Search results for: vulnerability intelligence
429 Study the Effect of Liquefaction on Buried Pipelines during Earthquakes
Authors: Mohsen Hababalahi, Morteza Bastami
Abstract:
Buried pipeline damage correlations are critical part of loss estimation procedures applied to lifelines for future earthquakes. The vulnerability of buried pipelines against earthquake and liquefaction has been observed during some of previous earthquakes and there are a lot of comprehensive reports about this event. One of the main reasons for impairment of buried pipelines during earthquake is liquefaction. Necessary conditions for this phenomenon are loose sandy soil, saturation of soil layer and earthquake intensity. Because of this fact that pipelines structure are very different from other structures (being long and having light mass) by paying attention to the results of previous earthquakes and compare them with other structures, it is obvious that the danger of liquefaction for buried pipelines is not high risked, unless effective parameters like earthquake intensity and non-dense soil and other factors be high. Recent liquefaction researches for buried pipeline include experimental and theoretical ones as well as damage investigations during actual earthquakes. The damage investigations have revealed that a damage ratio of pipelines (Number/km ) has much larger values in liquefied grounds compared with one in shaking grounds without liquefaction according to damage statistics during past severe earthquakes, and that damages of joints and pipelines connected with manholes were remarkable. The purpose of this research is numerical study of buried pipelines under the effect of liquefaction by case study of the 2013 Dashti (Iran) earthquake. Water supply and electrical distribution systems of this township interrupted during earthquake and water transmission pipelines were damaged severely due to occurrence of liquefaction. The model consists of a polyethylene pipeline with 100 meters length and 0.8 meter diameter which is covered by light sandy soil and the depth of burial is 2.5 meters from surface. Since finite element method is used relatively successfully in order to solve geotechnical problems, we used this method for numerical analysis. For evaluating this case, some information like geotechnical information, classification of earthquakes levels, determining the effective parameters in probability of liquefaction, three dimensional numerical finite element modeling of interaction between soil and pipelines are necessary. The results of this study on buried pipelines indicate that the effect of liquefaction is function of pipe diameter, type of soil, and peak ground acceleration. There is a clear increase in percentage of damage with increasing the liquefaction severity. The results indicate that although in this form of the analysis, the damage is always associated to a certain pipe material, but the nominally defined “failures” include by failures of particular components (joints, connections, fire hydrant details, crossovers, laterals) rather than material failures. At the end, there are some retrofit suggestions in order to decrease the risk of liquefaction on buried pipelines.Keywords: liquefaction, buried pipelines, lifelines, earthquake, finite element method
Procedia PDF Downloads 513428 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 180427 Working Memory in Children: The Relationship with Father-Child Rough-and-Tumble Play
Authors: Robinson, E. L., Freeman, E. E.
Abstract:
Over the last few decades, the social movement of involved fatherhood has stimulated a research focus on fathers, leading to an increase in the body of evidence into the paternal contributions to child development. Past research has suggested that rough-and-tumble play, which involves wrestling, chasing and tumbling, is the preferred play type of western fathers. This type of play remains underutilized and underrepresented in child developmental research as it’s perceived to be dangerous or too aggressive. The limited research available has shown a relationship between high quality rough-and-tumble play interactions, lower childhood aggression and improved child emotional regulation. The aim of this study was to examine father-child rough-and-tumble play and assess the impact on cognitive development in children aged 4-7 years. Father-child dyads completed a 10-minute rough-and-tumble play interaction, which consisted of 2 games, at the University of Newcastle. Children then completed the Wechsler Preschool & Primary Scale of Intelligence - Fourth Edition Australian and New Zealand Standardized Edition (WPPSI-IV A&NZ). Fathers reported on their involvement in various caregiving activities and on their child’s development. Analyses revealed that fathers-child play quality was positively related to working memory outcomes in children. Furthermore, the amount of rough-and-tumble play father and child did together on a regular basis was also related to working memory outcomes. While father-child play interactions remain an understudied area of research, this study outlines the importance of examining the paternal play role in children’s cognitive development.Keywords: children, development, father, executive function
Procedia PDF Downloads 205426 Mental Health and Secondary Trauma in Service Providers Working with Refugees
Authors: Marko Živanović, Jovana Bjekić, Maša Vukčević Marković
Abstract:
Professionals and volunteers involved in refugee protection and support are on a daily basis faced with people who have experienced numerous traumatic experiences and, as such, are subjected to secondary traumatization (ST). The aim of this study was to provide insight into risk factors for ST in helpers working with refugees in Serbia. A total of 175 participants working with refugees fulfilled: Secondary Traumatization Questionnaire, checklist of refugees’ traumatic experiences, Hopkins Symptoms Checklist (HSCL) assessing depression and anxiety symptoms, quality of life questionnaire (MANSA), HEXACO personality inventory, and COPE assessing coping mechanisms. In addition, participants provided information on work-related problems. Qualitative analysis of answers to the question about most difficult part of their job has shown that burnout-related issues are clustered around three recurrent topics that can be considered as the most prominent generators of stress, namely: ‘lack of organization and cooperation’, ‘not been able to do enough’, and ‘hard to take it and to process it’. Factor analysis (Maximum likelihood extraction, Promax rotation) have shown that ST comprises of two correlated factors (r = .533, p < .01), namely Psychological deficits and Intrusions. Results have shown that risk factor for ST could be find in three interrelated sources: 1) work-related problems; 2) personality-related risk factors and 3) clients’ traumatic experiences. Among personality related factors, it was shown that risk factor for Intrusions could be find in – high Emotionality (β = .221, p < .05), and Altruism (β = .322, p < .01), while low Extraversion (β = -.365, p < .01) represents risk factor for Psychological deficits. In addition, usage of maladaptive coping mechanisms –mental disengagement (r = .253, p < .01), behavioral disengagement (r = .274, p < .01), focusing on distress and venting of emotions (r = .220, p < .05), denial (r = .164, p < .05), and substance use (r = .232, p < .01) correlate with Psychological deficits while Intrusions corelate with Mental disengagement (r = .251, p < .01) and denial (r = .183, p < .05). Regarding clients’ traumatic experiences it was shown that both quantity of traumatic events in country of origin (for Deficits r = .226, p < .01; for Intrusions r = .174, p < .05) and in transit (for Deficits r = .288, p < .01), as well as certain content-related features of such experiences (especially experiences which are severely dislocated from ‘everyday reality’) are related to ST. In addition, Psychological deficits and Intrusions have shown to be accompanied by symptoms of depression (r = .760, p < .01; r = .552, p < .01) and anxiety (r = .740, p < .01; r = .447, p < .01) and overall lower life quality (r = -.454, p < .01; r = .256, p < .01). Results indicate that psychological vulnerability of persons who are working with traumatized individuals can be found in certain personality traits, and usage of maladaptive coping mechanisms, which disable one to deal with work-related issues, and to cope with quantity and quality of traumatic experiences they were faced with, affecting ones’ psychological well-being. Acknowledgement: This research was funded by IRC Serbia.Keywords: mental health, refugees, secondary traumatization, traumatic experiences
Procedia PDF Downloads 235425 The Effect of Artificial Intelligence on Civil Engineering Outputs and Designs
Authors: Mina Youssef Makram Ibrahim
Abstract:
Engineering identity contributes to the professional and academic sustainability of female engineers. Recognizability is an important factor that shapes an engineer's identity. People who are deprived of real recognition often fail to create a positive identity. This study draws on Hornet’s recognition theory to identify factors that influence female civil engineers' sense of recognition. Over the past decade, a survey was created and distributed to 330 graduate students in the Department of Civil, Civil and Environmental Engineering at Iowa State University. Survey items include demographics, perceptions of a civil engineer's identity, and factors that influence recognition of a civil engineer's identity, such as B. Opinions about society and family. Descriptive analysis of survey responses revealed that perceptions of civil engineering varied significantly. The definitions of civil engineering provided by participants included the terms structure, design and infrastructure. Almost half of the participants said the main reason for studying Civil Engineering was their interest in the subject, and the majority said they were proud to be a civil engineer. Many study participants reported that their parents viewed them as civil engineers. Institutional and operational treatment was also found to have a significant impact on the recognition of women civil engineers. Almost half of the participants reported feeling isolated or ignored at work because of their gender. This research highlights the importance of recognition in developing the identity of women engineers.Keywords: civil service, hiring, merit, policing civil engineering, construction, surveying, mapping, pile civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy civil engineering, gender, identity, recognition
Procedia PDF Downloads 64424 Identifying the Risks on Philippines’ Pre- and Post-Disaster Media Communication on Natural Hazards
Authors: Neyzielle Ronnicque Cadiz
Abstract:
The Philippine is a hotbed of disasters and is a locus of natural hazards. With an average of 20 typhoons entering the Philippine Area of Responsibility (PAR) each year, seven to eight (7-8) of which makes landfall. The country rather inevitably suffers from climate-related calamities. With this vulnerability to natural hazards, the relevant hazard-related issues that come along with the potential threat and occurrence of a disaster oftentimes garners lesser media attention than when a disaster actually occurred. Post-disaster news and events flood the content of news networks primarily focusing on, but not limited to, the efforts of the national government in resolving post-disaster displacement, and all the more on the community leaders’ incompetence in disaster mitigation-- even though the University of the Philippines’ NOAH Center work hand in hand with different stakeholders for disaster mitigation communication efforts. Disaster risk communication is actually a perennial dilemma. There are so many efforts to reach the grassroots level but emergency and disaster preparedness messages inevitably fall short.. The Philippines is very vulnerable to hazards risk and disasters but social media posts and communication efforts mostly go unnoticed, if not argued upon. This study illustrates the outcomes of a research focusing on the print, broadcast, and social media’s role on disaster communication involving the natural catastrophic events that took place in the Philippines from 2009 to present. Considering the country’s state of development, this study looks on the rapid and reliable communication between the government, and the relief/rescue workers in the affected regions; and how the media portrays these efforts effectively. Learning from the disasters that have occurred in the Philippines over the past decade, effective communication can ensure that any efforts to prepare and respond to disasters can make a significant difference. It can potentially either break or save lives. Recognizing the role of communications is not only in improving the coordination of vital services for post disaster; organizations gave priority in reexamining disaster preparedness mechanisms through the Communication with Communities (CwC) programs. This study, however, looks at the CwC efforts of the Philippine media platforms. CwC, if properly utilized by the media, is an essential tool in ensuring accountability and transparency which require effective exchange of information between disasters and survivors and responders. However, in this study, it shows that the perennial dilemma of the Philippine media is that the Disaster Risk Reduction and Management (DRRM) efforts of the country lie in the clouded judgment of political aims. This kind of habit is a multiplier of the country’s risk and insecurity. Sometimes the efforts in urging the public to take action seem useless because the challenge lies on how to achieve social, economic, and political unity using the tri-media platform.Keywords: Philippines at risk, pre/post disaster communication, tri-media platform, UP NOAH
Procedia PDF Downloads 181423 Impact of Climatic Hazards on the Jamuna River Fisheries and Coping and Adaptation Strategies
Authors: Farah Islam, Md. Monirul Islam, Mosammat Salma Akter, Goutam Kumar Kundu
Abstract:
The continuous variability of climate and the risk associated with it have a significant impact on the fisheries leading to a global concern for about half a billion fishery-based livelihoods. Though in the context of Bangladesh mounting evidence on the impacts of climate change on fishery-based livelihoods or their socioeconomic conditions are present, the country’s inland fisheries sector remains in a negligible corner as compared to the coastal areas which are spotted on the highlight due to its higher vulnerability to climatic hazards. The available research on inland fisheries, particularly river fisheries, has focussed mainly on fish production, pollution, fishing gear, fish biodiversity and livelihoods of the fishers. This study assesses the impacts of climate variability and changes on the Jamuna (a transboundary river called Brahmaputra in India) River fishing communities and their coping and adaptation strategies. This study has used primary data collected from Kalitola Ghat and Debdanga fishing communities of the Jamuna River during May, August and December 2015 using semi-structured interviews, oral history interviews, key informant interviews, focus group discussions and impact matrix as well as secondary data. This study has found that both communities are exposed to storms, floods and land erosions which impact on fishery-based livelihood assets, strategies, and outcomes. The impact matrix shows that human and physical capitals are more affected by climate hazards which in turn affect financial capital. Both communities have been responding to these exposures through multiple coping and adaptation strategies. The coping strategies include making dam with soil, putting jute sac on the yard, taking shelter on boat or embankment, making raised platform or ‘Kheua’ and involving with temporary jobs. While, adaptation strategies include permanent migration, change of livelihood activities and strategies, changing fishing practices and making robust houses. The study shows that migration is the most common adaptation strategy for the fishers which resulted in mostly positive outcomes for the migrants. However, this migration has impacted negatively on the livelihoods of existing fishers in the communities. In sum, the Jamuna river fishing communities have been impacted by several climatic hazards and they have traditionally coped with or adapted to the impacts which are not sufficient to maintain sustainable livelihoods and fisheries. In coming decades, this situation may become worse as predicted by latest scientific research and an enhanced level of response would be needed.Keywords: climatic hazards, impacts and adaptation, fisherfolk, the Jamuna River
Procedia PDF Downloads 322422 Effects of Music Training on Social-Emotional Development and Basic Musical Skills: Findings from a Longitudinal Study with German and Migrant Children
Authors: Stefana Francisca Lupu, Jasmin Chantah, Mara Krone, Ingo Roden, Stephan Bongard, Gunter Kreutz
Abstract:
Long-term music interventions could enhance both musical and nonmusical skills. The present study was designed to explore cognitive, socio-emotional, and musical development in a longitudinal setting. Third-graders (N = 184: 87 male, 97 female; mean age = 8.61 years; 115 native German and 69 migrant children) were randomly assigned to two intervention groups (music and maths) and a control group over a period of one school-year. At baseline, children in these groups were similar in basic cognitive skills, with a trend of advantage in the control group. Dependent measures included the culture fair intelligence test CFT 20-R; the questionnaire of emotional and social school experience for grade 3 and 4 (FEESS 3-4), the test of resources in childhood and adolescence (FRKJ 8-16), the test of language proficiency for German native and non-native primary school children (SFD 3), the reading comprehension test (ELFE 1-6), the German math test (DEMAT 3+) and the intermediate measures of music audiation (IMMA). Data were collected two times at the beginning (T1) and at the end of the school year (T2). A third measurement (T3) followed after a six months retention period. Data from baseline and post-intervention measurements are currently being analyzed. Preliminary results of all three measurements will be presented at the conference.Keywords: musical training, primary-school German and migrant children, socio-emotional skills, transfer
Procedia PDF Downloads 246421 Cycle-Oriented Building Components and Constructions Made from Paper Materials
Authors: Rebecca Bach, Evgenia Kanli, Nihat Kiziltoprak, Linda Hildebrand, Ulrich Knaack, Jens Schneider
Abstract:
The building industry has a high demand for resources and at the same time is responsible for a significant amount of waste created worldwide. Today's building components need to contribute to the protection of natural resources without creating waste. This is defined in the product development phase and impacts the product’s degree of being cycle-oriented. Paper-based materials show advantage due to their renewable origin and their ability to incorporate different functions. Besides the ecological aspects like renewable origin and recyclability the main advantages of paper materials are its light-weight but stiff structure, the optimized production processes and good insulation values. The main deficits from building technology’s perspective are the material's vulnerability to humidity and water as well as inflammability. On material level, those problems can be solved by coatings or through material modification. On construction level intelligent setup and layering of a building component can improve and also solve these issues. The target of the present work is to provide an overview of developed building components and construction typologies mainly made from paper materials. The research is structured in four parts: (1) functions and requirements, (2) preselection of paper-based materials, (3) development of building components and (4) evaluation. As part of the research methodology at first the needs of the building sector are analyzed with the aim to define the main areas of application and consequently the requirements. Various paper materials are tested in order to identify to what extent the requirements are satisfied and determine potential optimizations or modifications, also in combination with other construction materials. By making use of the material’s potentials and solving the deficits on material and on construction level, building components and construction typologies are developed. The evaluation and the calculation of the structural mechanics and structural principals will show that different construction typologies can be derived. Profiles like paper tubes can be used at best for skeleton constructions. Massive structures on the other hand can be formed by plate-shaped elements like solid board or honeycomb. For insulation purposes corrugated cardboard or cellulose flakes have the best properties, while layered solid board can be applied to prevent inner condensation. Enhancing these properties by material combinations for instance with mineral coatings functional constructions mainly out of paper materials were developed. In summary paper materials offer a huge variety of possible applications in the building sector. By these studies a general base of knowledge about how to build with paper was developed and is to be reinforced by further research.Keywords: construction typologies, cycle-oriented construction, innovative building material, paper materials, renewable resources
Procedia PDF Downloads 281420 The Effect of Human Rights Violation in Modern Society
Authors: Hanania Nasan Shokry Abdelmasih
Abstract:
The discipline of regulation is pretty complex and has its own terminology. other than written legal guidelines, there's also dwelling regulation, which refers to prison exercise. primary legal rules purpose at the happiness of individuals in social existence and feature different characteristics in unique branches including public or non-public regulation. on the other hand, law is a countrywide phenomenon. The law of 1 state and the legal device implemented at the territory of another state can be completely exceptional. individuals who are professionals in a specific discipline of regulation in a single united states may have inadequate know-how within the regulation of every other united states. today, similarly to the neighborhood nature of regulation, worldwide and even supranational regulation rules are implemented as a way to defend basic human values and make sure the protection of human rights around the sector. systems that offer algorithmic answers to prison problems using synthetic intelligence (AI) gear will perhaps serve to produce very meaningful consequences in phrases of human rights. but, algorithms to be used need to no longer be evolved with the aid of only pc professionals, however additionally want the contribution of folks who are familiar with law, values, judicial choices, and even the social and political culture of the society to which it'll provide answers. otherwise, even supposing the set of rules works perfectly, it may not be well suited with the values of the society in which it is applied. The present day traits involving using AI techniques in legal systems suggest that artificial law will come to be a brand new subject within the area of law.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 8419 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards
Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia
Abstract:
Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.Keywords: aquaponics, deep learning, internet of things, vermiponics
Procedia PDF Downloads 72418 The Effect of Artificial Intelligence on Food and Beverages
Authors: Remon Karam Zakry Kelada
Abstract:
This survey research ambitions to examine the usual of carrier quality of meals and beverage provider staffs in lodge business by way of studying the carrier fashionable of 3 pattern inns, Siam Kempinski lodge Bangkok, four Seasons lodge Chiang Mai, and Banyan Tree Phuket. as a way to locate the international provider general of food and beverage provider, triangular research, i.e. quantitative, qualitative, and survey were hired. on this research, questionnaires and in-depth interview have been used for getting the statistics on the sequences and method of services. There had been three components of modified questionnaires to degree carrier pleasant and visitor’s satisfaction inclusive of carrier facilities, attentiveness, obligation, reliability, and circumspection. This observe used pattern random sampling to derive topics with the go back fee of the questionnaires changed into 70% or 280. information have been analyzed via SPSS to find mathematics mean, SD, percent, and comparison by using t-take a look at and One-manner ANOVA. The outcomes revealed that the service first-rate of the three lodges have been in the worldwide stage that could create excessive pride to the international clients. hints for studies implementations have been to hold the area of precise carrier satisfactory, and to enhance some dimensions of service fine together with reliability. training in service fashionable, product expertise, and new generation for employees must be provided. furthermore, for you to develop the provider pleasant of the enterprise, training collaboration among inn corporation and academic institutions in food and beverage carrier should be considered.Keywords: food and beverage staff, food poisoning, food production, hygiene knowledge BPA, health, regulations, toxicity service standard, food and beverage department, sequence of service, service method
Procedia PDF Downloads 37417 Assessing the Impact of Frailty in Elderly Patients Undergoing Emergency Laparotomies in Singapore
Authors: Zhao Jiashen, Serene Goh, Jerry Goo, Anthony Li, Lim Woan Wui, Paul Drakeford, Chen Qing Yan
Abstract:
Introduction: Emergency laparotomy (EL) is one of the most common surgeries done in Singapore to treat acute abdominal pathologies. A significant proportion of these surgeries are performed in the geriatric population (65 years and older), who tend to have the highest postoperative morbidity, mortality, and highest utilization of intensive care resources. Frailty, the state of vulnerability to adverse outcomes from an accumulation of physiological deficits, has been shown to be associated with poorer outcomes after surgery and remains a strong driver of healthcare utilization and costs. To date, there is little understanding of the impact it has on emergency laparotomy outcomes. The objective of this study is to examine the impact of frailty on postoperative morbidity, mortality, and length of stay after EL. Methods: A retrospective study was conducted in two tertiary centres in Singapore, Tan Tock Seng Hospital and Khoo Teck Puat Hospital the period from January to December 2019. Patients aged 65 years and above who underwent emergency laparotomy for intestinal obstruction, perforated viscus, bowel ischaemia, adhesiolysis, gastrointestinal bleed, or another suspected acute abdomen were included. Laparotomies performed for trauma, cholecystectomy, appendectomy, vascular surgery, and non-GI surgery were excluded. The Clinical Frailty Score (CFS) developed by the Canadian Study of Health and Aging (CSHA) was used. A score of 1 to 4 was defined as non-frail and 5 to 7 as frail. We compared the clinical outcomes of elderly patients in the frail and non-frail groups. Results: There were 233 elderly patients who underwent EL during the study period. Up to 26.2% of patients were frail. Patients who were frail (CFS 5-9) tend to be older, 79 ± 7 vs 79 ± 5 years of age, p <0.01. Gender distribution was equal in both groups. Indication for emergency laparotomies, time from diagnosis to surgery, and presence of consultant surgeons and anaesthetists in the operating theatre were comparable (p>0.05). Patients in the frail group were more likely to receive postoperative geriatric assessment than in the non-frail group, 49.2% vs. 27.9% (p<0.01). The postoperative complications were comparable (p>0.05). The length of stay in the critical care unit was longer for the frail patients, 2 (IQR 1-6.5) versus 1 (IQR 0-4) days, p<0.01. Frailty was found to be an independent predictor of 90-day mortality but not age, OR 2.9 (1.1-7.4), p=0.03. Conclusion: Up to one-fourth of the elderly who underwent EL were frail. Patients who were frail were associated with a longer length of stay in the critical care unit and a 90-day mortality rate of more than three times that of their non-frail counterparts. PPOSSUM was a better predictor of 90-day mortality in the non-frail group than in the frail group. As frailty scoring was a significant predictor of 90-day mortality, its integration into acute surgical units to facilitate shared decision-making and discharge planning should be considered.Keywords: frailty elderly, emergency, laparotomy
Procedia PDF Downloads 148416 How Envisioning Process Is Constructed: An Exploratory Research Comparing Three International Public Televisions
Authors: Alexandre Bedard, Johane Brunet, Wendellyn Reid
Abstract:
Public Television is constantly trying to maintain and develop its audience. And to achieve those goals, it needs a strong and clear vision. Vision or envision is a multidimensional process; it is simultaneously a conduit that orients and fixes the future, an idea that comes before the strategy and a mean by which action is accomplished, from a business perspective. Also, vision is often studied from a prescriptive and instrumental manner. Based on our understanding of the literature, we were able to explain how envisioning, as a process, is a creative one; it takes place in the mind and uses wisdom and intelligence through a process of evaluation, analysis and creation. Through an aggregation of the literature, we build a model of the envisioning process, based on past experiences, perceptions and knowledge and influenced by the context, being the individual, the organization and the environment. With exploratory research in which vision was deciphered through the discourse, through a qualitative and abductive approach and a grounded theory perspective, we explored three extreme cases, with eighteen interviews with experts, leaders, politicians, actors of the industry, etc. and more than twenty hours of interviews in three different countries. We compared the strategy, the business model, and the political and legal forces. We also looked at the history of each industry from an inertial point of view. Our analysis of the data revealed that a legitimacy effect due to the audience, the innovation and the creativity of the institutions was at the cornerstone of what would influence the envisioning process. This allowed us to identify how different the process was for Canadian, French and UK public broadcasters, although we concluded that the three of them had a socially constructed vision for their future, based on stakeholder management and an emerging role for the managers: ideas brokers.Keywords: envisioning process, international comparison, television, vision
Procedia PDF Downloads 135415 Anyword: A Digital Marketing Tool to Increase Productivity in Newly Launching Businesses
Authors: Jana Atteah, Wid Jan, Yara AlHibshi, Rahaf AlRougi
Abstract:
Anyword is an AI copywriting tool that helps marketers create effective campaigns for specific audiences. It offers a wide range of templates for various platforms, brand voice guidelines, and valuable analytics insights. Anyword is used by top global companies and has been recognized as one of the "Fastest Growing Products" in the 2023 software awards. A recent study examined the utilization and impact of AI-powered writing tools, specifically focusing on the adoption of AI in writing pursuits and the use of the Anyword platform. The results indicate that a majority of respondents (52.17%) had not previously used Anyword, but those who had were generally satisfied with the platform. Notable productivity improvements were observed among 13% of the participants, while an additional 34.8% reported a slight increase in productivity. A majority (47.8%) maintained a neutral stance, suggesting that their productivity remained unaffected. Only a minimal percentage (4.3%) claimed that their productivity did not improve with the usage of Anyword AI. In terms of the quality of written content generated, the participants responded positively. Approximately 91% of participants gave Anyword AI a score of 5 or higher, with roughly 17% giving it a perfect score. A small percentage (approximately 9%) gave a low score between 0-2. The mode result was a score of 7, indicating a generally positive perception of the quality of content generated using Anyword AI. These findings suggest that AI can contribute to increased productivity and positively influence the quality of written content. Further research and exploration of AI tools in writing pursuits are warranted to fully understand their potential and limitations.Keywords: artificial intelligence, marketing platforms, productivity, user interface
Procedia PDF Downloads 64414 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models
Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur
Abstract:
In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity
Procedia PDF Downloads 69413 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability
Procedia PDF Downloads 107412 Grammarly: Great Writings Get Work Done Using AI
Authors: Neha Intikhab Khan, Alanoud AlBalwi, Farah Alqazlan, Tala Almadoudi
Abstract:
Background: Grammarly, a widely utilized writing assistant launched in 2009, leverages advanced artificial intelligence and natural language processing to enhance writing quality across various platforms. Methods: To collect data on user perceptions of Grammarly, a structured survey was designed and distributed via Google Forms. The survey included a series of quantitative and qualitative questions aimed at assessing various aspects of Grammarly's performance. The survey comprised multiple-choice questions, Likert scale items (ranging from "strongly disagree" to "strongly agree"), and open-ended questions to capture detailed user feedback. The target population included students, friends, and family members. The collected responses were analyzed using statistical methods to quantify user satisfaction. Participation in the survey was voluntary, and respondents were assured anonymity and confidentiality. Results: The survey of 28 respondents revealed a generally favorable perception of Grammarly's AI capabilities. A significant 39.3% strongly agreed that it effectively improves text tone, with an additional 46.4% agreeing, while 10.7% remained neutral. For clarity suggestions, 28.6% strongly agreed, and 57.1% agreed, totaling 85.7% recognition of its value. Regarding grammatical accuracy across various genres, 46.4% rated it a perfect score of 5, contributing to 78.5% who found it highly effective. Conclusion: The evolution of Grammarly from a basic grammar checker to a robust AI-driven application underscores its adaptability and commitment to helping users develop their writing skills.Keywords: Grammarly, writing tool, user engagement, AI capabilities, effectiveness
Procedia PDF Downloads 5411 Evaluation of the Effectiveness of Crisis Management Support Bases in Tehran
Authors: Sima Hajiazizi
Abstract:
Tehran is a capital of Iran, with the capitals of the world to natural disasters such as earthquake and flood vulnerable has known. City has stated on three faults, Ray, Mosha, and north according to report of JICA in 2000, the most casualties and destruction was the result of active fault Ray. In 2003, the prevention and management of crisis in Tehran to conduct prevention and rehabilitation of the city, under the Ministry has active. Given the breadth and lack of appropriate access in the city, was considered decentralized management for crisis management support, in each region, in order to position the crisis management headquarters at the time of crises and implementation of programs for prevention and education of the citizens and also to position the bases given in some areas of the neighboring provinces at the time of the accident for help and a number of databases to store food and equipment needed at the time of the disaster. In this study, the bases for one, six, nine and eleven regions of Tehran in the field of management and training are evaluated. Selected areas had local accident and experience of practice for disaster management and local training has been experiencing challenges. The research approach was used qualitative research methods underlying Ground theory. At first, the information obtained through the study of documents and Semi-structured interviews by administrators, officials of training and participant observation in the classroom, line by line, and then it was coded in two stages, by comparing and questioning concepts, categories and extract according to the indicators is obtained from literature studies, subjects were been central. Main articles according to the frequency and importance of the phenomenon were called and they were drawn diagram paradigm and at the end with the intersections phenomena and their causes with indicators extracted from the texts, approach each phenomenon and the effectiveness of the bases was measured. There are two phenomenons in management; 1. The inability to manage the vast and complex crisis events and to resolve minor incidents due to the mismatch between managers. 2. Weaknesses in the implementation of preventive measures and preparedness to manage crisis is causal of situations, fields and intervening. There are five phenomenons in the field of education; 1. In the six-region participation and interest is high. 2. In eleven-region training partnerships for crisis management were to low that next by maneuver in schools and local initiatives such as advertising and use of aid groups have increased. 3. In nine-region, contributions to education in the area of crisis management at the beginning were low that initiatives like maneuver in schools and communities to stimulate and increase participation have increased sensitivity. 4. Managers have been disagreement with the same training in all areas. Finally for the issues that are causing the main issues, with the help of concepts extracted from the literature, recommendations are provided.Keywords: crises management, crisis management support bases, vulnerability, crisis management headquarters, prevention
Procedia PDF Downloads 175410 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 358409 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 38408 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok
Authors: Noriyuki Suyama
Abstract:
The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior
Procedia PDF Downloads 89407 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 278406 Efficient Chess Board Representation: A Space-Efficient Protocol
Authors: Raghava Dhanya, Shashank S.
Abstract:
This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.Keywords: chess, optimisation, encoding, bit manipulation
Procedia PDF Downloads 50405 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality
Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya
Abstract:
Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.Keywords: augmented reality, data analytics, catch room, marketing and sales
Procedia PDF Downloads 238404 One Step Further: Pull-Process-Push Data Processing
Authors: Romeo Botes, Imelda Smit
Abstract:
In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list
Procedia PDF Downloads 245403 A Drop of Water for the Thirsty Ground: Implementing Drip-Irrigation System as an Alternative to the Existing System to Promote Sustainable Livelihoods in the Archipelagic Dryland East Nusa Tenggara, Indonesia
Authors: F. L. Benu, I. W. Mudita, R. L. Natonis
Abstract:
East Nusa Tenggara, together with part of East Java, West Nusa Tenggara, and Maluku, has been included as part of global drylands defined according to the ratio of annual precipitation (P) and annual potential evaporation (PET) and major vegetation types of grassland and savannah ecosystems. These tropical drylands are unique because, whereas drylands in other countries are mostly continental, here they are archipelagic. These archipelagic drylands are also unique in terms of being included because of more on their major vegetation types than of their P/PET ratio. Slash-and-burn cultivation and free roaming animal husbandry are two major livelihoods being widely practiced, along with alternative seasonal livelihood such as traditional fishing. Such livelihoods are vulnerable in various respects, especially because of drought, which becomes more unpredictable in the face of climate changes. To cope with such vulnerability, semi-intensive farming using drip irrigation is implemented as an appropriate technology with the goal of promoting a more sustainable alternative to the existing livelihoods. The implementation was started in 2016 with a pilot system at the university field laboratory in Kupang in which various designs of installation were tested. The modified system consisting of an uplifted water reservoir and solar-powered pump was tested in Papela, the District of Rote-Ndao, in 2017 to convince fishermen who had been involved in illegal fishing in Australia-Indonesia transboundary waters, to adopt small-scale farming as a more sustainable alternative to their existing livelihoods. The system was again tested in a larger coverage in Oesena, the District of Kupang, in 2018 to convince slash-and-burn cultivators to adopt an environmentally friendlier cultivation system. From the implementation of the modified system in both sites, the participating fishermen in Papela were able to manage the system under tight water supply to grow chili pepper, tomatoes, and watermelon and the slash-and-burn cultivators in Oesena to grow chili pepper in a more efficient water use than water use in a conventional irrigation system. The gross margin obtained from growing chili pepper, tomatoes, and watermelon in Papela and from growing chili pepper in Oesena showed that small-scale farming using drip irrigation system was a promising alternative to local people in generating cash income to support their livelihoods. However, before promoting this appropriate technology as a more sustainable alternative to the existing livelihoods elsewhere in the region, better understanding on social-related contexts of the implementation is needed.Keywords: archipelagic drylands, drip irrigation system, East Nusa Tenggara, sustainable livelihoods
Procedia PDF Downloads 115402 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 83401 Assessing Socio-economic Impacts of Arsenic and Iron Contamination in Groundwater: Feasibility of Rainwater Harvesting in Amdanga Block, North 24 Parganas, West Bengal, India
Authors: Rajkumar Ghosh
Abstract:
The present study focuses on conducting a socio-economic assessment of groundwater contamination by arsenic and iron and explores the feasibility of rainwater harvesting (RWH) as an alternative water source in the Amdanga Block of North 24 Parganas, West Bengal, India. The region is plagued by severe groundwater contamination, primarily due to excessive concentrations of arsenic and iron, which pose significant health risks to the local population. The study utilizes a mixed-methods approach, combining quantitative analysis of water samples collected from different locations within the Amdanga Block and socio-economic surveys conducted among the affected communities. The results reveal alarmingly high levels of arsenic and iron contamination in the groundwater, surpassing the World Health Organization (WHO) and Indian government's permissible limits. This contamination significantly impacts the health and well-being of the local population, leading to a range of health issues such as skin The water samples are analyzed for arsenic and iron levels, while the surveys gather data on water usage patterns, health conditions, and socio-economic factors. lesions, respiratory disorders, and gastrointestinal problems. Furthermore, the socio-economic assessment highlights the vulnerability of the affected communities due to limited access to safe drinking water. The findings reveal the adverse socio-economic implications, including increased medical expenditures, reduced productivity, and compromised educational opportunities. To address these challenges, the study explores the feasibility of rainwater harvesting as an alternative source of clean water. RWH systems have the potential to mitigate groundwater contamination by providing a sustainable and independent water supply. The assessment includes evaluating the rainwater availability, analyzing the infrastructure requirements, and estimating the potential benefits and challenges associated with RWH implementation in the study area. The findings of this study contribute to a comprehensive understanding of the socio-economic impact of groundwater contamination by arsenic and iron, emphasizing the urgency to address this critical issue in the Amdanga Block. The feasibility assessment of rainwater harvesting serves as a practical solution to ensure a safe and sustainable water supply, reducing the dependency on contaminated groundwater sources. The study's results can inform policymakers, researchers, and local stakeholders in implementing effective mitigation measures and promoting the adoption of rainwater harvesting as a viable alternative in similar arsenic and iron-contaminated regions.Keywords: contamination, rainwater harvesting, groundwater, sustainable water supply
Procedia PDF Downloads 100400 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 139