Search results for: hydrogen sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2350

Search results for: hydrogen sensor

490 Biosensor Design through Molecular Dynamics Simulation

Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang

Abstract:

The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structure-process-property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.

Keywords: biosensor, DNA, biomarker, molecular dynamics simulation

Procedia PDF Downloads 463
489 Optimization of Horticultural Crops by Using the Peats from Rawa Pening Lake as Soil Conditioner

Authors: Addharu Eri, Ningsih P. Lestari, Setyorini Adheliya, Syaiputri Khaidifah

Abstract:

Rawa Pening is a lake at the Ambarawa Basin in Central Java, Indonesia. It serves as a source of power (hydroelectricity), irrigation, and flood control. The potential of this lake is getting worse by the presence of aquatic plants (Eichhornia crassipes) that grows wild, and it can make the lake covered by the cumulation of rotten E. crassipes. This cumulation causes the sediment formation which has high organic material composition. Sediment formation will be lead into a shallowing of the lake and affect water’s quality. The deposition of organic material produces methane gas and hydrogen sulfide, which in rain would turn the water muddy and decompose. Decomposition occuring in the water due to microbe activity in lake's water. The shallowing of Rawa Pening Lake not only will physically can reduce water discharge, but it also has ecologically major impact on water organism. The condition of Rawa Pening Lake peats can not be considered as unimportant issue. One of the solutions that can be applied is by using the peats as a compound materials on growing horticultural crops because the organic materials content on the mineral soil is low, particularly on an old soils. The horticultural crops required organic materials for growth promoting. The horticultural crops that use in this research is mustard cabbage (Brassica sp.). Using Rawa Pening's peats as the medium of plants with high organic materials that also can ameliorate soil’s physical properties, and indirectly serves as soil conditioner. Research will be focus on the peat’s contents and mustard cabbage product’s content. The contents that will be examined is the N-available, Ca, Mg, K, P, and C-organic. The analysis of Ca, Mg, and K is use soil base saturation measurement method and extracting soil is use NH4OAC solution. The aim of this study is to use the peats of Rawa Pening Lake as soil conditioner and increase the productivity of Brassica sp.

Keywords: Brassica sp., peats, rawa pening lake, soil conditioner

Procedia PDF Downloads 252
488 Between Reality and Fiction: Self-Representation as an Avatar and Its Effects on Self-Presence

Authors: Leonie Laskowitz

Abstract:

A self-confident appearance is a basic prerequisite for success in the world of work 4.0. Within a few seconds, people convey a first impression that usually lasts. Artificial intelligence is making it increasingly important how our virtual selves appear and communicate (nonverbally) in digital worlds such as the metaverse. In addition to the modified creation of an avatar, the field of photogrammetry is developing fast, creating exact likenesses of ourselves in virtual environments. Given the importance of self-representation in virtual space for future collaborations, it is important to investigate the impact of phenotype in virtual worlds and how an avatar type can profitably be used situationally. We analyzed the effect of self-similar versus desirable self-presentation as an avatar on one's self-awareness, considering various theoretical constructs in the area of self-awareness and stress stimuli. The avatars were arbitrarily created on the one hand and scanned on the other hand with the help of a lidar sensor, the state-of-the-art photogrammetry method. All subjects were exposed to the established Trier Social Stress Test. The results showed that especially insecure people prefer to create rather than be scanned when confronted with a stressful work situation. (1) If they are in a casual work environment and a relaxed situation, they prefer a 3D photorealistic avatar that reflects them in detail. (2) Confident people will give their avatar their true appearance in any situation, while insecure people would only do so for honesty and authenticity. (3) Thus, the choice of avatar type has considerable impact on self-confidence in different situations.

Keywords: avatar, virtual identity, self-presentation, metaverse, virtual reality, self-awareness

Procedia PDF Downloads 148
487 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor

Authors: Panupong Makvichian

Abstract:

Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.

Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor

Procedia PDF Downloads 198
486 Electrochemical Top-Down Synthesis of Nanostructured Support and Catalyst Materials for Energy Applications

Authors: Peter M. Schneider, Batyr Garlyyev, Sebastian A. Watzele, Aliaksandr S. Bandarenka

Abstract:

Functional nanostructures such as nanoparticles are a promising class of materials for energy applications due to their unique properties. Bottom-up synthetic routes for nanostructured materials often involve multiple synthesis steps and the use of surfactants, reducing agents, or stabilizers. This results in complex and extensive synthesis protocols. In recent years, a novel top-down synthesis approach to form metal nanoparticles has been established, in which bulk metal wires are immersed in an electrolyte (primarily alkali earth metal based) and subsequently subjected to a high alternating potential. This leads to the generation of nanoparticles dispersed in the electrolyte. The main advantage of this facile top-down approach is that there are no reducing agents, surfactants, or precursor solutions. The complete synthesis can be performed in one pot involving one main step with consequent washing and drying of the nanoparticles. More recent studies investigated the effect of synthesis parameters such as potential amplitude, frequency, electrolyte composition, and concentration on the size and shape of the nanoparticles. Here, we investigate the electrochemical erosion of various metal wires such as Ti, Pt, Pd, and Sn in various electrolyte compositions via this facile top-down technique and its experimental optimization to successfully synthesize nanostructured materials for various energy applications. As an example, for Pt and Pd, homogeneously distributed nanoparticles on carbon support can be obtained. These materials can be used as electrocatalyst materials for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), respectively. In comparison, the top-down erosion of Sn wires leads to the formation of nanoparticles, which have great potential as oxygen evolution reaction (OER) support materials. The application of the technique on Ti wires surprisingly leads to the formation of nanowires, which show a high surface area and demonstrate great potential as an alternative support material to carbon.

Keywords: ORR, electrochemistry, electrocatalyst, synthesis

Procedia PDF Downloads 82
485 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning

Procedia PDF Downloads 132
484 Mixed Tetravalent Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) Based Vacancy-Ordered Halide Double Perovskites for Enhanced Solar Water Oxidation

Authors: Jigar Shaileshumar Halpati, Aravind Kumar Chandiran

Abstract:

Vacancy ordered double perovskites (VOPs) have been significantly attracting researchers due to their chemical structure diversity and interesting optoelectronic properties. Some VOPs have been recently reported to be suitable photoelectrodes for photoelectrochemical water-splitting reactions due to their high stability and panchromatic absorption. In this work, we systematically synthesized mixed tetravalent VOPs based on Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) and reported their structural, optical, electrochemical and photoelectrochemical properties. The structural characterization confirms that the mixed tetravalent site intermediates formed their own phases. The parent materials, as well as their intermediates, were found to be stable in ambient conditions for over 1 year and also showed incredible stability in harsh pH media ranging from pH 1 to pH 11. Moreover, these materials showed panchromatic absorption with onset up to 1000 nm depending upon the mixture stoichiometry. The extraordinary stability and excellent absorption properties make them suitable materials for photoelectrochemical water-splitting applications. PEC studies of these series of materials showed a high water oxidation photocurrent of 0.56 mA cm-² for Cs₂Ru₀.₅Pt₀.₅Cl₆. Fundamental investigation from photoelectrochemical reactions revealed that the intrinsic ruthenium-based VOP showed enhanced hole transfer to the electrolyte, while the intrinsic platinum-based VOP showed higher photovoltage. The mix of these end members at the tetravalent site showed a synergic effect of reduced charge transfer resistance from the material to the electrolyte and increased photovoltage, which led to increased PEC performance of the intermediate materials.

Keywords: solar water splitting, photo electrochemistry, photo absorbers, material characterization, device characterization, green hydrogen

Procedia PDF Downloads 75
483 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks

Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer

Abstract:

New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.

Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics

Procedia PDF Downloads 139
482 Evaluating Cognition and Movement Coordination of Adolescents with Intellectual Disabilities through Ball Games

Authors: Wann-Yun Shieh, Hsin-Yi Kathy Cheng, Yan-Ying Ju, Yu-Chun Yu, Ya-Cheng Shieh

Abstract:

Adolescents who have intellectual disabilities often demonstrate maladaptive behaviors in their daily activities due to either physical abnormalities or neurological disorders. These adolescents commonly struggle with their cognition and movement coordination when it comes to executing tasks such as throwing or catching objects smoothly, quickly, and gracefully, in contrast to their typically developing peers. Simply measuring movement time and distance doesn't provide a comprehensive view of their performance challenges. In this study, a ball-playing approach was proposed to assess the cognition and movement coordination of adolescents with intellectual disabilities using a smart ball equipped with an embedded inertial sensor. Four distinct ball games were specifically designed for this smart ball: two focusing on lower limb activities (dribbling along a straight line and navigating a zigzag path) and two centered around upper limb tasks (picking up and throwing and catching the ball). The cognition and movement coordination of 25 adolescents with intellectual disabilities (average age 18.36 ± 2.46 years) with that of 25 typically developing adolescents (average age 18.36 ± 0.49 years) were compared in these four tests. The results clearly revealed significant differences in the cognition and movement coordination between the adolescents with intellectual disabilities and the typically developing adolescents. These differences encompassed aspects such as movement speed, hand-eye coordination, and control over objects across all the tests conducted.

Keywords: cognition, intellectual disabilities, movement coordination, smart ball

Procedia PDF Downloads 73
481 The LNG Paradox: The Role of Gas in the Energy Transition

Authors: Ira Joseph

Abstract:

The LNG paradox addresses the issue of how the most expensive form of gas supply, which is LNG, will grow in an end user market where demand is most competitive, which is power generation. In this case, LNG demand growth is under siege from two entirely different directions. At one end is price; it will be extremely difficult for gas to replace coal in Asia due to the low price of coal and the age of the generation plants. Asia's coal fleet, on average, is less than two decades old and will need significant financial incentives to retire before its state lifespan. While gas would cut emissions in half relative to coal, it would also more than double the price of the fuel source for power generation, which puts it in a precarious position. In most countries in Asia other than China, this cost increase, particularly from imports, is simply not realistic when it is also necessary to focus on economic growth and social welfare. On the other end, renewables are growing at an exponential rate for three reasons. One is that prices are dropping. Two is that policy incentives are driving deployment, and three is that China is forcing renewables infrastructure into the market to take a political seat at the global energy table with Saudi Arabia, the US, and Russia. Plus, more renewables will lower import growth of oil and gas in China, if not end it altogether. Renewables are the predator at the gate of gas demand in power generation and in every year that passes, renewables cut into demand growth projections for gas; in particular, the type of gas that is most expensive, which is LNG. Gas does have a role in the future, particularly within a domestic market. Once it crosses borders in the form of LNG or even pipeline gas, it quickly becomes a premium fuel and must be marketed and used this way. Our research shows that gas will be able to compete with batteries as an intermittency and storage tool and does offer a method to harmonize with renewables as part of the energy transition. As a baseload fuel, however, the role of gas, particularly, will be limited by cost once it needs to cross a border. Gas converted into blue or green hydrogen or ammonia is also an option for storage depending on the location. While this role is much reduced from the primary baseload role that gas once aspired to land, it still offers a credible option for decades to come.

Keywords: natural gas, LNG, demand, price, intermittency, storage, renewables

Procedia PDF Downloads 61
480 Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method

Authors: Temesgen Geremew

Abstract:

ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. +e single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. +e XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. +e ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. +e CdS/ZnS heterojunction thin film is nearly amorphous.The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. +e CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of 1015 1/s. +e optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. +e surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. +e EDX result confirmed nearly 1 :1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films.

Keywords: SERS, sensor, Hg2+, water detection, polythiophene

Procedia PDF Downloads 65
479 A Study on the Performance of 2-PC-D Classification Model

Authors: Nurul Aini Abdul Wahab, Nor Syamim Halidin, Sayidatina Aisah Masnan, Nur Izzati Romli

Abstract:

There are many applications of principle component method for reducing the large set of variables in various fields. Fisher’s Discriminant function is also a popular tool for classification. In this research, the researcher focuses on studying the performance of Principle Component-Fisher’s Discriminant function in helping to classify rice kernels to their defined classes. The data were collected on the smells or odour of the rice kernel using odour-detection sensor, Cyranose. 32 variables were captured by this electronic nose (e-nose). The objective of this research is to measure how well a combination model, between principle component and linear discriminant, to be as a classification model. Principle component method was used to reduce all 32 variables to a smaller and manageable set of components. Then, the reduced components were used to develop the Fisher’s Discriminant function. In this research, there are 4 defined classes of rice kernel which are Aromatic, Brown, Ordinary and Others. Based on the output from principle component method, the 32 variables were reduced to only 2 components. Based on the output of classification table from the discriminant analysis, 40.76% from the total observations were correctly classified into their classes by the PC-Discriminant function. Indirectly, it gives an idea that the classification model developed has committed to more than 50% of misclassifying the observations. As a conclusion, the Fisher’s Discriminant function that was built on a 2-component from PCA (2-PC-D) is not satisfying to classify the rice kernels into its defined classes.

Keywords: classification model, discriminant function, principle component analysis, variable reduction

Procedia PDF Downloads 331
478 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 157
477 Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine

Authors: Ulugbek Azimov, Nearchos Stylianidis, Nobuyuki Kawahara, Eiji Tomita

Abstract:

A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a new reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. The chemical kinetics of NOx formation was analyzed for H2/CO/CO2/CH4 syngas mixtures by using counter flow burner and premixed laminar flame speed reactor models. The new mechanism showed a very good agreement with experimental measurements and accurately reproduced the effect of pressure, temperature and equivalence ratio on NOx formation. In order to identify the species important for NOx formation, a sensitivity analysis was conducted for pressures 4 bar, 10 bar and 16 bar and preheat temperature 300 K. The results show that the NOx formation is driven mostly by hydrogen based species while other species, such as N2, CO2 and CH4, have also important effects on combustion. Finally, the new mechanism was used in a multidimensional CFD simulation to predict the combustion of syngas in a micro-pilot-ignited supercharged dual-fuel engine and results were compared with experiments. The mechanism showed the closest prediction of the in-cylinder pressure and the rate of heat release (ROHR).

Keywords: syngas, chemical kinetics mechanism, internal combustion engine, NOx formation

Procedia PDF Downloads 409
476 Investigating the Molecular Behavior of H₂O in Caso 4 -2h₂o Two-Dimensional Nanoscale System

Authors: Manal Alhazmi, Artem Mishchenko

Abstract:

A molecular fluids' behavior and interaction with other materials at the nanoscale is a complex process. Nanoscale fluids behave so differently than macroscale fluids and interact with other materials in unique ways. It is, therefore, feasible to understand the molecular behavior of H₂O in such two-dimensional nanoscale systems by studying (CaSO4-2H2O), commonly known as gypsum. In the present study, spectroscopic measurements on a 2D structure of exfoliated gypsum crystals are carried out by Raman and IR spectroscopy. An array of gypsum flakes with thicknesses ranging from 8nm to 100nm were observed and analyzed for their Raman and IR spectrum. Water molecules stretching modes spectra lines were also measured and observed in nanoscale gypsum flakes and compared with those of bulk crystals. CaSO4-2H2O crystals have Raman and infrared bands at 3341 cm-1 resulting from the weak hydrogen bonds between the water molecules. This internal vibration of water molecules, together with external vibrations with other atoms, are responsible for these bands. There is a shift of about 70 cm-1 In the peak position of thin flakes with respect to the bulk crystal, which is a result of the different atomic arrangement from bulk to thin flake on the nano scale. An additional peak was observed in Raman spectra around 2910-3137 cm⁻¹ in thin flakes but is missing in bulk crystal. This additional peak is attributed to a combined mode of water internal (stretching mode at 3394cm⁻¹) and external vibrations. In addition to Raman and infra- red analysis of gypsum 2D structure, electrical measurements were conducted to reveal the water molecules transport behavior in such systems. Electrical capacitance of the fabricated device is measured and found to be (0.0686 *10-12) F, and the calculated dielectric constant (ε) is (12.26).

Keywords: gypsum, infra-red spectroscopy, raman spectroscopy, H₂O behavior

Procedia PDF Downloads 103
475 Analysis of the Effects of Vibrations on Tractor Drivers by Measurements With Wearable Sensors

Authors: Gubiani Rino, Nicola Zucchiatti, Da Broi Ugo, Bietresato Marco

Abstract:

The problem of vibrations in agriculture is very important due to the different types of machinery used for the different types of soil in which work is carried out. One of the most commonly used machines is the tractor, where the phenomenon has been studied for a long time by measuring the whole body and placing the sensor on the seat. However, this measurement system does not take into account the characteristics of the drivers, such as their body index (BMI), their gender (male, female) or the muscle fatigue they are subjected to, which is highly dependent on their age for example. The aim of the research was therefore to place sensors not only on the seat but along the spinal column to check the transmission of vibration on drivers with different BMI on different tractors and at different travel speeds and of different genders. The test was also done using wearable sensors such as a dynamometer applied to the muscles, the data of which was correlated with the vibrations produced by the tractor. Initial data show that even on new tractors with pneumatic seats, the vibrations attenuate little and are still correlated with the roughness of the track travelled and the forward speed. Another important piece of data are the root-mean square values referred to 8 hours (A(8)x,y,z) and the maximum transient vibration values (MTVVx,y,z) and, the latter, the MTVVz values were problematic (limiting factor in most cases) and always aggravated by the speed. The MTVVx values can be lowered by having a tyre-pressure adjustment system, able to properly adjust the tire pressure according to the specific situation (ground, speed) in which a tractor is operating.

Keywords: fatigue, effect vibration on health, tractor driver vibrations, vibration, muscle skeleton disorders

Procedia PDF Downloads 70
474 Construction and Performance of Nanocomposite-Based Electrochemical Biosensor

Authors: Jianfang Wang, Xianzhe Chen, Zhuoliang Liu, Cheng-An Tao, Yujiao Li

Abstract:

Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value.

Keywords: acetylcholine esterase, electrochemical biosensor, nanoparticles, organophosphates, reduced graphene oxide

Procedia PDF Downloads 112
473 Real-Time Gesture Recognition System Using Microsoft Kinect

Authors: Ankita Wadhawan, Parteek Kumar, Umesh Kumar

Abstract:

Gesture is any body movement that expresses some attitude or any sentiment. Gestures as a sign language are used by deaf people for conveying messages which helps in eliminating the communication barrier between deaf people and normal persons. Nowadays, everybody is using mobile phone and computer as a very important gadget in their life. But there are some physically challenged people who are blind/deaf and the use of mobile phone or computer like device is very difficult for them. So, there is an immense need of a system which works on body gesture or sign language as input. In this research, Microsoft Kinect Sensor, SDK V2 and Hidden Markov Toolkit (HTK) are used to recognize the object, motion of object and human body joints through Touch less NUI (Natural User Interface) in real-time. The depth data collected from Microsoft Kinect has been used to recognize gestures of Indian Sign Language (ISL). The recorded clips are analyzed using depth, IR and skeletal data at different angles and positions. The proposed system has an average accuracy of 85%. The developed Touch less NUI provides an interface to recognize gestures and controls the cursor and click operation in computer just by waving hand gesture. This research will help deaf people to make use of mobile phones, computers and socialize among other persons in the society.

Keywords: gesture recognition, Indian sign language, Microsoft Kinect, natural user interface, sign language

Procedia PDF Downloads 306
472 Disaggregation of Coarser Resolution Radiometer Derived Soil Moisture to Finer Scales

Authors: Gurjeet Singh, Rabindra K. Panda

Abstract:

Soil moisture is a key hydrologic state variable and is intrinsically linked to the Earth's water, climate and carbon cycles. On ecological point of view, the soil moisture is a fundamental natural resource providing the transpirable water for plants. Soil moisture varies both temporally and spatially due to spatiotemporal variation in rainfall, vegetation cover, soil properties and topography. Satellite derived soil moisture provides spatio-temporal extensive data. However, the spatial resolution of a typical satellite (L-band radiometry) is of the order of tens of kilometers, which is not good enough for developing efficient agricultural water management schemes at the field scale. In the present study, the soil moisture from radiometer data has been disaggregated using blending approach to achieve higher resolution soil moisture data. The radiometer estimates of soil moisture at a 40 km resolution have been disaggregated to 10 km, 5 km and 1 km resolutions. The disaggregated soil moisture was compared with the observed data, consisting of continuous sensor based soil moisture profile measurements, at three monitoring sites and extensive spatial near-surface soil moisture measurements, concurrent with satellite monitoring in the 500 km2 study watershed in the Eastern India. The estimated soil moisture status at different spatial scales can help in developing efficient agricultural water management schemes to increase the crop production and water use efficiency.

Keywords: disaggregation, eastern India, radiometers, soil moisture, water use efficiency

Procedia PDF Downloads 276
471 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change

Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang

Abstract:

As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.

Keywords: radon, Northern China, soil gas, earthquake

Procedia PDF Downloads 82
470 Thermodynamic Phase Equilibria and Formation Kinetics of Cyclopentane, Cyclopentanone and Cyclopentanol Hydrates in the Presence of Gaseous Guest Molecules including Methane and Carbon Dioxide

Authors: Sujin Hong, Seokyoon Moon, Heejoong Kim, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is an inclusion compound in which a low-molecular-weight gas or organic molecule is trapped inside a three-dimensional lattice structure created by water-molecule via intermolecular hydrogen bonding. It is generally formed at low temperature and high pressure, and exists as crystal structures of cubic systems − structure I, structure II, and hexagonal system − structure H. Many efforts have been made to apply them to various energy and environmental fields such as gas transportation and storage, CO₂ capture and separation, and desalination of seawater. Particularly, studies on the behavior of gas hydrates by new organic materials for CO₂ storage and various applications are underway. In this study, thermodynamic and spectroscopic analyses of the gas hydrate system were performed focusing on cyclopentanol, an organic molecule that forms gas hydrate at relatively low pressure. The thermodynamic equilibria of CH₄ and CO₂ hydrate systems including cyclopentanol were measured and spectroscopic analyses of XRD and Raman were performed. The differences in thermodynamic systems and formation kinetics of CO₂ added cyclopentane, cyclopentanol and cyclopentanone hydrate systems were compared. From the thermodynamic point of view, cyclopentanol was found to be a hydrate promotor. Spectroscopic analyses showed that cyclopentanol formed a hydrate crystal structure of cubic structure II in the presence of CH₄ and CO₂. It was found that the differences in the functional groups among the organic guest molecules significantly affected the rate of hydrate formation and the total amounts of CO₂ stored in the hydrate systems. The total amount of CO₂ stored in the cyclopentanone hydrate was found to be twice that of the amount of CO₂ stored in the cyclopentane and the cyclopentanol hydrates. The findings are expected to open up new opportunity to develop the gas hydrate based wastewater desalination technology.

Keywords: gas hydrate, CO₂, separation, desalination, formation kinetics, thermodynamic equilibria

Procedia PDF Downloads 269
469 NprRX Regulation on Surface Spreading Motility in Bacillus cereus

Authors: Yan-Shiang Chiou, Yi-Huang Hsueh

Abstract:

Bacillus cereus is a foodborne pathogen that causes two types of foodborne illness, the emetic and diarrheal syndromes. B. cereus consistently ranks among the top three among bacterial foodborne outbreaks in the ten years of 2001 to 2010 in Taiwan. Foodborne outbreak caused by B. cereus has been increased, and recently it ranks second foodborne pathogen after Vibrio parahaemolyticus. This pathogen is difficult to control due to its ubiquitousness in the environment, the psychrotrophic nature of many strains, and the heat resistance of their spores. Because complete elimination of biofilms is difficult, a better understanding of the molecular mechanisms of biofilm formation by B. cereus will help to develop better strategies to control this pathogen. Surface translocation can be an important factor in biofilm formation. In B. cereus, NprR is a quorum sensor, and its apo NprR is a dimer and changes to a tetramer in the presence of NprX. The small peptide NprX may induce conformational change allowing the apo dimer to switch to an active tetramer specifically recognizing target DNA sequences. Our result showed that mutation of nprRX causes surface spreading deficiency. Mutation of flagella, pili and surfactant genes (flgAB, bcpAB, krsABC), did not abolish spreading motility. Under nprRX mutant, mutation of spo0A restored the spreading deficiency. This suggests that spreading motility is not related surfactant, pili and flagella but other unknown mechanism and Spo0A, a sporulation initiation protein, inhibits spreading motility.

Keywords: Bacillus cereus, nprRX, spo0A, spreading motility

Procedia PDF Downloads 256
468 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences

Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao

Abstract:

Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.

Keywords: wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern

Procedia PDF Downloads 353
467 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
466 Biochemical Characterization of CTX-M-15 from Enterobacter cloacae and Designing a Novel Non-β-Lactam-β-Lactamase Inhibitor

Authors: Mohammad Faheem, M. Tabish Rehman, Mohd Danishuddin, Asad U. Khan

Abstract:

The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of blaCTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with blaCTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (Ki = 0.017 µM) and better acylation efficiency (k+2/K9 = 0.44 µM-1s-1). It forms an acyl-enzyme covalent complex, which is quite stable (k+3 = 0.0057 s-1). Since increasing resistance has been reported against conventional b-lactam antibiotic-inhibitor combinations, we aspire to design a non-b-lactam core containing b-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (Ki = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-b-lactam containing b-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.

Keywords: ESBL, non-b-lactam-b-lactamase inhibitor, bioinformatics, biomedicine

Procedia PDF Downloads 238
465 Sub-Pixel Mapping Based on New Mixed Interpolation

Authors: Zeyu Zhou, Xiaojun Bi

Abstract:

Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.

Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation

Procedia PDF Downloads 229
464 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods

Authors: Auday Al-Mayyahi, Phil Birch, William Wang

Abstract:

A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.

Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor

Procedia PDF Downloads 302
463 Preliminary Performance of a Liquid Oxygen-Liquid Methane Pintle Injector for Thrust Variations

Authors: Brunno Vasques

Abstract:

Due to the non-toxic nature and high performance in terms of vacuum specific impulse and density specific impulse, the combination of liquid oxygen and liquid methane have been identified as a promising option for future space vehicle systems. Applications requiring throttling capability include specific missions such as rendezvous, planetary landing and de-orbit as well as weapon systems. One key challenge in throttling liquid rocket engines is maintaining an adequate pressure drop across the injection elements, which is necessary to provide good propellant atomization and mixing as well as system stability. The potential scalability of pintle injectors, their great suitability to throttling and inherent combustion stability characteristics led to investigations using a variety of propellant combinations, including liquid oxygen and hydrogen and fluorine-oxygen and methane. Presented here are the preliminary performance and heat transfer information obtained during hot-fire testing of a pintle injector running on liquid oxygen and liquid methane propellants. The specific injector design selected for this purpose is a multi-configuration building block version with replaceable injection elements, providing flexibility to accommodate hardware modifications with minimum difficulty. On the basis of single point runs and the use of a copper/nickel segmented calorimetric combustion chamber and associated transient temperature measurement, the characteristic velocity efficiency, injector footprint and heat fluxes could be established for the first proposed pintle configuration as a function of injection velocity- and momentum-ratios. A description of the test-bench is presented as well as a discussion of irregularities encountered during testing, such as excessive heat flux into the pintle tip resulting from certain operating conditions.

Keywords: green propellants, hot-fire performance, rocket engine throttling, pintle injector

Procedia PDF Downloads 336
462 Identification of Deposition Sequences of the Organic Content of Lower Albian-Cenomanian Age in Northern Tunisia: Correlation between Molecular and Stratigraphic Fossils

Authors: Tahani Hallek, Dhaou Akrout, Riadh Ahmadi, Mabrouk Montacer

Abstract:

The present work is an organic geochemical study of the Fahdene Formation outcrops at the Mahjouba region belonging to the Eastern part of the Kalaat Senan structure in northwestern Tunisia (the Kef-Tedjerouine area). The analytical study of the organic content of the samples collected, allowed us to point out that the Formation in question is characterized by an average to good oil potential. This fossilized organic matter has a mixed origin (type II and III), as indicated by the relatively high values of hydrogen index. This origin is confirmed by the C29 Steranes abundance and also by tricyclic terpanes C19/(C19+C23) and tetracyclic terpanes C24/(C24+C23) ratios, that suggest a marine environment of deposit with high plants contribution. We have demonstrated that the heterogeneity of organic matter between the marine aspect, confirmed by the presence of foraminifera, and the continental contribution, is the result of an episodic anomaly in relation to the sequential stratigraphy. Given that the study area is defined as an outer platform forming a transition zone between a stable continental domain to the south and a deep basin to the north, we have explained the continental contribution by successive forced regressions, having blocked the albian transgression, allowing the installation of the lowstand system tracts. This aspect is represented by the incised valleys filling, in direct contact with the pelagic and deep sea facies. Consequently, the Fahdene Formation, in the Kef-Tedjerouine area, consists of transgressive system tracts (TST) brutally truncated by extras of continental progradation; resulting in a mixed influence deposition having retained a heterogeneous organic material.

Keywords: molecular geochemistry, biomarkers, forced regression, deposit environment, mixed origin, Northern Tunisia

Procedia PDF Downloads 249
461 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time

Authors: Xinwen Zhu, Xingguang Li, Sun Yi

Abstract:

Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around  ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.

Keywords: LiDAR, depth camera, real-time, detection and measurement

Procedia PDF Downloads 224