations with switching nonlinearities, where the initial value problem is known to be well-posed if the trajectories cross the discontinuities transversally. Otherwise, the initial value problem is usually ill-posed, which lead to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid dynamical systems, rather than switched ones, to regularize the problem. 'Hybridization' of the switched system means that one attaches a dynamic discrete component ('automaton'), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness of the initial value problem making it well-posed. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. Several examples are provided in the presentation, which support the suggested analysis. The method can also be of interest in other applied fields, where differential equations contain switchings, e.g. in neural field models.Keywords: hybrid dynamical systems, ill-posed problems, singular perturbation analysis, switching nonlinearities
Procedia PDF Downloads 184