Search results for: steel bridge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2453

Search results for: steel bridge

623 Developing Digital Twins of Steel Hull Processes

Authors: V. Ložar, N. Hadžić, T. Opetuk, R. Keser

Abstract:

The development of digital twins strongly depends on efficient algorithms and their capability to mirror real-life processes. Nowadays, such efforts are required to establish factories of the future faced with new demands of custom-made production. The ship hull processes face these challenges too. Therefore, it is important to implement design and evaluation approaches based on production system engineering. In this study, the recently developed finite state method is employed to describe the stell hull process as a platform for the implementation of digital twinning technology. The application is justified by comparing the finite state method with the analytical approach. This method is employed to rebuild a model of a real shipyard ship hull process using a combination of serial and splitting lines. The key performance indicators such as the production rate, work in process, probability of starvation, and blockade are calculated and compared to the corresponding results obtained through a simulation approach using the software tool Enterprise dynamics. This study confirms that the finite state method is a suitable tool for digital twinning applications. The conclusion highlights the advantages and disadvantages of methods employed in this context.

Keywords: digital twin, finite state method, production system engineering, shipyard

Procedia PDF Downloads 86
622 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis

Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi

Abstract:

Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structure-borne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using on-board are presented. By conducting a statistical energy analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The subsequent optimization design of damping treatment in the offshore platform can be made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.

Keywords: statistical energy analysis, damping treatment, noise control, offshore platform

Procedia PDF Downloads 543
621 The Effect of Vertical Shear-link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems

Authors: Mohammad Reza Baradaran, Farhad Hamzezarghani, Mehdi Rastegari Ghiri, Zahra Mirsanjari

Abstract:

Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. One of the most effective, yet simple passive control methods is the use of vertical shear-links (VSL) in systems with eccentric bracing. In fact, vertical shear-links dissipate the earthquake energy and act like a ductile fuse. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.

Keywords: vertical shear-link, passive control, cyclic analysis, energy dissipation, honeycomb beam

Procedia PDF Downloads 482
620 The Austenite Role in Duplex Stainless Steel Performance

Authors: Farej Ahmed Emhmmed Alhegagi

Abstract:

Duplex stainless steels are attractive material for apparatus working with sea water, petroleum, refineries, chemical plants,vessels, and pipes operating at high temperatures and/or pressures. The role of austenite phase in duplex stainless steels performance was investigated. Zeron 100, stainless steels with 50/50 ferrite / austenite %, specimens were tested for strength, toughness, embrittlement susceptibility, and assisted environmental cracking (AEC) resistance. Specimens were heat treated at 475°C for different times and loaded to well- selected values of load. The load values were chosen to be within the range of higher / lower than the expected toughness. Sodium chloride solution 3.5wt% environment with polarity of -900mV / SCE was used to investigate the material susceptibility to (AEC). Results showed important effect of austenite on specimens overall mechanical properties. Strength was affected by the ductile nature of austenite phase leading to plastic deformation accommodated by austenite slip system. Austenite embrittlement, either by decomposition or nucleation and growth process, was not observed to take place during specimens heat treatment. Cracking due to (AEC) took place in the ferrite grains and avoided the austenite phase. Specimens showed the austenite to act as a crack arrestor during (AEC) of duplex stainless steels.

Keywords: austenite phase, mechanical properties, embrittlement susceptibility, duplex stainless steels

Procedia PDF Downloads 346
619 A New Developed Formula to Determine the Shear Buckling Stress in Welded Aluminum Plate Girders

Authors: Badr Alsulami, Ahmed S. Elamary

Abstract:

This paper summarizes and presents main results of an in-depth numerical analysis dealing with the shear buckling resistance of aluminum plate girders. The studies conducted have permitted the development of a simple design expression to determine the critical shear buckling stress in aluminum web panels. This expression takes into account the effects of reduction of strength in aluminum alloys due to the welding process. Ultimate shear resistance (USR) of plate girders can be obtained theoretically using Cardiff theory or Hӧglund’s theory. USR of aluminum alloy plate girders predicted theoretically using BS8118 appear inconsistent when compared with test data. Theoretical predictions based on Hӧglund’s theory, are more realistic. Cardiff theory proposed to predict the USR of steel plate girders only. Welded aluminum alloy plate girders studied experimentally by others; the USR resulted from tests are reviewed. Comparison between the test results with the values obtained from Hӧglund’s theory, BS8118 design method, and Cardiff theory performed theoretically. Finally, a new equation based on Cardiff tension-field theory proposed to predict theoretically the USR of aluminum plate girders.

Keywords: shear resistance, aluminum, Cardiff theory, Hӧglund's theory, plate girder

Procedia PDF Downloads 414
618 Teaching English for Specific Purposes to Business Students through Social Media

Authors: Candela Contero Urgal

Abstract:

Using realia to teach English for Specific Purposes (ESP) is a must, as it is thought to be designed to meet the students’ real needs in their professional life. Teachers are then expected to offer authentic materials and set students in authentic contexts where their learning outcomes can be highly meaningful. One way of engaging students is using social networks as a way to bridge the gap between their everyday life and their ESP learning outcomes. It is in ESP, particularly in Business English teaching, that our study focuses, as the ongoing process of digitalization is leading firms to use social media to communicate with potential clients. The present paper is aimed at carrying out a case study in which different digital tools are employed as a way to offer a collection of formats businesses are currently using so as to internationalize and advertise their products and services. A secondary objective of our study will then be to progress on the development of multidisciplinary competencies students are to acquire during their degree. A two-phased study will be presented. The first phase will cover the analysis of course tasks accomplished by undergraduate students at the University of Cadiz (Spain) in their third year of the Degree in Business Management and Administration by comparing the results obtained during the years 2019 to 2021. The second part of our study will present a survey conducted to these students in 2021 and 2022 so as to verify their interest in learning new ways to digitalize as well as internationalize their future businesses. Findings will confirm students’ interest in working with updated realia in their Business English lessons, as a consequence of their strong belief in the necessity to have authentic contexts and didactic resources. Despite the limitations social media can have as a means to teach business English, students will still find it highly beneficial since it will foster their familiarisation with the digital tools they will need to use when they get to the labour market.

Keywords: English for specific purposes, business English, internationalization of higher education, foreign language teaching

Procedia PDF Downloads 99
617 Constitutional Identity: The Connection between National Constitutions and EU Law

Authors: Norbert Tribl

Abstract:

European contemporary scientific public opinion considers the concept of constitutional identity as a highlighted issue. Some scholars interpret the matter as the manifestation of a conflict of Europe. Nevertheless, constitutional identity is a bridge between the Member States and the EU rather than a river that will wash away the achievements of the integration. In accordance with the opinion of the author, the main problem of constitutional identity in Europe is the undetermined nature: the exact concept of constitutional identity has not been defined until now. However, this should be the first step to understand and use identity as a legal institution. Having regard to this undetermined nature, the legal-theoretical examination of constitutional identity is the main purpose of this study. The concept of constitutional identity appears in the Anglo-Saxon legal systems by a different approach than in the supranational system of European Integration. While the interpretation of legal institutions in conformity with the constitution is understood under it, the European concept is applied when possible conflicts arise between the legal system of the European supranational space and certain provisions of the national constitutions of the member states. The European concept of constitutional identity intends to offer input in determining the nature of the relationship between the constitutional provisions of the member states and the legal acts of the EU integration. In the EU system of multilevel constitutionalism, a long-standing central debate on integration surrounds the conflict between EU legal acts and the constitutional provisions of the member states. In spite of the fact that the Court of Justice of the European Union stated in Costa v. E.N.E.L. that the member states cannot refer to the provisions of their respective national constitutions against the integration. Based on the experience of more than 50 years since the above decision, and also in light of the Treaty of Lisbon, we now can clearly see that EU law has itself identified an obligation for the EU to protect the fundamental constitutional features of the Member States under Article 4 (2) of Treaty on European Union, by respecting the national identities of member states. In other words, the European concept intends to offer input for the determination of the nature of the relationship between the constitutional provisions of the member states and the legal acts of the EU integration.

Keywords: constitutional identity, EU law, European Integration, supranationalism

Procedia PDF Downloads 138
616 Evaluation of High Temperature Wear Performance of as Cladded and Tig Re-Melting Stellite 6 Cladded Overlay on Aisi-304L Using SMAW Process

Authors: Manjit Singha, Sandeep Singh Sandhu, A. S. Shahi

Abstract:

Stellite 6 is cobalt based superalloy used for protective coatings. It is used to improve the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This paper reports the high temperature wear analysis of satellite 6 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiment was carried out by varying current and electrode manipulation techniques to optimize the dilution and hardness. 80 Amp current and weaving technique was found to be the optimum set of parameters for overlaying which were further used for multipass multilayer cladding on two plates of AISI 304 L substrate. On the first plate, seven layers seven passes of stellite 6 was overlaid which was used in as cladded form and the second plate was overlaid with five layers five passes of satellite 6 with further TIG remelting. The wear performance was examined for normal temperature environmental condition and harsh temperature environmental condition. The satellite 6 coating with TIG remelting was found to be better in both the conditions even with lesser metal deposition due to its finer grain structure.

Keywords: surfacing, stellite 6, dilution, overlay, SMAW, high-temperature frictional wear, micro-structure, micro-hardness

Procedia PDF Downloads 284
615 MARTI and MRSD: Newly Developed Isolation-Damping Devices with Adaptive Hardening for Seismic Protection of Structures

Authors: Murast Dicleli, Ali SalemMilani

Abstract:

In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MRSD) is a patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable-via-design post-elastic stiffness. The mentioned property is a result of MRSD’s kinematic configuration which produces this geometric hardening, rather than being a secondary large-displacement effect. Additionally, the new system is capable of reaching high force and displacement capacities, shows high levels of damping, and very stable cyclic response. The device has gone through many stages of design refinement, multiple prototype verification tests and development of design guide-lines and computer codes to facilitate its implementation in practice. Practicality of the new device, as offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification test programs.

Keywords: seismic, isolation, damper, adaptive stiffness

Procedia PDF Downloads 448
614 Evaluating the Fire Resistance of Offshore Tubular K-Joints Subjected to Balanced Axial Loads

Authors: Neda Azari Dodaran, Hamid Ahmadi

Abstract:

Results of 405 finite element (FE) analyses were used in the present research to study the effect of the joint geometry on the ultimate strength and initial stiffness of tubular K-joints subjected to axial loading at fire-induced elevated temperatures. The FE models were validated against the data available from experimental tests. Structural behavior under different temperatures (200ºC, 400ºC, 500ºC, and 700ºC) was investigated and compared to the behavior at ambient temperature (20ºC). A parametric study was conducted to investigate the effect of dimensionless geometrical parameters (β, γ, θ, and τ) on the ultimate strength and initial stiffness. Afterwards, ultimate strength data extracted from the FE analyses were compared with the values calculated from the equations proposed by available design codes in which the ultimate strength of the joint at elevated temperatures is obtained by replacing the yield stress of the steel at ambient temperature with the corresponding value at elevated temperature. It was indicated that this method may not have acceptable accuracy for K-joints under axial loading. Hence, a design formula was developed, through nonlinear regression analyses, to determine the ultimate strength of K-joints subjected to balanced axial loads at elevated temperatures.

Keywords: axial loading, elevated temperature, parametric equation, static strength, tubular K-joint

Procedia PDF Downloads 141
613 Speed Control of DC Motor Using Optimization Techniques Based PID Controller

Authors: Santosh Kumar Suman, Vinod Kumar Giri

Abstract:

The goal of this paper is to outline a speed controller of a DC motor by choice of a PID parameters utilizing genetic algorithms (GAs), the DC motor is extensively utilized as a part of numerous applications such as steel plants, electric trains, cranes and a great deal more. DC motor could be represented by a nonlinear model when nonlinearities such as attractive dissemination are considered. To provide effective control, nonlinearities and uncertainties in the model must be taken into account in the control design. The DC motor is considered as third order system. Objective of this paper three type of tuning techniques for PID parameter. In this paper, an independently energized DC motor utilizing MATLAB displaying, has been outlined whose velocity might be examined utilizing the Proportional, Integral, Derivative (KP, KI , KD) addition of the PID controller. Since, established controllers PID are neglecting to control the drive when weight parameters be likewise changed. The principle point of this paper is to dissect the execution of optimization techniques viz. The Genetic Algorithm (GA) for improve PID controllers parameters for velocity control of DC motor and list their points of interest over the traditional tuning strategies. The outcomes got from GA calculations were contrasted and that got from traditional technique. It was found that the optimization techniques beat customary tuning practices of ordinary PID controllers.

Keywords: DC motor, PID controller, optimization techniques, genetic algorithm (GA), objective function, IAE

Procedia PDF Downloads 411
612 Influence of Hydrophobic Surface on Flow Past Square Cylinder

Authors: S. Ajith Kumar, Vaisakh S. Rajan

Abstract:

In external flows, vortex shedding behind the bluff bodies causes to experience unsteady loads on a large number of engineering structures, resulting in structural failure. Vortex shedding can even turn out to be disastrous like the Tacoma Bridge failure incident. We need to have control over vortex shedding to get rid of this untoward condition by reducing the unsteady forces acting on the bluff body. In circular cylinders, hydrophobic surface in an otherwise no-slip surface is found to be delaying separation and minimizes the effects of vortex shedding drastically. Flow over square cylinder stands different from this behavior as separation can takes place from either of the two corner separation points (front or rear). An attempt is made in this study to numerically elucidate the effect of hydrophobic surface in flow over a square cylinder. A 2D numerical simulation has been done to understand the effects of the slip surface on the flow past square cylinder. The details of the numerical algorithm will be presented at the time of the conference. A non-dimensional parameter, Knudsen number is defined to quantify the slip on the cylinder surface based on Maxwell’s equation. The slip surface condition of the wall affects the vorticity distribution around the cylinder and the flow separation. In the numerical analysis, we observed that the hydrophobic surface enhances the shedding frequency and damps down the amplitude of oscillations of the square cylinder. We also found that the slip has a negative effect on aerodynamic force coefficients such as the coefficient of lift (CL), coefficient of drag (CD) etc. and hence replacing the no slip surface by a hydrophobic surface can be treated as an effective drag reduction strategy and the introduction of hydrophobic surface could be utilized for reducing the vortex induced vibrations (VIV) and is found as an effective method in controlling VIV thereby controlling the structural failures.

Keywords: drag reduction, flow past square cylinder, flow control, hydrophobic surfaces, vortex shedding

Procedia PDF Downloads 365
611 The Prevalence and Associated Factors of Frailty and Its Relationship with Falls in Patients with Schizophrenia

Authors: Bo-Jian Wu, Si-Heng Wu

Abstract:

Objectives: Frailty is a condition of a person who has chronic health problems complicated by a loss of physiological reserve and deteriorating functional abilities. The frailty syndrome was defined by Fried and colleagues, i.e., weight loss, fatigue, decreased grip strength, slow gait speed, and low physical activity. However, to our best knowledge, there have been rare studies exploring the prevalence of frailty and its association with falls in patients with schizophrenia. Methods: A total of 559 hospitalized patients were recruited from a public psychiatric hospital in 2013. The majority of the subjects were males (361, 64.6%). The average age was 53.5 years. All patients received the assessment of frailty status defined by Fried and colleagues. The status of a fall within one year after the assessment of frailty, clinical and demographic data was collected from medical records. Logistic regression was used to calculate the odds ratio of associated factors. Results : A total of 9.2% of the participants met the criteria of frailty. The percentage of patients having a fall was 7.2%. Age were significantly associated with frailty (odds ratio = 1.057, 95% confidence interval = 1.025-1.091); however, sex was not associated with frailty (p = 0.17). After adjustment for age and sex, frailty status was associated with a fall (odds ratio = 3.62, 95% confidence interval = 1.58-8.28). Concerning the components of frailty, decreased grip strength (odds ratio = 2.44, 95% confidence interval = 1.16-5.14), slow gait speed (odds ratio = 2.82, 95% confidence interval = 1.21-6.53), and low physical activity (odds ratio = 2.64, 95% confidence interval = 1.21-5.78) were found to be associated with a fall. Conclusions: Our findings suggest the prevalence of frailty was about 10% in hospitalized patients with chronic patients with schizophrenia, and frailty status was significant with a fall in this group. By using the status of frailty, it may be beneficial to potential target candidates having fallen in the future as early as possible. The effective intervention of prevention of further falls may be given in advance. Our results bridge this gap and open a potential avenue for the prevention of falls in patients with schizophrenia. Frailty is certainly an important factor for maintaining wellbeing among these patients.

Keywords: fall, frailty, schizophrenia, Taiwan

Procedia PDF Downloads 147
610 Seismic Protection of Automated Stocker System by Customized Viscous Fluid Dampers

Authors: Y. P. Wang, J. K. Chen, C. H. Lee, G. H. Huang, M. C. Wang, S. W. Chen, Y. T. Kuan, H. C. Lin, C. Y. Huang, W. H. Liang, W. C. Lin, H. C. Yu

Abstract:

The hi-tech industries in the Science Park at southern Taiwan were heavily damaged by a strong earthquake early 2016. The financial loss in this event was attributed primarily to the automated stocker system handling fully processed products, and recovery of the automated stocker system from the aftermath proved to contribute major lead time. Therefore, development of effective means for protection of stockers against earthquakes has become the highest priority for risk minimization and business continuity. This study proposes to mitigate the seismic response of the stockers by introducing viscous fluid dampers in between the ceiling and the top of the stockers. The stocker is expected to vibrate less violently with a passive control force on top. Linear damper is considered in this application with an optimal damping coefficient determined from a preliminary parametric study. The damper is small in size in comparison with those adopted for building or bridge applications. Component test of the dampers has been carried out to make sure they meet the design requirement. Shake table tests have been further conducted to verify the proposed scheme under realistic earthquake conditions. Encouraging results have been achieved by effectively reducing the seismic responses of up to 60% and preventing the FOUPs from falling off the shelves that would otherwise be the case if left unprotected. Effectiveness of adopting a viscous fluid damper for seismic control of the stocker on top against the ceiling has been confirmed. This technique has been adopted by Macronix International Co., LTD for seismic retrofit of existing stockers. Demonstrative projects on the application of the proposed technique are planned underway for other companies in the display industry as well.

Keywords: hi-tech industries, seismic protection, automated stocker system, viscous fluid damper

Procedia PDF Downloads 344
609 Analysis of Buddhist Rock Carvings in Diamer Basha Dam Reservoir Area, Gilgit-Baltistan, Pakistan

Authors: Abdul Ghani Khan

Abstract:

This paper focuses on the Buddhist rock carvings in the Diamer-Basha reservoir area, Gilgit-Baltistan, which is perhaps the largest rock art province of the world. The study region has thousands of rock carvings, particularly of the stupa carvings, engraved by artists, devotees or pilgrims, merchants have left their marks in the landscape or for the propagation of Buddhism. The Pak-German Archaeological Mission prepared, documented, and published the extensive catalogues of these carvings. Though, to date, very little systematic or statistically driven analysis was undertaken for in-depth understandings of the Buddhist rock carving tradition of the study region. This paper had made an attempt to examine stupa carvings and their constituent parts from the five selected sites, namely Oshibat, Shing Nala, Gichi Nala, Dadam Das, and Chilas Bridge. The statistical analyses and classification of the stupa carvings and their chronological contexts were carried out with the help of modern scientific tools such as STATA, FileMaker Pro, and MapSource softwares. The study had found that the tradition of stupa carvings on the surfaces of the rocks at the five selected sites continued for around 900 years, from the 1st century BCE to 8th century CE. There is a variation within the chronological settings of each of selected sites, possibly impacted by their utilization within particular landscapes, such as political (for example, change in political administrations or warfare) landscapes and geographical (for example, shifting of routes). The longer existence of the stupa carvings' tradition at these specific locations also indicates their central position on the trade and communication routes, and these were possibly also linked with religious ideologies within their particular times. The analyses of the different architectural elements of stupa carvings in the study area show that this tradition had structural similarities and differences in temporal and spatial contexts.

Keywords: rock carvings, stupa, stupa carvings, Buddhism, Pak-German archaeological mission

Procedia PDF Downloads 202
608 Research on the Two-Way Sound Absorption Performance of Multilayer Material

Authors: Yang Song, Xiaojun Qiu

Abstract:

Multilayer materials are applied to much acoustics area. Multilayer porous materials are dominant in room absorber. Multilayer viscoelastic materials are the basic parts in underwater absorption coating. In most cases, the one-way sound absorption performance of multilayer material is concentrated according to the sound source site. But the two-way sound absorption performance is also necessary to be known in some special cases which sound is produced in both sides of the material and the both sides especially might contact with different media. In this article, this kind of case was research. The multilayer material was composed of viscoelastic layer and steel plate and the porous layer. The two sides of multilayer material contact with water and air, respectively. A theory model was given to describe the sound propagation and impedance in multilayer absorption material. The two-way sound absorption properties of several multilayer materials were calculated whose two sides all contacted with different media. The calculated results showed that the difference of two-way sound absorption coefficients is obvious. The frequency, the relation of layers thickness and parameters of multilayer materials all have an influence on the two-way sound absorption coefficients. But the degrees of influence are varied. All these simulation results were analyzed in the article. It was obtained that two-way sound absorption at different frequencies can be promoted by optimizing the configuration parameters. This work will improve the performance of underwater sound absorption coating which can absorb incident sound from the water and reduce the noise radiation from inside space.

Keywords: different media, multilayer material, sound absorption coating, two-way sound absorption

Procedia PDF Downloads 527
607 Strategy for Energy Industry and Oil Complex of Russia

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Russia was one of the world’s leading mineral- producing countries. In 2012, Russia was ranked among the world’s leading producers or was a leading regional producer of such mineral commodities as aluminum, arsenic, asbestos, bauxite, boron, cadmium, cement, coal, cobalt, copper, diamond, fluorspar, gold, iron ore, lime, magnesium compounds and metals, mica (flake, scrap, and sheet), natural gas, nickel, nitrogen, oil shale, palladium, peat, petroleum, phosphate, pig iron, platinum, potash, rhenium, silicon, steel, sulfur, titanium sponge, tungsten, and vanadium. Russia has large reserves of a variety of mineral resources and undoubtedly will continue to be one of the world’s leading mineral producers. Although the country’s economy is expected to grow in 2012, some problems are likely to remain. In 2011, the Russian economy returned to economic growth after the significant decline in 2010. According to some analysts, however, the recovery of 2011 did not appear sufficiently vigorous to carry the country’s strong economic growth into the next decade. Even in the sectors of the economy where the country is among the world leaders (ferrous metals, gas, petroleum), Russian industry has obsolete plants and equipment, a slow rate of innovation, and low labor productivity.

Keywords: Russia, energy resources, economic growth, strategy, oil complex

Procedia PDF Downloads 592
606 Exploring Partnership Brokering Science in Social Entrepreneurship: A Literature Review

Authors: Lani Fraizer

Abstract:

Increasingly, individuals from diverse professional and academic backgrounds are making a conscious choice to pursue careers related to social change; a sophisticated understanding of social entrepreneur education is becoming ever more important. Social entrepreneurs are impassioned change makers who characteristically combine leadership and entrepreneurial spirits to problem solve social ills affecting our planet. Generating partnership opportunities and nurturing them is an important part of their change-making work. Faced with the complexities of these partnerships, social entrepreneurs and people who work with them need to be well prepared to tackle new and unforeseen challenges faced. As partnerships become even more critical to advance initiatives at scale, for example, understanding the partnership brokering role is even more important for educators who prepare these leaders to establish and sustain multi-stakeholder partnerships. This paper aims to provide practitioners in social entrepreneurship with enhanced knowledge of partnership brokering and identify directions for future research. A literature review search from January 1977 to May 2015 was conducted using the combined keywords ‘partnership brokering’ and ‘social entrepreneurship’ via WorldCat, one of the largest database catalogs in the world with collections of more than 10,000 worldwide. This query focused on literature written in the English language and analyzed solely the role of partnership brokering in social entrepreneurship. The synthesis of the literature review found three main themes emerging: the need for more professional awareness of partnership brokering and its value add in systems change-making work, the need for more knowledge on developing partnership brokering competencies, and the need for more applied research in the area of partnership brokering and how it is practiced by practitioners in social entrepreneurship. The results of the review serve to emphasize and reiterate the importance of partnership brokers in social entrepreneurship work, and act as a reminder of the need for further scholarly research in this area to bridge the gap between practice and research.

Keywords: partnership brokering, leadership, social entrepreneurship, systems changemaking

Procedia PDF Downloads 335
605 Evaluation and Comparison of Seismic Performance of Structural Trusses under Cyclic Loading with Finite Element Method

Authors: Masoud Mahdavi

Abstract:

The structure is made using different members and combining them with each other. These members are basically based on technical and engineering principles and are combined in different ways and have their own unique effects on the building. Trusses are one of the most common and important members of the structure, accounting for a large percentage of the power transmission structure in the building. Different types of trusses are based on structural needs and evaluating and making complete comparisons between them is one of the most important engineering analyses. In the present study, four types of trusses have been studied; 1) Hawe truss, 2) Pratt truss, 3) k truss, and 4) warren truss, under cyclic loading for 80 seconds. The trusses are modeled in 3d using st37 steel. The results showed that Hawe trusses had higher values ​​than all other trusses (k, Pratt and Warren) in all the studied indicators. Indicators examined in the study include; 1) von Mises stresses, 2) displacement, 3) support force, 4) velocity, 5) acceleration, 6) capacity (hysteresis curve) and 7) energy diagram. Pratt truss in indicators; Mises stress, displacement, energy have the least amount compared to other trusses. K truss in indicators; support force, speed and acceleration are the lowest compared to other trusses.

Keywords: hawe truss, pratt truss, K truss, warren truss, cyclic loading, finite element method

Procedia PDF Downloads 134
604 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact by Using Particle Method

Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh

Abstract:

The slamming impact problem has a very important engineering background. For seaplane landing, recycling for the satellite re-entry capsule, and the impact load of the bow in the adverse sea conditions, the slamming problem always plays the important role. Due to its strong nonlinear effect, however, it seems to be not easy to obtain the accurate simulation results. Combined with the strong interaction between the fluid field and the elastic structure, the difficulty for the simulation leads to a new level for challenging. This paper presents a fully Lagrangian coupled solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with two different materials such as aluminum and steel on water entry. The present simulation results are compared with analytical solution derived using the hydrodynamic Wagner model and linear theory by Wan.

Keywords: fluid-structure interaction, moving particle semi-implicit (MPS) method, elastic structure, incompressible flow, wedge slamming impact

Procedia PDF Downloads 586
603 Reduction Behavior of Some Low-Grade Iron Ores for Application in Blast Furnace

Authors: Heba Al-Kelesh

Abstract:

Day after day, high-grade iron ores are consumed. Because of the strong global demand for iron and steel, it has necessitated the utilization of various low-grade iron ores, which are not suitable for direct exploitation in the iron industry. The low-grade ores cannot be dressed using traditional mineral processing methods because of complicated mineral compositions. The present work is aimed to investigate the reducibility of some Egyptian iron ores and concentrates by conditions emulate different blast furnace areas. Representative specimens are collected from El-Gedida–Baharia oasis, Eastern South Aswan, and Eastern desert-wadi Kareem (EDC). Some mineralogical and morphological characterizations are executed. The reactivity arrangement of green samples is Baharia>Aswan>EDC. The presence of magnetite decreased reactivity of EDC. The reducibility of the Aswan sample is lower than Baharia due to the presence of agglomerated metallic grain surrounded by semi-melted phases. Specimens are annealed at 1000ᵒC for 3 hours. After firing, the reducibility of Aswan becomes the lowest due to the formation of fayalite and calcium phosphate phases. The relative attitude for green and fired samples reduced at different conditions are studied. For thermal and top areas, the reactivity of fired samples is greater than green ones, which were confirmed by morphological examinations.

Keywords: reducibility, low grade, iron industry, blast furnace

Procedia PDF Downloads 114
602 Evaluation of Mechanical Properties of Welds Fabricated at a Close Proximity on Offshore Structures

Authors: T. Nakkeran, C. Dhamodharan, Win Myint Soe , Ramasamy Deverajan, M. Ganesh Babu

Abstract:

This manuscript presents the results of an experimental investigation performed to study the material and mechanical properties of two weld joints fabricated within close proximity. The experiment was designed using welded S355 D Z35 with distances between two parallel adjacent weld toes at 8 mm. These distances were less than the distance that has normally been recommended in standards, codes, and specifications. The main idea of the analysis is to determine any significant effects when welding the joints with the close proximity of 8mm using the SAW welding process of the one joint with high heat put and one joint welded with the FCAW welding process and evaluating the destructing and nondestructive testing between the welded joints. Further, we have evaluated the joints with Mechanical Testing for evaluating by performing Tensile test, bend testing, Macrostructure, Microstructure, Hardness test, and Impact testing. After evaluating the final outcome of the result, no significant changes were observed for welding the close proximity of weld of 8mm distance between the joints as compared to the specification minimum distance between the weldments of any design should be 50mm.

Keywords: S355 carbon steel, weld proximity, SAW process, FCAW process, heat input, bend test, tensile test, hardness test, impact test, macro and microscopic examinations

Procedia PDF Downloads 89
601 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: arc spray, coating, composite, erosion

Procedia PDF Downloads 440
600 "Empowering Minds and Unleashing Curiosity: DIY Biotechnology for High School Students in the Age of Distance Learning"

Authors: Victor Hugo Sanchez Rodriguez

Abstract:

Amidst the challenges posed by pandemic-induced lockdowns, traditional educational models have been disrupted. To bridge the distance learning gap, our project introduces an innovative initiative focused on teaching high school students basic biotechnology techniques. We aim to empower young minds and foster curiosity by encouraging students to create their own DIY biotechnology laboratories using easily accessible materials found at home. This abstract outlines the key aspects of our project, highlighting its importance, methodology, and evaluation approach.In response to the pandemic's limitations, our project targets the delivery of biotechnology education at a distance. By engaging students in hands-on experiments, we seek to provide an enriching learning experience despite the constraints of remote learning. The DIY approach allows students to explore scientific concepts in a practical and enjoyable manner, nurturing their interest in biotechnology and molecular biology. Originally designed to assess professional-level research programs, we have adapted the URSSA to suit the context of biotechnology and molecular biology synthesis for high school students. By applying this tool before and after the experimental sessions, we aim to gauge the program's impact on students' learning experiences and skill development. Our project's significance lies not only in its novel approach to teaching biotechnology but also in its adaptability to the current global crisis. By providing students with a stimulating and interactive learning environment, we hope to inspire educators and institutions to embrace creative solutions during challenging times. Moreover, the insights gained from our evaluation will inform future efforts to enhance distance learning programs and promote accessible science education.

Keywords: DIY biotechnology, high school students, distance learning, pandemic education, undergraduate research student self-assessment (URSSA)

Procedia PDF Downloads 60
599 Experimental and Analytical Study on the Bending Behavior of Concrete-GFRP Hybrid Beams

Authors: Alaa Koaik, Bruno Jurkiewiez, Sylvain Bel

Abstract:

Recently, the use of GFRP pultruded profiles increased in the domain of civil engineering especially in the construction of sandwiched slabs and footbridges. However, under heavy loads, the risk of using these profiles increases due to their high deformability and instability as a result of their weak stiffness and orthotropic nature. A practical solution proposes the assembly of these profiles with concrete slabs to create a stiffer hybrid element to support higher loads. The connection of these two elements is established either by traditional means of steel studs (bolting in our case) or bonding technique. These two techniques have their advantages and disadvantages regarding the mechanical behavior and in-situ implementation. This paper presents experimental results of interface characterization and bending behavior of two hybrid beams, PB7 and PB8, designed and constructed using both connection techniques. The results obtained are exploited to design and build a hybrid footbridge BPBP1 which is tested within service limits (elastic domain). Analytical methods are also developed to analyze the behavior of these structures in the elastic range and the ultimate phase. Comparisons show acceptable differences mainly due to the sensitivity of the GFRP moduli as well as the non-linearity of concrete elements.

Keywords: analytical model, concrete, flexural behavior, GFRP pultruded profile, hybrid structure, interconnection slip, push-out

Procedia PDF Downloads 220
598 Flexural Fatigue Performance of Self-Compacting Fibre Reinforced Concrete

Authors: Surinder Pal Singh, Sanjay Goel

Abstract:

The paper presents results of an investigation conducted to study the flexural fatigue characteristics of Self Compacting Concrete (SCC) and Self Compacting Fibre Reinforced Concrete (SCFRC). In total 360 flexural fatigue tests and 270 static flexural strength tests were conducted on SCC and SCFRC specimens to obtain the fatigue test data. The variability in the distribution of fatigue life of SCC and SCFRC have been analyzed and compared with that of NVC and NVFRC containing steel fibres of comparable size and shape. The experimental coefficients of fatigue equations have been estimated to represent relationship between stress level (S) and fatigue life (N) for SCC and SCFRC containing different fibre volume fractions. The probability of failure (Pf) has been incorporated in S-N relationships to obtain families of S-N-Pf relationships. A good agreement between the predicted curves and those obtained from the test data has been observed. The fatigue performance of SCC and SCFRC has been evaluated in terms of two-million cycles fatigue strength/endurance limit. The theoretic fatigue lives were also estimated using single-log fatigue equation for 10% probability of failure to estimate the enhanced extent of theoretic fatigue lives of SCFRC with reference to SCC and NVC. The reduction in variability in the fatigue life, increased endurance limit and increased theoretiac fatigue lives demonstrates an overall better fatigue performance for SCC and SCFRC.

Keywords: fatigue life, fibre, probability of failure, self-compacting concrete

Procedia PDF Downloads 344
597 Analysis of Hard Turning Process of AISI D3-Thermal Aspects

Authors: B. Varaprasad, C. Srinivasa Rao

Abstract:

In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of  hard turning by using commercial software DEFORM 3D has been compared to experimental results of  stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.

Keywords: hard turning, computer aided engineering, computational machining, finite element method

Procedia PDF Downloads 445
596 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response

Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul

Abstract:

The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.

Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response

Procedia PDF Downloads 658
595 Comparison between Pushover Analysis Techniques and Validation of the Simplified Modal Pushover Analysis

Authors: N. F. Hanna, A. M. Haridy

Abstract:

One of the main drawbacks of the Modal Pushover Analysis (MPA) is the need to perform nonlinear time-history analysis, which complicates the analysis method and time. A simplified version of the MPA has been proposed based on the concept of the inelastic deformation ratio. Furthermore, the effect of the higher modes of vibration is considered by assuming linearly-elastic responses, which enables the use of standard elastic response spectrum analysis. In this thesis, the simplified MPA (SMPA) method is applied to determine the target global drift and the inter-story drifts of steel frame building. The effect of the higher vibration modes is considered within the framework of the SMPA. A comprehensive survey about the inelastic deformation ratio is presented. After that, a suitable expression from literature is selected for the inelastic deformation ratio and then implemented in the SMPA. The estimated seismic demands using the SMPA, such as target drift, base shear, and the inter-story drifts, are compared with the seismic responses determined by applying the standard MPA. The accuracy of the estimated seismic demands is validated by comparing with the results obtained by the nonlinear time-history analysis using real earthquake records.

Keywords: modal analysis, pushover analysis, seismic performance, target displacement

Procedia PDF Downloads 354
594 Corrosion Resistance Performance of Epoxy/Polyamidoamine Coating Due to Incorporation of Nano Aluminium Powder

Authors: Asiful Hossain Seikh, Mohammad Asif Alam, Ubair Abdus Samad, Jabair A. Mohammed, S. M. Al-Zahrani, El-Sayed M. Sherif

Abstract:

In this current investigation, aliphatic amine-cured diglycidyl ether of bisphenol-A (DGEBA) based epoxy coating was mixed with certain weight % hardener polyaminoamide (1:2) and was coated on carbon steel panels with and without 1% nano crystalline Al powder. The corrosion behavior of the coated samples were investigated by exposing them in the salt spray chamber, for 500 hours. According to ASTM-B-117, the bath was kept at 35 °C and 5% NaCl containing mist was sprayed at 1.3 bars pressure. Composition of coatings was confirmed using Fourier-transform infrared spectroscopy (FTIR). Electrochemical characterization of the coated samples was also performed using potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS) technique. All the experiments were done in 3.5% NaCl solution. The nano Al coated sample shows good corrosion resistance property compared to bare Al sample. In fact after salt spray exposure no pitting or local damage was observed for nano coated sample and the coating gloss was negligibly affected. The surface morphology of coated and corroded samples was studied using scanning electron microscopy (SEM).

Keywords: epoxy, nano aluminium, potentiodynamic polarization, salt spray, electrochemical impedence spectroscopy

Procedia PDF Downloads 152