Search results for: machine and plant engineering
7177 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis
Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza
Abstract:
Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.Keywords: permanent magnet, diagnosis, demagnetization, modelling
Procedia PDF Downloads 687176 Detecting Elderly Abuse in US Nursing Homes Using Machine Learning and Text Analytics
Authors: Minh Huynh, Aaron Heuser, Luke Patterson, Chris Zhang, Mason Miller, Daniel Wang, Sandeep Shetty, Mike Trinh, Abigail Miller, Adaeze Enekwechi, Tenille Daniels, Lu Huynh
Abstract:
Machine learning and text analytics have been used to analyze child abuse, cyberbullying, domestic abuse and domestic violence, and hate speech. However, to the authors’ knowledge, no research to date has used these methods to study elder abuse in nursing homes or skilled nursing facilities from field inspection reports. We used machine learning and text analytics methods to analyze 356,000 inspection reports, which have been extracted from CMS Form-2567 field inspections of US nursing homes and skilled nursing facilities between 2016 and 2021. Our algorithm detected occurrences of the various types of abuse, including physical abuse, psychological abuse, verbal abuse, sexual abuse, and passive and active neglect. For example, to detect physical abuse, our algorithms search for combinations or phrases and words suggesting willful infliction of damage (hitting, pinching or burning, tethering, tying), or consciously ignoring an emergency. To detect occurrences of elder neglect, our algorithm looks for combinations or phrases and words suggesting both passive neglect (neglecting vital needs, allowing malnutrition and dehydration, allowing decubiti, deprivation of information, limitation of freedom, negligence toward safety precautions) and active neglect (intimidation and name-calling, tying the victim up to prevent falls without consent, consciously ignoring an emergency, not calling a physician in spite of indication, stopping important treatments, failure to provide essential care, deprivation of nourishment, leaving a person alone for an inappropriate amount of time, excessive demands in a situation of care). We further compare the prevalence of abuse before and after Covid-19 related restrictions on nursing home visits. We also identified the facilities with the most number of cases of abuse with no abuse facilities within a 25-mile radius as most likely candidates for additional inspections. We also built an interactive display to visualize the location of these facilities.Keywords: machine learning, text analytics, elder abuse, elder neglect, nursing home abuse
Procedia PDF Downloads 1467175 Crop Water Productivity for Sunflower under Different Irrigation Regimes and Plant Spacing, at Gezira Clay Soil, Sudan
Authors: R. A. Eman Elsheikh, Bart Schultz, Abraham Mehari Haile, Hussein S. Adam
Abstract:
A field experiment was conducted at Gezira research station farm during the winter season in the third week of November 2012, in WadMedani, Sudan (Lat 14.23 W, Long 33.39 E and altitude 405 m above sea level, in deep cracking alkaline heavy clay Vertisols). The objective of this study was to determine the effect of three different irrigation for 10 days (W1), 15 days (W2) and 20 days (W3) and for two rows of 30 cm (S1) and 40 cm (S2), respectively. The experimental design was split plot with three replicates. The sunflower test variety was Hysun 33 cultivar. The seasonal water applied during the study was 6898, 6647, 5256, 5435, 5214, 5416 m3/ha for W1S1, W1S2, W2S1, W2S2, W3S1 and W3S2 respectively. The seed yield obtained for the above treatment in that sequence was 4208, 5542, 5167, 4579, 2931, 2936 kg/ha. The corresponding computed water productivity was 0.61, 0.82, 0.87, 0.95, 0.54, 0.56 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm row spacing and was irrigated every 10 days (W1S2), followed by W2S1.Keywords: water productivity, water deficit, sunflower, plant spacing
Procedia PDF Downloads 3507174 Biodegradation of Triclosan and Tetracycline in Sewage Sludge by Pleurotus Ostreatus Fungal Pellets
Authors: Ayda Maadani Mallak, Amir lakzian, Elham Khodaverdi, Gholam Hossein Haghnia
Abstract:
The use of pharmaceuticals and personal care products such as antibiotics and antibacterials has been increased in recent years. Since the major part of consumed compounds remains unchanged in the wastewater treatment plant, they will easily find their way into the human food chain following the land use of sewage sludge (SS). Biological treatment of SS is one the most effective methods for expunging contaminants. White rot fungi, due to their ligninolytic enzymes, are extensively used to degrade organic compounds. Among all three different morphological forms and growth patterns of filamentous fungi (mycelia, clumps, and pellets), fungal pellet formation has been the subject of interest in industrial bioprocesses. Therefore this study was aimed to investigate the uptake of tetracycline (TC) and triclosan (TCS) by radish plant (Raphanus sativus) from soil amended with untreated and pretreated SS by P. ostreatus fungal pellets under greenhouse conditions. The experimental soil was amended with 1) Contaminated SS with TC at a concentration of 100 mgkg-1 and pretreated by fungal pellets, 2) Contaminated SS with TC at 100 mgkg-1 and untreated with fungal pellets, 3) Contaminated SS with TCS at a concentration of 50 mgkg-1 and pretreated by fungal pellets, 4) contaminated SS with TCS at 50 mgkg-1 and untreated with fungal pellets. An uncontaminated and untreated SS-amended soil also was considered as control treatment. An AB SCIEX 3200 QTRAP LC-MS/MS system was used in order to analyze the concentration of TC and TCS in plant tissues and soil medium. Results of this study revealed that the presence of TC and TCS in SS-amended soil decreased the radish biomass significantly. The reduction effect of TCS on dry biomass of shoot and root was 39 and 45% compared to controls, whereas for TC, the reduction percentage for shoot and root was 27 and 40.6%, respectively. However, fungal treatment of SS by P. ostreatus pellets reduced the negative effect of both compounds on plant biomass remarkably, as no significant difference was observed compared to control treatments. Pretreatment of SS with P. ostreatus also caused a significant reduction in translocation factor (concentration in shoot/root), especially for TC compound up to 32.3%, whereas this reduction for TCS was less (8%) compared to untreated SS. Generally, the results of this study confirmed the positive effect of using fungal pellets in SS amendment to decrease TC and TCS uptake by radish plants. In conclusion, P. ostreatus fungal pellets might provide future insights into bioaugmentation to remove antibiotics from environmental matrices.Keywords: antibiotic, fungal pellet, sewage sludge, white-rot fungi
Procedia PDF Downloads 1587173 Assessment of Susceptibility of the Poultry Red Mite, Dermanyssus gallinae (Acari: Dermanyssidae) to Some Plant Preparations with Focus on Exposure Time
Authors: Shahrokh Ranjbar-Bahadori, Nima Farhadifar, Leila Mohammadyar
Abstract:
Plant preparations from thyme and garlic have been shown to be effective acaricides against the poultry red mite, Dermanyssus gallinae. In a layer house with a history of D. gallinae problem, mites were detected in the monitoring traps for the first time and number of them was counted. Then, some rows of layer house was sprayed twice using a concentration of 0.21 mg/cm2 thyme essential oil and 0.07 mg/cm2 garlic juice and a similar row was used as an untreated control group. Red mite traps made of cardboard were used to assess the mite density during days 1 and 7 after treatment and always removed after 24 h. the collected mites were counted and the efficacy against all mite stages (larvae, nymphs and adults) was calculated. Results showed that on day 1 and 7 after the administration of garlic extract efficacy rate was 92.05% and 74.62%, respectively. Moreover, efficacy rate on day 1 and 7 was 89.4% and 95.37% when treatment was done with thyme essential oil. It is concluded that using garlic juice to control of D. gallinae is more effective on short time. But thyme essential oil has a long time effect in compare to garlic preparation.Keywords: Dermanyssus gallinae, essential oil, garlic, thyme, efficacy
Procedia PDF Downloads 4357172 Attenuation of Pancreatic Histology, Hematology and Biochemical Parameters in Type 2 Diabetic Rats Treated with Azadirachta excelsa
Authors: S. Nurdiana, A. S. Nor Haziqah, M. K. Nur Ezwa Khairunnisa, S. Nurul Izzati, Y. Siti Amna M. J. Norashirene, I. Nur Hilwani
Abstract:
Azadirachta excelsa or locally known as sentang are frequently used as a traditional medicine by diabetes patients in Malaysia. However, less attention has been given to their toxicity effect. Thus, the study is an attempt to examine the protective effect of A. excelsa on the pancreas and to determine possible toxicity mediated by the extract. Diabetes was induced experimentally in rats by high-fat-diet for 16 weeks followed by intraperitoneal injection of streptozotocin at dosage of 35 mg/kg of body weight. Declination of the fasting blood glucose level was observed after continuous administration of A. excelsa for 14 days twice daily. This is due to the refining structure of the pancreas. However, surprisingly, the plant extract reduced the leukocytes, erythrocytes, hemoglobin, MCHC and lymphocytes. In addition, the rat treated with the plant extract exhibited increment in AST and eosinocytes level. Overall, the finding shows that A. excelsa possesses antidiabetic activity by improving the structure of pancreatic islet of Langerhans but involved in ameliorating of hematology and biochemical parameters.Keywords: Azadirachta excelsa, diabetes, pancreas, hemato-biochemical parameters
Procedia PDF Downloads 4187171 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate
Authors: Susan Diamond
Abstract:
Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare.Keywords: deep learning, machine learning, cognitive computing, model training
Procedia PDF Downloads 2097170 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique
Authors: Saumya Srivastava, Rina Maiti
Abstract:
In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine
Procedia PDF Downloads 1247169 Prevalence and Fungicidal Activity of Endophytic Micromycetes of Plants in Kazakhstan
Authors: Lyudmila V. Ignatova, Yelena V. Brazhnikova, Togzhan D. Mukasheva, Ramza Zh. Berzhanova, Anel A. Omirbekova
Abstract:
Endophytic microorganisms are presented in plants of different families growing in the foothills and piedmont plains of Trans-Ili Alatau. It was found that the maximum number of endophytic micromycetes is typical to the Fabaceae family. The number of microscopic fungi in the roots reached (145.9±5.9)×103 CFU/g of plant tissue; yeasts - (79.8±3.5)×102 CFU/g of plant tissue. Basically, endophytic microscopic fungi are typical for underground parts of plants. In contrast, yeasts more infected aboveground parts of plants. Small amount of micromycetes is typical to inflorescence and fruits. Antagonistic activity of selected micromycetes against Fusarium graminearum, Cladosporium sp., Phytophtora infestans and Botrytis cinerea phytopathogens was detected. Strains with a broad, narrow and limited range of action were identified. For further investigations Rh2 and T7 strains were selected, they are characterized by a broad spectrum of fungicidal activity and they formed the large inhibition zones against phytopathogens. Active antagonists are attributed to the Rhodotorula mucilaginosa and Beauveria bassiana species.Keywords: endophytic micromycetes, fungicidal activity, prevalence, plants
Procedia PDF Downloads 3217168 The Effect of Artificial Intelligence on Electric Machines and Welding
Authors: Mina Malak Zakaria Henin
Abstract:
The finite detail evaluation of magnetic fields in electromagnetic devices shows that the machine cores revel in extraordinary flux patterns consisting of alternating and rotating fields. The rotating fields are generated in different configurations variety, among circular and elliptical, with distinctive ratios between the fundamental and minor axes of the flux locus. Experimental measurements on electrical metal uncovered one-of-a-kind flux patterns that divulge distinctive magnetic losses in the samples below the test. Therefore, electric machines require unique interest throughout the core loss calculation technique to bear in mind the flux styles. In this look, a circular rotational unmarried sheet tester is employed to measure the middle losses in the electric-powered metallic pattern of M36G29. The sample becomes exposed to alternating fields, circular areas, and elliptical fields with axis ratios of zero.2, zero. Four, 0.6 and 0.8. The measured statistics changed into applied on 6-4 switched reluctance motors at 3 distinctive frequencies of interest to the industry 60 Hz, 400 Hz, and 1 kHz. The effects reveal an excessive margin of error, which can arise at some point in the loss calculations if the flux pattern difficulty is overlooked. The mistake in exceptional components of the gadget associated with considering the flux styles may be around 50%, 10%, and a couple of at 60Hz, 400Hz, and 1 kHz, respectively. The future paintings will focus on the optimization of gadget geometrical shape, which has a primary effect on the flux sample on the way to decrease the magnetic losses in system cores.Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems) synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway tractionalternating core losses, finite element analysis, rotational core losses
Procedia PDF Downloads 287167 Plant Water Relations and Forage Quality in Leucaena leucocephala (Lam.) de Wit and Acacia saligna (Labill.) as Affected by Salinity Stress
Authors: Maher J. Tadros
Abstract:
This research was conducted to study the effect of different salinity concentrations on the plant water relation and forage quality on two multipurpose forest trees species seedlings Leucaena leucocephala (Lam.) de wit and Acacia saligna (Labill.). Five different salinity concentrations mixture between sodium chloride and calcium chloride (v/v, 1:1) were applied. The control (Distilled Water), 2000, 4000, 6000, and 8000 ppm were used to water the seedlings for 3 months. The research results presented showed a marked variation among the two species in response to salinity. The Leucaena was able to withstand the highest level of salinity compared to Acacia all over the studied parameters except in the relative water content. Although all the morphological characteristics studied for the two species showed a marked decrease under the different salinity concentrations, except the shoot/root ratio that showed a trend of increase. The water stress measure the leaf water potential was more negative with as the relative water content increase under that saline conditions compared to the control. The forage quality represented by the crude protein and nitrogen content were low at 6000 ppm compared to the 8000 ppm in L. Leucocephala that increased compared that level in A. saligna. Also the results showed that growing both Leucaena and Acacia provide a good source of forage when that grow under saline condition which will be of great benefits to the agricultural sector especially in the arid and semiarid areas were these species can provide forage with high quality forage all year around when grown under irrigation with saline. This research recommended such species to be utilized and grown for forages under saline conditions.Keywords: plant water relations, growth performance, salinity stress, protein content, forage quality, multipurpose trees
Procedia PDF Downloads 3937166 Ergonomical Study of Hand-Arm Vibrational Exposure in a Gear Manufacturing Plant in India
Authors: Santosh Kumar, M. Muralidhar
Abstract:
The term ‘ergonomics’ is derived from two Greek words: ‘ergon’, meaning work and ‘nomoi’, meaning natural laws. Ergonomics is the study of how working conditions, machines and equipment can be arranged in order that people can work with them more efficiently. In this research communication an attempt has been made to study the effect of hand-arm vibrational exposure on the workers of a gear manufacturing plant by comparison of potential Carpal Tunnel Syndrome (CTS) symptoms and effect of different exposure levels of vibration on occurrence of CTS in actual industrial environment. Chi square test and correlation analysis have been considered for statistical analysis. From Chi square test, it has been found that the potential CTS symptoms occurrence is significantly dependent on the level of vibrational exposure. Data analysis indicates that 40.51% workers having potential CTS symptoms are exposed to vibration. Correlation analysis reveals that potential CTS symptoms are significantly correlated with exposure to level of vibration from handheld tools and to repetitive wrist movements.Keywords: CTS symptoms, hand-arm vibration, ergonomics, physical tests
Procedia PDF Downloads 3717165 Role of Medicinal Plants in Treatment of Diseases and Drug Discovery in Azad Kashmir, Pakistan
Authors: Neelam Rashid, Muhammad Zafar, Mushtaq Ahmad, Khafsa Malik, Syed Nasar Shah
Abstract:
The present study was conducted to study the role of medicinal plants used to cure different ailments in Azad Kashmir. Various ethno medicinal surveys were carried out during 2016 to enlist the uses of plants against various ailments by rural communities of the area. Information was obtained from 60 local people including 45 males (10 traditional health practitioners) and 15 females by semi structured interviews and group discussions. 65 plant species belonging to 45 families were reported. The dominant plant habit was herbaceous (56%) while decoction was the most common method of utilization (40%). The most cited turmoil was the gastrointestinal disorders. The data obtained were analyzed using ethno medicinal indices such as FL, UV, ICF, FC, and RFC. Results revealed that various species had numerous uses in curing of diseases. So conservation of biodiversity of these medicinal plants and traditional knowledge can play important role in improving the local health conditions of rural people and modern drug discovery and development.Keywords: medicinal plants, ailments, drug, health, traditional
Procedia PDF Downloads 2507164 Easy Way of Optimal Process-Storage Network Design
Authors: Gyeongbeom Yi
Abstract:
The purpose of this study is to introduce the analytic solution for determining the optimal capacity (lot-size) of a multiproduct, multistage production and inventory system to meet the finished product demand. Reasonable decision-making about the capacity of processes and storage units is an important subject for industry. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ (Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. However, the unrealistic material flow assumption of the EOQ/EPQ model is not suitable for chemical plant design with highly interlinked processes and storage units. This study overcomes the limitation of the classical lot sizing method developed on the basis of the single product and single stage assumption. The superstructure of the plant considered consists of a network of serially and/or parallelly interlinked processes and storage units. The processes involve chemical reactions with multiple feedstock materials and multiple products as well as mixing, splitting or transportation of materials. The objective function for optimization is minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis method, PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for plant design and operation problem confronted in diverse economic situations.Keywords: analytic solution, optimal design, process-storage network
Procedia PDF Downloads 3317163 Optimization of Moisture Content for Highest Tensile Strength of Instant Soluble Milk Tablet and Flowability of Milk Powder
Authors: Siddharth Vishwakarma, Danie Shajie A., Mishra H. N.
Abstract:
Milk powder becomes very useful in the low milk supply area but the exact amount to add for one glass of milk and the handling is difficult. So, the idea of instant soluble milk tablet comes into existence for its high solubility and easy handling. The moisture content of milk tablets is increased by the direct addition of water with no additives for binding. The variation of the tensile strength of instant soluble milk tablets and the flowability of milk powder with the moisture content is analyzed and optimized for the highest tensile strength of instant soluble milk tablets and flowability, above a particular value of milk powder using response surface methodology. The flowability value is necessary for ease in quantifying the milk powder, as a feed, in the designed tablet making machine. The instant soluble nature of milk tablets purely depends upon the disintegration characteristic of tablets in water whose study is under progress. Conclusions: The optimization results are very useful in the commercialization of milk tablets.Keywords: flowability, milk powder, response surface methodology, tablet making machine, tensile strength
Procedia PDF Downloads 1827162 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores
Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi
Abstract:
In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.Keywords: drug synergy, clustering, prediction, machine learning., deep learning
Procedia PDF Downloads 797161 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself
Authors: Frederic Jumelle, Kelvin So, Didan Deng
Abstract:
In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).Keywords: neural computing, human machine interation, artificial general intelligence, decision processing
Procedia PDF Downloads 1257160 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 1227159 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment
Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman
Abstract:
Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands
Procedia PDF Downloads 677158 Co-Limitation of Iron Deficiency in Stem Allantoin and Amino-N Formation of Peanut Plants Intercropped with Cassava
Authors: Hong Li, Tingxian Li, Xudong Wang, Weibo Yang
Abstract:
Co-limitation of iron (Fe) deficiency in legume nitrogen fixation process is not well understood. Our objectives were to examine how peanut plants cope with Fe deficiency with the rhizobial inoculants and N-nutrient treatments. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 4.6±0.7) and deficient in Fe (9.2±2.3 mg/kg). Peanut plants were intercropped with cassava. The inoculants and N treatments were arranged in a split-plot design with three blocks. Peanut root nodulation, stem allantoin, amino acids and plant N derived from fixation (P) reduced with declining soil Fe concentrations. The treatment interactions were significant on relative ureide % and peanut yields (P<0.05). Residual fixed N from peanut plants was beneficial to cassava plants. It was concluded that co-variance of Fe deficiency could influence peanut N fixation efficiency and rhizobia and N inputs could help improving peanut tolerance to Fe deficiency stress.Keywords: amino acids, plant N derived from N fixation, root nodulation, soil Fe co-variance, stem ureide, peanuts, cassava
Procedia PDF Downloads 2957157 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 577156 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails
Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali
Abstract:
When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis
Procedia PDF Downloads 507155 DNA of Hibiscus sabdariffa Damaged by Radiation from 900 MHz GSM Antenna
Authors: A. O. Oluwajobi, O. A. Falusi, N. A. Zubbair, T. Owoeye, F. Ladejobi, M. C. Dangana, A. Abubakar
Abstract:
The technology of mobile telephony has positively enhanced human life and reports on the bio safety of the radiation from their antennae have been contradictory, leading to serious litigations and violent protests by residents in several parts of the world. The crave for more information, as requested by WHO in order to resolve this issue, formed the basis for this study on the effect of the radiation from 900 MHz GSM antenna on the DNA of Hibiscus sabdariffa. Seeds of H. sabdariffa were raised in pots placed in three replicates at 100, 200, 300 and 400 metres from the GSM antennae in three selected test locations and a control where there was no GSM signal. Temperature (˚C) and the relative humidity (%) of study sites were measured for the period of study (24 weeks). Fresh young leaves were harvested from each plant at two, eight and twenty-four weeks after sowing and the DNA extracts were subjected to RAPD-PCR analyses. There were no significant differences between the weather conditions (temperature and relative humidity) in all the study locations. However, significant differences were observed in the intensities of radiations between the control (less than 0.02 V/m) and the test (0.40-1.01 V/m) locations. Data obtained showed that DNA of samples exposed to rays from GSM antenna had various levels of distortions, estimated at 91.67%. Distortions occurred in 58.33% of the samples between 2-8 weeks of exposure while 33.33% of the samples were distorted between 8-24 weeks exposure. Approximately 8.33% of the samples did not show distortions in DNA while 33.33% of the samples had their DNA damaged twice, both at 8 and at 24 weeks of exposure. The study showed that radiation from the 900 MHz GSM antenna is potent enough to cause distortions to DNA of H. sabdariffa even within 2-8 weeks of exposure. DNA damage was also independent of the distance from the antenna. These observations would qualify emissions from GSM mast as environmental hazard to the existence of plant biodiversities and all life forms in general. These results will trigger efforts to prevent further erosion of plant genetic resources which have been threatening food security and also the risks posed to living organisms, thereby making our environment very safe for our existence while we still continue to enjoy the benefits of the GSM technology.Keywords: damage, DNA, GSM antenna, radiation
Procedia PDF Downloads 3397154 Regeneration of Plantlets via Direct Somatic Embryogenesis from Different Explants of Murraya koenigii
Authors: Nisha Khatik, Ramesh Joshi
Abstract:
An in vitro plant regeneration system was developed via direct somatic embryogenesis from different seedling explants of an important medicinal plant Murraya koenigii (L) Spreng. Cotyledons (COT), Hypocotyle (HYP)(10 to 15 mm) and Root (RT) segments (10 to 20 mm) were excised from 60 days old seedlings as explants. The somatic embryos induction was achieved on MS basal medium augmented with different concentrations of BAP 1.33 to 8.40 µM and TDZ 1.08 to 9.82 µM. The globular embryos originated from cut ends and entire surface of the root, hypocotyle explants and margins of cotyledons within 30-40days. The percentage of somatic embryos induction per explant was significantly higher in HYP explants (94.21±5.77%) in the MS basal medium supplemented with 6.20 µM BAP and 8.64 µM TDZ. The highest rate of conversion of torpedo, heart and cotyledonary stages from globular stage was obtained in MS medium supplemented with 8.64 µM TDZ. The matured somatic embryos were transferred to the MS basal medium without PGRs. Highest 88% of the matured embryos were germinated on transfer to the PGR free medium where they grew for a further 3-4 weeks. Out of seventy six hardened plants seventy (92%) plantlets were found healthy under field conditions.Keywords: Murraya koenigii, somatic embryogenesis, thidiazuron, regeneration, rutaceae
Procedia PDF Downloads 4277153 Ethnomedicinal Uses of Plants in Bridim Village Development Committee in Langtang National Park, Nepal
Authors: Ila Shrestha
Abstract:
Bridim Village Development Committee (VDC) is one of the medicinal plants hot spots of Nepal. It is located on a ridge above the lower Langtang Khola, steep and narrow spot in between 1944 m to 4833 m altitude. The study area is homogeneously inhabited by Tamang communities. An investigation on folk herbal medicine on the basis of traditional uses of medicinal plants was done in 2014. The local traditional healers, elder men and women, traders and teachers, were consulted as key informants for documentation of indigenous knowledge on the medicinal plants. It was found that altogether seventy-one medicinal plant species belonging to sixty genera and thirty-three families were used by local people for twenty-seven diseases. Roots of thirty-four species were the most frequently used plant parts and bigger numbers of species were found to be used in fever of ten species. Most medicines were prepared in the form of juice of forty species. The attempt of the study was to document ethno medicinal practices to treat different diseases in the study area for conservation of indigenous knowledge.Keywords: Bridim village, ethnomedicine, national park, plants
Procedia PDF Downloads 2967152 Growth Analysis in Wheat as Influenced by Water Stress and Variety in Sokoto, Sudan Savannah, Nigeria
Authors: M. B. Sokoto, I. U. Abubakar
Abstract:
The study was carried out on effect of water stress and variety on growth of wheat (Triticum aestivum L.), during 2009/10 and 2010/11 dry seasons. The treatments consisted of factorial combination of water stress at three critical growth stage which was imposed by withholding water at (Tillering, Flowering, Grain filling) and Control (No stress) and two varieties (Star 11 TR 77173/SLM and Kauze/Weaver) laid out in a split-plot design with three replications. Water stress was assigned to the main-plot while variety was assigned to the sub-plots. Result revealed significant (P<0.05) effect of water stress, water stress at tillering significantly (P<0.05) reduced plant height, LAI, CGR, and NAR. Variety had a significant effect on plant height, LAI, CGR and NAR. In conclusion water stress at tillering was observed to be most critical growth stage in wheat, and water stress at this period should be avoided because it results to decrease in growth components in wheat. Wheat should be sown in November or at least first week of December in this area and other area with similar climate. Star II TR 77173/LM is recommended variety for the area.Keywords: wheat, growth, water stress, variety, Sudan savannah
Procedia PDF Downloads 3357151 3D Plant Growth Measurement System Using Deep Learning Technology
Authors: Kazuaki Shiraishi, Narumitsu Asai, Tsukasa Kitahara, Sosuke Mieno, Takaharu Kameoka
Abstract:
The purpose of this research is to facilitate productivity advances in agriculture. To accomplish this, we developed an automatic three-dimensional (3D) recording system for growth of field crops that consists of a number of inexpensive modules: a very low-cost stereo camera, a couple of ZigBee wireless modules, a Raspberry Pi single-board computer, and a third generation (3G) wireless communication module. Our system uses an inexpensive Web stereo camera in order to keep total costs low. However, inexpensive video cameras record low-resolution images that are very noisy. Accordingly, in order to resolve these problems, we adopted a deep learning method. Based on the results of extended period of time operation test conducted without the use of an external power supply, we found that by using Super-Resolution Convolutional Neural Network method, our system could achieve a balance between the competing goals of low-cost and superior performance. Our experimental results showed the effectiveness of our system.Keywords: 3D plant data, automatic recording, stereo camera, deep learning, image processing
Procedia PDF Downloads 2737150 Appropriate Nutrient Management for Wheat Production in Afghanistan
Authors: Azizurahman Sakhizadah, Tsugiyuki Masunaga
Abstract:
The use of sulfur fertilizer by Afghanistan farmers for wheat production has never been practiced, although sulfur deficiency has been expected for wheat production. A field experiment was conducted at Poza e Ishan Research Station Farm, Baghlan province, Afghanistan to examine the effect of sulfur fertilizer on growth and yield components of wheat. The experiment was laid out in randomize complete block design (RCBD), having three replications and eight treatments. The initial soil of experiment was alkaline (pH8.4), with textural class of sandy clay loam, available sulfur (40.8) mg kg-1, and Olsen-P (28.8) mg kg-1. Wheat variety, Kabul 013 was cultivated from November 2015 to June 2016. The recommended doses of nitrogen and Phosphors (Urea and DAP at 250 and 125 kg ha-1) were applied by broadcasting except control plot. Sulfur was applied by foliar spray (K2 SO4) at the rate of 10, 20, and 30 kg ha-1, split at tillering and flowering stages. The results demonstrated that sulfur application positively influenced on growth and yield of wheat crop with combination of nitrogen. Plant did not respond to sole sulfur application. Plant height, spike length, spikelet's number spike-1, were increased and yield g m-2 was also increased by 1.2, 19.1 and 25.1 % for 10, 20 and 30 kg sulfur ha-1 application.Keywords: sulfur, nitrogen, wheat, foliar
Procedia PDF Downloads 1477149 Reduction of Plants Biodiversity in Hyrcanian Forest by Coal Mining Activities
Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch
Abstract:
Considering that coal mining is one of the important industrial activities, it may cause damages to environment. According to the author’s best knowledge, the effect of traditional coal mining activities on plant biodiversity has not been investigated in the Hyrcanian forests. Therefore, in this study, the effect of coal mining activities on vegetation and tree diversity was investigated in Hyrcanian forest, North Iran. After filed visiting and determining the mine, 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity, and it is considered as the control area. In each plot, the data about trees such as number and type of species were recorded. The biodiversity of vegetation cover was considered 5 square sub-plots (1 m2) in each plot. PAST software and Ecological Methodology were used to calculate Biodiversity indices. The value of Shannon Wiener and Simpson diversity indices for tree cover in control area (1.04±0.34 and 0.62±0.20) was significantly higher than mining area (0.78±0.27 and 0.45±0.14). The value of evenness indices for tree cover in the mining area was significantly lower than that of the control area. The value of Shannon Wiener and Simpson diversity indices for vegetation cover in the control area (1.37±0.06 and 0.69±0.02) was significantly higher than the mining area (1.02±0.13 and 0.50±0.07). The value of evenness index in the control area was significantly higher than the mining area. Plant communities are a good indicator of the changes in the site. Study about changes in vegetation biodiversity and plant dynamics in the degraded land can provide necessary information for forest management and reforestation of these areas.Keywords: vegetation biodiversity, species composition, traditional coal mining, Caspian forest
Procedia PDF Downloads 1837148 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste
Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova
Abstract:
Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples
Procedia PDF Downloads 119