Search results for: Adult dataset
596 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 90595 A Study on the Impact of Employment Status of the Elderly on Their Mental Well-Being in India
Authors: Santosh B. Phad, Priyanka V. Janbandhu, Dhananjay W. Bansod
Abstract:
Population Ageing is a growing concern for the social scientists. There is a higher level of aged male participation compared to elderly females. Now, the critical question is whether participation in work improves the quality of life among the elderly and the impact of working status on the mental well-being of the elderly. While examining these research questions, the present paper focuses on the workforce participation of the elderly and the reasons behind it, additionally, determines the association between employment status and the mental well-being of the elderly. The present study has a base of two data sources. First one is Census of India data, 2001 and 2011, and another one is – the Study on Global Ageing and Adult Health (SAGE), a survey conducted in 2007. To capture the trend of workforce participation elderly Census data is significant and to obtain other information associated with this issue the SAGE data is studied. The research piece consists of univariate and bivariate analysis along with some statistical methods like principal component analysis (PCA) and regression modeling – to investigate the association between workforce participation of elderly and subjective well-being (SWB). The results show that the percentage of elderly participating in the labor market is gradually reducing, but the share of working elderly has increased within the group of overall workers. i.e., the ratio of aged workers to non-aged workers is rising. The findings from survey data specify that there is a considerable share of the elderly in the labor market; three-fourths of the employed elderly enrolled the workforce unwillingly. They are in need of some earnings mainly to afford the medical expenses on their health or the health of their spouse, also to support their family members who are economically inactive. Apart from need, duration of working is another vital aspect for the elderly, whereas more than 80 percent of the elderly are working for six hours or more, and most of them engaged in self-employment. However, more than one-third of the working elderly falls into a negative cluster of the subjective well-being (SWB) index, and it is consistent with the result of the discriminant analysis. Here, the SWB index calculated from the 12 items and the reliability score of these items is 0.89.Keywords: ageing, workforce, census of India, SAGE
Procedia PDF Downloads 151594 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 168593 Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action
Authors: Virginie Hergault, Siham Chebbah, Bertrand Frere
Abstract:
Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable.Keywords: numerical simulations, atmospheric dispersion, cost ES1006 action, CFD model, cute experiments, wind tunnel data, numerical results
Procedia PDF Downloads 133592 Prevalence and Predictors of Metabolic Syndrome among Diabetic Clinic Attendees in Sokoto, Nigeria
Authors: Kehinde Joseph Awosan, Balarabe Adami Isah, Edzu Usman Yunusa, Sarafadeen Adeniyi Arisegi, Izuchukwu Obasi, Oluchi Solomon-Anucha
Abstract:
Background: Metabolic syndrome (MetS) is prevalent in patients with diabetes mellitus and a significant risk for major cardiovascular events. Identifying its burden and peculiarities is crucial to preventing complications among those at risk. Aim: This study was conducted to determine the prevalence and predictors of metabolic syndrome among diabetes clinic attendees in Sokoto, Nigeria. Materials and Methods: A cross-sectional study was conducted among 365 patients with type 2 diabetes attending the diabetes clinic of Specialist Hospital, Sokoto, Nigeria. A structured questionnaire was used to obtain data on the respondents’ socio-demographic variables, treatment history, and lifestyle. Blood pressure and anthropometric measurements (including weight, height, and waist circumference) were done for the patients. Likewise, biochemical assessment (including fasting plasma glucose, high-density lipoprotein cholesterol (HDL-c), and triglyceride (TG) was done. Metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III). Data were analyzed using the IBM Statistical Package for Social Sciences (SPSS) version 25. Results: The ages of the patients ranged from 30 to 78 (mean = 50.9 ±11.7) years. The overall prevalence of MetS was 57.3%, with a higher prevalence in females (68.1%) than males (43.0%). The most common components of MetS observed were hypertension (69.2%), and elevated fasting plasma glucose (65.7%); while the predictors of MetS were age > 50 years (OR 6.960, 95% CI: 3.836-12.628, p < 0.001), female sex (OR 2.300, 95% CI: 1.355-3.903, p = 0.002), physical activity (OR 0.214, 95% CI: 0.126-0.363, p < 0.001), and overweight/obesity (OR 3.356, 95% CI: 1.838-6.127, p < 0.001). Conclusion: Metabolic syndrome is prevalent among patients with type 2 diabetes in Sokoto, Nigeria, and the predictors were age > 50 years, female sex, physical activity, and overweight/obesity. Diabetes care providers should screen their patients for MetS to prevent adverse cardiovascular events.Keywords: prevalence, predictors, metabolic syndrome, diabetes
Procedia PDF Downloads 144591 Body Composition Analysis of University Students by Anthropometry and Bioelectrical Impedance Analysis
Authors: Vinti Davar
Abstract:
Background: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. Obesity is acknowledged as one of the burning public health problems reducing life expectancy and quality of life. The body composition analysis of the university population is essential in assessing the nutritional status, as well as the risk of developing diseases associated with abnormal body fat content so as to make nutritional recommendations. Objectives: The main aim was to determine the prevalence of obesity and overweight in University students using Anthropometric analysis and BIA methods Material and Methods: In this cross-sectional study, 283 university students participated. The body composition analysis was undertaken by using mainly: i) Anthropometric Measurement: Height, Weight, BMI, waist circumference, hip circumference and skin fold thickness, ii) Bio-electrical impedance was used for analysis of body fat mass, fat percent and visceral fat which was measured by Tanita SC-330P Professional Body Composition Analyzer. The data so collected were compiled in MS Excel and analyzed for males and females using SPSS 16.Results and Discussion: The mean age of the male (n= 153) studied subjects was 25.37 ±2.39 year and females (n=130) was 22.53 ±2.31. The data of BIA revealed very high mean fat per cent of the female subjects i.e. 30.3±6.5 per cent whereas mean fat per cent of the male subjects was 15.60±6.02 per cent indicating a normal body fat range. The findings showed high visceral fat of both males (12.92±3.02) and females (16.86±4.98). BMI, BF% and WHR were higher among females, and BMI was higher among males. The most evident correlation was verified between BF% and WHR for female students (r=0.902; p<0.001). The correlation of BFM and BF% with thickness of triceps, sub scapular and abdominal skin folds and BMI was significant (P<0.001). Conclusion: The studied data made it obvious that there is a need to initiate lifestyle changing strategies especially for adult females and encourage them to improve their dietary intake to prevent incidence of non communicable diseases due to obesity and high fat percentage.Keywords: anthropometry, bioelectrical impedance, body fat percentage, obesity
Procedia PDF Downloads 380590 The Comparison of the Effects of Adipose-Derived Mesenchymal Stem Cells Delivery by Systemic and Intra-Tracheal Injection on Elastase-Induced Emphysema Model
Authors: Maryam Radan, Fereshteh Nejad Dehbashi, Vahid Bayati, Mahin Dianat, Seyyed Ali Mard, Zahra Mansouri
Abstract:
Pulmonary emphysema is a pathological respiratory condition identified by alveolar destruction which leads to limitation of airflow and diminished lung function. A substantial body of evidence suggests that mesenchymal stem cells (MSCs) have the ability to induce tissue repair primarily through a paracrine effect. In this study, we aimed to determine the efficacy of Intratracheal adipose-derived mesenchymal stem cells (ADSCs) therapy in comparison to this approach with that of Intravenous (Systemic) therapy. Fifty adult male Sprague–Dawley rats weighing between 180 and 200 g were used in this experiment. The animals were randomized to Control groups (Intratracheal or Intravenous vehicle), Elastase group (intratracheal administration of porcine pancreatic elastase; 25 U/kg on day 0 and day 10th), Elastase+Intratracheal ADSCs therapy (1x107 Cells, on day 28) and Elastase+Systemic ADSCs therapy (1x107 Cells, on day 28). The rats which not subjected to any treatment, considered as the control. All rats were sacrificed 3 weeks later. Morphometric findings in lung tissues (Mean linear intercept) confirmed the establishment of the emphysema model via alveolar disruption. Contrarily, ADSCs administration partially restored alveolar architecture. These results were associated with improving arterial oxygenation, reducing lung edema, and decreasing lung inflammation with higher significant effects in the Intratracheal therapy route. These results documented that the efficacy of intratracheal ADSCs was comparable with intravenous ADSCs therapy. Accordingly, the obtained data suggested that intratracheal delivery of ADSCs would enhance lung repair in pulmonary emphysema. Moreover, this method provides benefits over a systemic administration, such as the reduction of cell number and the low risk to engraft other organs.Keywords: mesenchymal stem cell, emphysema, Intratracheal, systemic
Procedia PDF Downloads 211589 Economic Cost of Malaria: A Threat to Household Income in Nigeria
Authors: Nsikan Affiah, Kayode Osungbade, Williams Uzoma
Abstract:
Malaria remains one of the major killers of humans worldwide, threatening the lives of more than one-third of the world’s population. Some people refers it to; a disease of poverty because it contributes towards national poverty through its impact on foreign direct investment, tourism, labour productivity, and trade. At the micro level, it may cause poverty through spending on health care, income losses, and premature deaths. Unfortunately, malaria is a disease that affects both low-income household and its high-income counterpart, but low-income households are still at greater risk because significant part of the available monthly income is dedicated to various preventive and treatment measures. The objective of this study is to estimate direct and indirect cost of malaria treatment in households in a section of South-South Region (Akwa Ibom State) of Nigeria. A cross-sectional study of Six Hundred and Forty (640) heads of households or any adult representative of households in three local government areas of Akwa Ibom State, Nigeria from May 1-31, 2015 were ascertained through interviewer-administered questionnaire adapted from Nigerian Malaria Indicator Survey Report. The clustering technique was used to select 640 households with the help of Primary Health Care (PHC) house numbering system. Using exchange rate of 197 Naira/USD, result shows that direct cost of malaria treatment was 8,894.44 USD while the indirect cost of malaria treatment was 11,012.81 USD. Total cost of treatment made up of 44.7% direct cost and 55.3% indirect cost, with average direct cost of malaria treatment per household estimated at 20.6 USD and the average indirect cost of treatment per household estimated at 25.1 USD. Average total cost for each episode (888) of malaria was estimated at 22.4 USD. While at household level, the average total cost was estimated at 45.5 USD. From the average total cost, low-income households would spend 36% of monthly household income on treating malaria and the impact could be said to be catastrophic, compared to high-income households where only 1.2% of monthly household income is spent on malaria treatment. It could be concluded that the cost of malaria treatment is well beyond the means of households and given the reality of repeated bouts of malaria and its contribution to the impoverishment of households, there is a need for urgent action.Keywords: direct cost, indirect cost, low income households, malaria
Procedia PDF Downloads 257588 Proteomic Analysis of the Inhibition of Prolyl Oligopeptidase Induced by Z-Pro-Prolinal in Filarial Parasites
Authors: Mohit Wadhawan, Sushma Rathaur
Abstract:
Lymphatic filariasis, also called elephantiasis is a tropical disease afflicting over 120 million people in 81 countries worldwide. Existing anti filarial drugs are effective against the larval stages of filarial parasites which call for an urgent need of drugs which are macrofilaricidal. Identification of molecular targets crucial for survival of filarial parasites is a prerequisite for drug designing. Prolyl oligopeptidase (POP) is one such crucial enzyme involved in the maturation and degradation of neuropeptides and peptide hormones. We have identified this peptidase in the bovine filarial parasite, Setaria cervi. Effect of inhibition of POP on the proteome profile of filarial parasite has been discussed in this study. Filarial parasites were exposed to Z-pro-prolinal (ZPP), a specific POP inhibitor for 8 h and the motility and viability of the parasites was observed. It significantly reduced the motility and viability of the parasites. To study the proteome profile, the cytosolic, endoplasmic reticulum (ER) and mitochondrial extracts of the adult female parasites were subjected to 2-dimensional electrophoresis. As analyzed by the PD-Quest software, the ZPP caused the alteration in the different subcellular proteins, and the significantly altered proteins were identified using MALDI-MS/MS spectrometry. The major proteins identified were found to play important role in diverse biological functions like signaling, redox regulation, energy metabolism, stress response, and cytoskeleton formation. Moreover, we found upregulation in the calcium binding proteins such as calreticulin, calponin, and calpain-6 suggesting that POP inhibition regulates calcium release. This relates to earlier reports that POP plays non-catalytic role in inositol 1,4,5-trisphosphate (IP3) signaling inducing release of calcium from ER. Taken together, the data demonstrated that inhibition of prolyl oligopeptidase alter the overall proteome signifying its role in survival of the filarial parasites. Thus this study provides a basis for the use of POP as a chemotherapeutic target for the treatment of lymphatic filariasis.Keywords: lymphatic filariasis, setaria cervi, prolyl oligopeptidase, proteomics
Procedia PDF Downloads 284587 Prevalence and Drug Susceptibility Profiles of Bacterial Urinary Tract Infections Isolated among Diabetes Mellitus Patients at Bosaso Health Centers
Authors: Said Abdirasak Abidrahman, Ibrahim Mohamed
Abstract:
Background: Urinary Tract Infections (UTIs) are the commonest infections described among diabetes mellitus patients. More often, empirical antimicrobial therapy is initiated before the laboratory results are made available with minimal treatment success. The knowledge of the etiology and antibiotic susceptibility patterns of the organisms causing urinary tract infections among diabetes mellitus patients remains scarce, despite its vitality. This study sought to determine the prevalence, bacteria species, and drug susceptibility patterns of common causes of urinary tract infections among diabetes mellitus patients attending Bosaso health centers. Materials and methods: We conducted a cross-sectional study involving adult diabetic patients at Bosaso health centers between the months of May and July 2020. Laboratory assay of mid-stream urine samples was done to isolate bacteria causes of UTIs. These were biochemically identified using Gram stain, Kligler iron agar (KIA), Indole test, citrate, urea, coagulase, catalase, motility agar, and lysine iron agar. Their antibiotic susceptibility pattern for the isolated organisms was made for Ampicillin 10μg, Ciprofloxacin 5μg, Cotrimoxazole 25μg, Gentamycin 10μg, Ceftriaxone 10μg, and determined using the Kirby Bauer Disc Diffusion method. Results: Of 177 participants, 69 (39.0%) were males and 108 (61.0%) were females. Their mean age was 33.1 years (range; 18-67 years). Of these, 14.7% (26/177) of the samples revealed significant growth (>= 105 CFU/mL) giving a prevalence of 14.9 % (95% CI: 10.6 to 16.3). The organisms isolated were Escherichia coli -50% (N=13), Klebsiella pneumonia 30.8% (N=8), Staphylococcus aureus 15.4% (N=4), and unidentified organism 3.8% (N=1), and these were associated with such socio-demographic factors like history of catheterization and sexual activity. Antibiotic susceptibility to the commonly used agents for treating UTIs indicated higher sensitivity to Gentamicin and Ceftriaxone.Keywords: antimicrobials, bacteria, urinary tract infections, diabetes
Procedia PDF Downloads 100586 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 175585 Physical Activity and Academic Achievement: How Physical Activity Should Be Implemented to Enhance Mathematical Achievement and Mathematical Self-Concept
Authors: Laura C. Dapp, Claudia M. Roebers
Abstract:
Being physically active has many benefits for children and adolescents. It is crucial for various aspects of physical and mental health, the development of a healthy self-concept, and also positively influences academic performance and school achievement. In addressing the still incomplete understanding of the link between physical activity (PA) and academic achievement, the current study scrutinized the open issue of how PA has to be implemented to positively affect mathematical outcomes in N = 138 fourth graders. Therefore, the current study distinguished between structured PA (formal, organized, adult-led exercise and deliberate sports practice) and unstructured PA (non-formal, playful, peer-led physically active play and sports activities). Results indicated that especially structured PA has the potential to contribute to mathematical outcomes. Although children spent almost twice as much time engaging in unstructured PA as compared to structured PA, only structured PA was significantly related to mathematical achievement as well as to mathematical self-concept. Furthermore, the pending issue concerning the quantity of PA needed to enhance children’s mathematical achievement was addressed. As to that, results indicated that the amount of time spent in structured PA constitutes a critical factor in accounting for mathematical outcomes, since children engaging in PA for two hours or more a week were shown to be both the ones with the highest mathematical self-concept as well as those attaining the highest mathematical achievement scores. Finally, the present study investigated the indirect effect of PA on mathematical achievement by controlling for the mathematical self-concept as a mediating variable. The results of a maximum likelihood mediation analysis with a 2’000 resampling bootstrapping procedure for the 95% confidence intervals revealed a full mediation, indicating that PA improves mathematical self-concept, which, in turn, positively affects mathematical achievement. Thus, engaging in high amounts of structured PA constitutes an advantageous leisure activity for children and adolescents, not only to enhance their physical health but also to foster their self-concept in a way that is favorable and encouraging for promoting their academic achievement. Note: The content of this abstract is partially based on a paper published elswhere by the authors.Keywords: Academic Achievement, Mathematical Performance, Physical Activity, Self-Concept
Procedia PDF Downloads 112584 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models
Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan
Abstract:
Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network
Procedia PDF Downloads 28583 Professional Skills Development of Educational Leaders Through Drama in Education: An Example of Best Practice in Greece
Authors: Christina Zourna, Ioanna Papavassiliou-Alexiou
Abstract:
Drama in Education (DiE) is a dynamic experiential method that can be used in many interdisciplinary contexts. In the Educational and Social Policy Department, University of Macedonia, Thessaloniki, Greece, DiE is being used as a core method for developing professional competences in pre- and postgraduate courses as well as adult education training programs. In this presentation, an innovative DiE application will be described concerning the development of educational leaders’ skills necessary to meet unprecedented, unexpected challenges in the 21st century schools. In a non-threatening risk-taking no-penalty environment, future educational leaders live-in-role problems, challenges, and dilemmas before having to face similar ones in their profession. Through personal involvement, emotional engagement, and reflection, via individual and group activities, they experience the behaviour, dilemmas, decision-making processes, and informed choices of a recognized leader and are able to make connections with their own life. As pretext serves the life of Alexander the Great, the Macedonian King who defeated the vast Persian empire in the 4th century BC and, by uniting all Greeks, conquered the up-to-date known eastern world thanks to his authentic leadership skills and exceptional personality traits. Since the early years of his education mastered by the famous Greek philosopher Aristotle, Alexander proved his unique qualities by providing the world with the example of an undeniably genuine, inspirational, effective, and most recognizable authentic leader. Through questionnaires and individual interviews, participants in these workshops revealed how they developed active listening, empathy, creativity, imagination, critical strategic and out-of-the-box thinking, cooperation and own vision communicating, crisis management skills, self-efficacy, self-awareness, self-exposure, information management, negotiation and inspiration skills, enhanced sense of responsibility and commitment, and decision-making skills.Keywords: drama in education method, educational leadership, professional competences, skills’ development
Procedia PDF Downloads 156582 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions
Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez
Abstract:
In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval
Procedia PDF Downloads 232581 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field
Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot
Abstract:
The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management
Procedia PDF Downloads 132580 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation
Authors: Peiming Li
Abstract:
This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.Keywords: federated learning system, block chain, decentralized oracles, hidden markov model
Procedia PDF Downloads 63579 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering
Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott
Abstract:
Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.Keywords: cancer research, graph theory, machine learning, single cell analysis
Procedia PDF Downloads 113578 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target
Authors: Vishal Raj, Noorhan Abbas
Abstract:
Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)
Procedia PDF Downloads 108577 Efficacy of Thrust on Basilar Spheno Synchondrosis in Boxers With Ocular Convergence Deficit. Comparison of Thrust and Therapeutic Exercise: Pilot Experimental Randomized Controlled Trial Study
Authors: Andreas Aceranti, Stefano Costa
Abstract:
The aim of this study was to demonstrate that manipulative treatment combined with therapeutic exercisetherapywas more effective than isolated therapeutic exercise in the short-term treatment of eye convergence disorders in boxers. A randomized controlled trial (RCT) pilot trial was performed at our physiotherapy practices. 30 adult subjects who practice the discipline of boxing were selected after an initial skimming defined by the Convergence Insufficiency Symptom Survey (CISS) test (results greater than or equal to 10) starting from the initial sample of 50 subjects; The 30 recruits were evaluated by an orthoptist using prisms to know the diopters of each eye and were divided into 2 groups (experimental group and control group). The members of the experimental group were subjected to manipulation of the lateral strain of sphenoid from the side contralateral to the eye that had fewer diopters and were subjected to a sequence of 3 ocular motor exercises immediately after manipulation. The control group, on the other hand, received only ocular motor treatment. A secondary outcome was also drawn up that demonstrated how changes in ocular motricity also affected cervical rotation. Analysis of the data showed that the experimental treatment was in the short term superior to the control group to astatistically significant extent both in terms of the prismatic delta of the right eye (0 OT median without manipulation and 10 OT median with manipulation) and that of the left eye (0 OT median without manipulation and 5 OT median with manipulation). Cervical rotation values also showed better values in the experimental group with a median of 4° in the right rotation without manipulation and 6° with thrust; the left rotation presented a median of 2° without manipulation and 7° with thrust. From the results that emerged, the treatment was effective. It would be desirable to increase the sample number and set up a timeline to see if the net improvements obtained in the short term will also be maintained in the medium to long term.Keywords: boxing, basilar spheno synchondrosis, ocular convergence deficit, osteopathic treatment
Procedia PDF Downloads 89576 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy
Authors: Kemal Efe Eseller, Göktuğ Yazici
Abstract:
Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing
Procedia PDF Downloads 87575 Justice and the Juvenile: Changing Trends and Developments
Authors: Shikhar Shrivastava, Varun Khare
Abstract:
Background: We are confronted by a society that is becoming more complex, more mobile, and more dysfunctional. Teen pregnancy, suicide, elopement, and the perusal of dangerous drugs have become commonplace. In addition, children do not settle their disputes as they once did. Guns and knives are quotidian. Therefore, it has been an exigent to have a "Juvenile Code" that would provide specific substantive and procedural rules for juveniles in the justice system. However, until the twentieth century, there was little difference between how the justice system treated adults and children. Age was considered only in terms of appropriate punishment and juveniles were eligible for the same punishment as adults. Findings: The increased prevalence and legislative support for specialized courts, Juvenile Justice Boards, including juvenile drug, mental health and truancy court programs, as well as diversion programs and evidence-based approaches into the fabric of juvenile justice are just a few examples of recent advances. In India, various measures were taken to prosecute young offenders who committed violent crimes as adults. But it was argued that equating juveniles with adult criminals was neither scientifically correct nor normatively defensible. It would defeat the very purpose of the justice system. Methodology and Conclusion: This paper attempts to bring forth the results of analytical and descriptive research that examined changing trends in juvenile justice legislation. It covers the investigative and inspective practices of police, the various administrative agencies who have roles in implementing the legislation, the courts, and the detention centers. In this paper we shall discuss about how the juvenile justice system is the dumping ground for many of a youths’ problem. The changing notions of justice, from retributive to restorative and rehabilitative shall be discussed. A comparative study of the Juvenile act in India and that of the U.S has been discussed. Specific social institutions and forces that explain juvenile delinquency are identified. In addition, various influences on juvenile delinquency are noted, such as families, schools, peer groups and communities. The text concludes by addressing socialization, deterrence, imprisonments, alternatives, restitution and preventions.Keywords: juvenile, justice system, retributive, rehabilitative, delinquency
Procedia PDF Downloads 457574 Acrylamide-Induced Thoracic Spinal Cord Axonopathy
Authors: Afshin Zahedi, Keivan Jamshidi
Abstract:
This study was conducted to determine the neurotoxic effects of different doses of ACR on the thoracic axons of the spinal cord of rat. To evaluate this hypothesis in the thoracic axons, amino-cupric silver staining technique of the de Olmos was conducted to define the histopathologic characteristic (argyrophilia) of axonal damage following ACR exposure. For this purpose 60 adult male rats (Wistar, approximately 250 g) were selected. Rats were hosed in polycarbonate boxes as two per each. Randomly assigned groups of rats (10 rats per exposure group, total 5 exposure groups as A, B, C, D and E) were exposed to 0.5, 5, 50, 100 and 500 mg/kg per day×11days intraperitoneal injection (IP injection) respectively. The remaining 10 rats were housed in group (F) as control group. Control rats received daily injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, weight gain, gait scores and landing hindlimb foot splay (LHF) were determined. Weight gains were measured daily prior to injection. Gait scoring involved observation of spontaneous open field locomotion, included evaluations of ataxia, hopping, rearing and hind foot placement, and hindlimb foot splay were determined 3-4 times per week. Gait score was assigned from 1-4. After 11 days, two rats for silver stain, were randomly selected, dissected and proper samples were collected from thoracic portion of the spinal cord of rat. Results did show no neurological behavior in groups A, B and F, whereas severe neurotoxicity was observed in groups C and D. Rats in groups E died within 1-2 hours due to severe toxemia. In histopathological studies based on the de Olmos technique no argyrophilic neurons or processes were observed in stained sections obtained from the thoracic portion of the spinal cord of rats belong to groups A, B and F, while moderate to severe argyrophilic changes were observed in different stained sections obtained from the thoracic portion of the spinal cord of rats belong to groups C and D.Keywords: acrylamide, rat, axonopathy, argyrophily, de Olmos
Procedia PDF Downloads 341573 Effect of Biostimulants to Control the Phelipanche ramosa L. Pomel in Processing Tomato Crop
Authors: G. Disciglio, G. Gatta, F. Lops, A. Libutti, A. Tarantino, E. Tarantino
Abstract:
The experimental trial was carried out in open field at Foggia district (Apulia Region, Southern Italy), during the spring-summer season 2014, in order to evaluate the effect of four biostimulant products (RadiconÒ, Viormon plusÒ, LysodinÒ and SiaptonÒ 10L), compared with a control (no biostimulant), on the infestation of processing tomato crop (cv Dres) by the chlorophyll-lacking root parasite Phelipanche ramosa. Biostimulants consist in different categories of products (microbial inoculants, humic and fulvic acids, hydrolyzed proteins and aminoacids, seaweed extracts) which play various roles in plant growing, including the improvement of crop resistance and quali-quantitative characteristics of yield. The experimental trial was arranged according to a complete randomized block design with five treatments, each of one replicated three times. The processing tomato seedlings were transplanted on 5 May 2014. Throughout the crop cycle, P. ramosa infestation was assessed according to the number of emerged shoots (branched plants) counted in each plot, at 66, 78 and 92 day after transplanting. The tomato fruits were harvested at full-stage of maturity on 8 August 2014. From each plot, the marketable yield was measured and the quali-quantitative yield parameters (mean weight, dry matter content, colour coordinate, colour index and soluble solids content of the fruits) were determined. The whole dataset was tested according to the basic assumptions for the analysis of variance (ANOVA) and the differences between the means were determined using Tukey’s tests at the 5% probability level. The results of the study showed that none of the applied biostimulants provided a whole control of Phelipanche, although some positive effects were obtained from their application. To this respect, the RadiconÒ appeared to be the most effective in reducing the infestation of this root-parasite in tomato crop. This treatment also gave the higher tomato yield.Keywords: biostimulant, control methods, Phelipanche ramosa, tomato crop
Procedia PDF Downloads 301572 What Children Do and Do Not Like about Taking Part in Sport: Using Focus Groups to Investigate Thoughts and Feelings of Children with Hearing Loss
Authors: S. Somerset, D. J. Hoare, P. Leighton
Abstract:
Limited participation in physical activity and sport has been linked to poorer mental and physical health in children. Studies have shown that children who participate in sports benefit from improved social skills, self-confidence, communication skills and a better quality of life. Children who participate in sport are also more likely to continue their participation into their adult life. Deaf or hard of hearing children should have the same opportunities to participate in sport and receive the benefits as their hearing peers. Anecdotal evidence suggests this isn’t always the case. This is concerning given there are 45,000 children in the UK with permanent hearing loss. The aim of this study was to understand what encourages or discourages deaf or hard of hearing children to take part in sports. Ethical approval for the study was obtained from the University of Nottingham School of Medicine ethics committee. We conducted eight focus groups with deaf or hard of hearing children aged 10 to 15 years. A total of 45 children (19 male, 26 female) recruited from local schools and sports clubs took part. Information was gathered on the children’s thoughts and feelings about participation in sport. This included whether they played sports and who with, whether they did or did not like sport, and why they got involved in sport. Focus groups were audio recorded and transcribed. Transcripts were analysed using thematic analysis. Several key themes were identified as being associated with levels of sports participation. These included friendships, family and communication. Deaf or hard of hearing children with active siblings had participated in more sports. Communication was a common theme throughout regardless of the type of hearing-assistive technology a child used. Children found communication easier during sport if they were allowed to use their technology and had particular difficulty during sports such as swimming. Children expressed a desire not to have to identify themselves at a club as having a hearing loss. This affected their confidence when participating in sport. Not surprisingly, children who are deaf or hard of hearing are more likely to participate in sport if they have a good support network of parents, coaches and friends. The key barriers to participation for these children are communication, lack of visual information, lack of opportunity and a lack of awareness. By addressing these issues more deaf and hard of hearing children will take part in sport and will continue their participation.Keywords: barrier, children, deaf, participation, hard of hearing, sport
Procedia PDF Downloads 423571 Intergenerational Trauma: Patterns of Child Abuse and Neglect Across Two Generations in a Barbados Cohort
Authors: Rebecca S. Hock, Cyralene P. Bryce, Kevin Williams, Arielle G. Rabinowitz, Janina R. Galler
Abstract:
Background: Findings have been mixed regarding whether offspring of parents who were abused or neglected as children have a greater risk of experiencing abuse or neglect themselves. In addition, many studies on this topic are restricted to physical abuse and take place in a limited number of countries, representing a small segment of the world's population. Methods: We examined relationships between childhood maltreatment history assessed in a subset (N=68) of the original longitudinal birth cohort (G1) of the Barbados Nutrition Study and their now-adult offspring (G2) (N=111) using the Childhood Trauma Questionnaire-Short Form (CTQ-SF). We used Pearson correlations to assess relationships between parent and offspring CTQ-SF total and subscale scores (physical, emotional, and sexual abuse; physical and emotional neglect). Next, we ran multiple regression analyses, using the parental CTQ-SF total score and the parental Sexual Abuse score as primary predictors separately in our models of G2 CTQ-SF (total and subscale scores). Results: G1 total CTQ-SF scores were correlated with G2 offspring Emotional Neglect and total scores. G1 Sexual Abuse history was significantly correlated with G2 Emotional Abuse, Sexual Abuse, Emotional Neglect, and Total Score. In fully-adjusted regression models, parental (G1) total CTQ-SF scores remained significantly associated with G2 offspring reports of Emotional Neglect, and parental (G1) Sexual Abuse was associated with offspring (G2) reports of Emotional Abuse, Physical Abuse, Emotional Neglect, and overall CTQ-SF scores. Conclusions: Our findings support a link between parental exposure to childhood maltreatment and their offspring's self-reported exposure to childhood maltreatment. Of note, there was not an exact correspondence between the subcategory of maltreatment experienced from one generation to the next. Compared with other subcategories, G1 Sexual Abuse history was the most likely to predict G2 offspring maltreatment. Further studies are needed to delineate underlying mechanisms and to develop intervention strategies aimed at preventing intergenerational transmission.Keywords: trauma, family, adolescents, intergenerational trauma, child abuse, child neglect, global mental health, North America
Procedia PDF Downloads 84570 Design and Development of an Autonomous Beach Cleaning Vehicle
Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk
Abstract:
In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics
Procedia PDF Downloads 27569 An Exploratory Study of Preschool English Education in China
Authors: Xuan Li
Abstract:
The English language occupies a crucial position in the Chinese educational system and is officially introduced in the school curriculum from the third year of primary school onward. However, it is worth noting that along with the movement to remove primary-oriented education from preschools, the teaching of English is banned in preschools. Considering the worldwide trend of learning English at a young age, whether this ban can be implemented successfully is doubtful. With an initial focus on the interaction of language-in-education planning and policy (LEPP) at the macro level and actual practice at the micro level, this research selected three private preschools and two public preschools to explore what is taking place in terms of English education. All data collected is qualitative and is gained from documentary analysis, school observation, interviews, and focus groups. The findings show that: (1) although the English ban in preschool education aims to regulate all types of preschools and all adult Chinese participants are aware of this ban, there are very different scenarios according to type of preschool, such that no English classes are found in public schools while private preschools commonly provide some kind of English education; (2) even public schools do not have an English-free environment and parents’ demand for English education is high; (3) there is an obvious top-down hierarchy in both public and private schools, in which administrators make the decisions while others have little power to influence the school curriculum; (4) there is a clear gap in the perception of English teaching between children and adults, in which adults prefer foreign English teachers and think English teaching is just playing, while children do not have a clear preference regarding teachers and do not think English class is just for fun; (5) without macro support, there are many challenges involved in preschool English education, including the shortage of qualified teachers and teaching resources, ineffective personnel management and few opportunities for speaking English in daily life. Hopefully, this research will not only highlight the interaction of LEPP at different levels and the importance of individual agency but also raise the awareness of how to provide qualified and equal education for all children.Keywords: individual agency, language-in-education planning and policy, micro context, preschool English education
Procedia PDF Downloads 151568 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 16567 Autoimmune Diseases Associated with Celiac Disease in Adults
Authors: Soumaya Mrabet, Taieb Ach, Imen Akkari, Amira Atig, Neirouz Ghannouchi, Koussay Ach, Elhem Ben Jazia
Abstract:
Introduction: Celiac disease (CD) is an immune-mediated small intestinal disorder that occurs in genetically susceptible people. It is significantly associated with other autoimmune disorders represented mainly by type 1 diabetes and autoimmune dysthyroidism. The aim of our study is to determine the prevalence and the type of the various autoimmune diseases associated with CD in adult patients. Material and methods: This is a retrospective study including patients diagnosed with CD, explored in Internal Medicine, Gastroenterology and Endocrinology and Diabetology Departments of the Farhat Hached University Hospital, between January 2005 and January 2016. The diagnosis of CD was confirmed by serological tests and duodenal biopsy. The screening of autoimmune diseases was based on physical examination, biological and serological tests. Results: Sixty five patients with a female predominance were included, 48women (73.8%) and 17 men (26.2%). The mean age was 31.8 years (17-75). A family history of CD or other autoimmune diseases was present in 5 and 10 patients respectively. Clinical presentation of CD was made by recurrent abdominal pain in 49 cases, diarrhea in 29 cases, bloating in 17 cases, constipation in 25 cases and vomiting in 8 cases. Autoimmune diseases associated with CD were found in 30 cases (46.1%): type 1 diabetes in 15 patients attested by the positivity of anti-GAD antibodies in 11 cases and anti-IA2 in 4 cases, Hashimoto thyroiditis in 8 cases confirmed by the positivity of anti-TPO antibodies, Addison's disease in 2 patients, Anemia of Biermer in 2 patients, autoimmune hepatitis, Systemic erythematosus lupus, Gougerot Sjögren syndrome, rheumatoid arthritis, Vitiligo and antiphospholipid syndrome in one patient each. CD was associated with more than one autoimmune disease defining multiple autoimmune syndrome in 2 female patients. The first patient had Basedow disease, Addison disease and type 1 diabetes. The second patient had systemic erythematosus lupus and Gougerot Sjögren syndrome. Conclusion: In our study autoimmune diseases were associated with CD in 46.1% of cases and were dominated by diabetes and dysthroidism. After establishing the diagnosis of CD the search of associated autoimmune diseases is necessary in order to avoid any therapeutic delay which can alter the prognosis of the patient.Keywords: association, autoimmune thyroiditis, celiac disease, diabetes
Procedia PDF Downloads 283