Search results for: mathematical programming problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9143

Search results for: mathematical programming problem

7313 Feasibility of Using Bike Lanes in Conjunctions with Sidewalks for Ground Drone Applications in Last Mile Delivery for Dense Urban Areas

Authors: N. Bazyar Shourabi, K. Nyarko, C. Scott, M. Jeihnai

Abstract:

Ground drones have the potential to reduce the cost and time of making last-mile deliveries. They also have the potential to make a huge impact on human life. Despite this potential, little work has gone into developing a suitable feasibility model for ground drone delivery in dense urban areas. Today, most of the experimental ground delivery drones utilize sidewalks only, with just a few of them starting to use bike lanes, which a significant portion of some urban areas have. This study works on the feasibility of using bike lanes in conjunction with sidewalks for ground drone applications in last-mile delivery for dense urban areas. This work begins with surveying bike lanes and sidewalks within the city of Boston using Geographic Information System (GIS) software to determine the percentage of coverage currently available within the city. Then six scenarios are examined. Based on this research, a mathematical model is developed. The daily cost of delivering packages using each scenario is calculated by the mathematical model. Comparing the drone delivery scenarios with the traditional method of package delivery using trucks will provide essential information concerning the feasibility of implementing routing protocols that combine the use of sidewalks and bike lanes. The preliminary results of the model show that ground drones that can travel via sidewalks or bike lanes have the potential to significantly reduce delivery cost.

Keywords: ground drone, intelligent transportation system, last-mile delivery, sidewalk robot

Procedia PDF Downloads 144
7312 A Study of Quality Assurance and Unit Verification Methods in Safety Critical Environment

Authors: Miklos Taliga

Abstract:

In the present case study we examined the development and testing methods of systems that contain safety-critical elements in different industrial fields. Consequentially, we observed the classical object-oriented development and testing environment, as both medical technology and automobile industry approaches the development of safety critical elements that way. Subsequently, we examined model-based development. We introduce the quality parameters that define development and testing. While taking modern agile methodology (scrum) into consideration, we examined whether and to what extent the methodologies we found fit into this environment.

Keywords: safety-critical elements, quality managent, unit verification, model base testing, agile methods, scrum, metamodel, object-oriented programming, field specific modelling, sprint, user story, UML Standard

Procedia PDF Downloads 585
7311 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 158
7310 Designing Emergency Response Network for Rail Hazmat Shipments

Authors: Ali Vaezi, Jyotirmoy Dalal, Manish Verma

Abstract:

The railroad is one of the primary transportation modes for hazardous materials (hazmat) shipments in North America. Installing an emergency response network capable of providing a commensurate response is one of the primary levers to contain (or mitigate) the adverse consequences from rail hazmat incidents. To this end, we propose a two-stage stochastic program to determine the location of and equipment packages to be stockpiled at each response facility. The raw input data collected from publicly available reports were processed, fed into the proposed optimization program, and then tested on a realistic railroad network in Ontario (Canada). From the resulting analyses, we conclude that the decisions based only on empirical datasets would undermine the effectiveness of the resulting network; coverage can be improved by redistributing equipment in the network, purchasing equipment with higher containment capacity, and making use of a disutility multiplier factor.

Keywords: hazmat, rail network, stochastic programming, emergency response

Procedia PDF Downloads 182
7309 Analyzing the Impact of Migration on HIV and AIDS Incidence Cases in Malaysia

Authors: Ofosuhene O. Apenteng, Noor Azina Ismail

Abstract:

The human immunodeficiency virus (HIV) that causes acquired immune deficiency syndrome (AIDS) remains a global cause of morbidity and mortality. It has caused panic since its emergence. Relationships between migration and HIV/AIDS have become complex. In the absence of prospectively designed studies, dynamic mathematical models that take into account the migration movement which will give very useful information. We have explored the utility of mathematical models in understanding transmission dynamics of HIV and AIDS and in assessing the magnitude of how migration has impact on the disease. The model was calibrated to HIV and AIDS incidence data from Malaysia Ministry of Health from the period of 1986 to 2011 using Bayesian analysis with combination of Markov chain Monte Carlo method (MCMC) approach to estimate the model parameters. From the estimated parameters, the estimated basic reproduction number was 22.5812. The rate at which the susceptible individual moved to HIV compartment has the highest sensitivity value which is more significant as compared to the remaining parameters. Thus, the disease becomes unstable. This is a big concern and not good indicator from the public health point of view since the aim is to stabilize the epidemic at the disease-free equilibrium. However, these results suggest that the government as a policy maker should make further efforts to curb illegal activities performed by migrants. It is shown that our models reflect considerably the dynamic behavior of the HIV/AIDS epidemic in Malaysia and eventually could be used strategically for other countries.

Keywords: epidemic model, reproduction number, HIV, MCMC, parameter estimation

Procedia PDF Downloads 366
7308 Enhancing Student Learning Outcomes Using Engineering Design Process: Case Study in Physics Course

Authors: Thien Van Ngo

Abstract:

The engineering design process is a systematic approach to solving problems. It involves identifying a problem, brainstorming solutions, prototyping and testing solutions, and evaluating the results. The engineering design process can be used to teach students how to solve problems in a creative and innovative way. The research aim of this study was to investigate the effectiveness of using the engineering design process to enhance student learning outcomes in a physics course. A mixed research method was used in this study. The quantitative data were collected using a pretest-posttest control group design. The qualitative data were collected using semi-structured interviews. The sample was 150 first-year students in the Department of Mechanical Engineering Technology at Cao Thang Technical College in Vietnam in the 2022-2023 school year. The quantitative data were collected using a pretest-posttest control group design. The pretest was administered to both groups at the beginning of the study. The posttest was administered to both groups at the end of the study. The qualitative data were collected using semi-structured interviews with a sample of eight students in the experimental group. The interviews were conducted after the posttest. The quantitative data were analyzed using independent sample T-tests. The qualitative data were analyzed using thematic analysis. The quantitative data showed that students in the experimental group, who were taught using the engineering design process, had significantly higher post-test scores on physics problem-solving than students in the control group, who were taught using the conventional method. The qualitative data showed that students in the experimental group were more motivated and engaged in the learning process than students in the control group. Students in the experimental group also reported that they found the engineering design process to be a more effective way of learning physics. The findings of this study suggest that the engineering design process can be an effective way of enhancing student learning outcomes in physics courses. The engineering design process engages students in the learning process and helps them to develop problem-solving skills.

Keywords: engineering design process, problem-solving, learning outcome of physics, students’ physics competencies, deep learning

Procedia PDF Downloads 65
7307 A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm.

Keywords: distributed algorithms, apache-spark, Hadoop, flexible dynamic job shop scheduling, multi-objective optimization

Procedia PDF Downloads 354
7306 Communicative and Artistic Machines: A Survey of Models and Experiments on Artificial Agents

Authors: Artur Matuck, Guilherme F. Nobre

Abstract:

Machines can be either tool, media, or social agents. Advances in technology have been delivering machines capable of autonomous expression, both through communication and art. This paper deals with models (theoretical approach) and experiments (applied approach) related to artificial agents. On one hand it traces how social sciences' scholars have worked with topics such as text automatization, man-machine writing cooperation, and communication. On the other hand it covers how computer sciences' scholars have built communicative and artistic machines, including the programming of creativity. The aim is to present a brief survey on artificially intelligent communicators and artificially creative writers, and provide the basis to understand the meta-authorship and also to new and further man-machine co-authorship.

Keywords: artificial communication, artificial creativity, artificial writers, meta-authorship, robotic art

Procedia PDF Downloads 292
7305 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation

Authors: R. Nagarani

Abstract:

An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.

Keywords: community detection, complex network, genetic algorithm, package, refactoring

Procedia PDF Downloads 418
7304 Health Status among Government and Private Primary School Children in the Central of Thailand

Authors: Petcharat Kerdonfag, Supunnee Thrakul

Abstract:

School health services through regular screening of school students’ health status have been the main responsibility for community or school health nurses. The purposes of these retrospective study were to assess and compare health problems between government and private primary school students in the central region of Thailand. The data were collected from the school health records in October at the end of the first semester in the academic year 2018. Two thousand and fifty primary school health records from government and private primary schools were gathered to assess health problems regarding anthropometric measurements, physical examination/personal hygiene, and clinical findings for this study. Descriptive statistics and Chi-square were used to be analyzed. The results revealed that health problems of all the school students remained high magnitude. The five top ranks for prevalence rate of health problems were dental caries (36.6%), visual acuity problem (27.7%), over-nutrition (16.8%), head lice (12.8%), and under-nutrition (6.8%), respectively. However, when compared between government and private schools among five health problems; dental caries (55.0% vs 19.9%), visual acuity problem (23.1% vs 31.9%), over-nutrition (20.2% vs 13.8%), head lice (26.5% vs 0.3%), and under-nutrition (10.6% vs 3.4%) with Chi-square analysis, there were significantly different (p < .001). The problem of visual acuity seems to be more serious in private schools while other health problems tend to be more critical in government schools. The findings have suggested that parents who have children in the private primary schools should pay more attention to visual health defects whereas parents with children in the government school should pay more vigilance regards to hygiene and health behavior problems.

Keywords: community health nursing, school health service, health status, primary school children

Procedia PDF Downloads 122
7303 An Iberian Study about Location of Parking Areas for Dangerous Goods

Authors: María Dolores Caro, Eugenio M. Fedriani, Ángel F. Tenorio

Abstract:

When lorries transport dangerous goods, there exist some legal stipulations in the European Union for assuring the security of the rest of road users as well as of those goods being transported. At this respect, lorry drivers cannot park in usual parking areas, because they must use parking areas with special conditions, including permanent supervision of security personnel. Moreover, drivers are compelled to satisfy additional regulations about resting and driving times, which involve in the practical possibility of reaching the suitable parking areas under these time parameters. The “European Agreement concerning the International Carriage of Dangerous Goods by Road” (ADR) is the basic regulation on transportation of dangerous goods imposed under the recommendations of the United Nations Economic Commission for Europe. Indeed, nowadays there are no enough parking areas adapted for dangerous goods and no complete study have suggested the best locations to build new areas or to adapt others already existing to provide the areas being necessary so that lorry drivers can follow all the regulations. The goal of this paper is to show how many additional parking areas should be built in the Iberian Peninsula to allow that lorry drivers may park in such areas under their restrictions in resting and driving time. To do so, we have modeled the problem via graph theory and we have applied a new efficient algorithm which determines an optimal solution for the problem of locating new parking areas to complement those already existing in the ADR for the Iberian Peninsula. The solution can be considered minimal since the number of additional parking areas returned by the algorithm is minimal in quantity. Obviously, graph theory is a natural way to model and solve the problem here proposed because we have considered as nodes: the already-existing parking areas, the loading-and-unloading locations and the bifurcations of roads; while each edge between two nodes represents the existence of a road between both nodes (the distance between nodes is the edge's weight). Except for bifurcations, all the nodes correspond to parking areas already existing and, hence, the problem corresponds to determining the additional nodes in the graph such that there are less up to 100 km between two nodes representing parking areas. (maximal distance allowed by the European regulations).

Keywords: dangerous goods, parking areas, Iberian peninsula, graph-based modeling

Procedia PDF Downloads 580
7302 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection

Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi

Abstract:

In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.

Keywords: attention, fire detection, smoke detection, spatio-temporal

Procedia PDF Downloads 203
7301 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling

Procedia PDF Downloads 13
7300 Multitasking Incentives and Employee Performance: Evidence from Call Center Field Experiments and Laboratory Experiments

Authors: Sung Ham, Chanho Song, Jiabin Wu

Abstract:

Employees are commonly incentivized on both quantity and quality performance and much of the extant literature focuses on demonstrating that multitasking incentives lead to tradeoffs. Alternatively, we consider potential solutions to the tradeoff problem from both a theoretical and an experimental perspective. Across two field experiments from a call center, we find that tradeoffs can be mitigated when incentives are jointly enhanced across tasks, where previous research has suggested that incentives be reduced instead of enhanced. In addition, we also propose and test, in a laboratory setting, the implications of revising the metric used to assess quality. Our results indicate that metrics can be adjusted to align quality and quantity more efficiently. Thus, this alignment has the potential to thwart the classic tradeoff problem. Finally, we validate our findings with an economic experiment that verifies that effort is largely consistent with our theoretical predictions.

Keywords: incentives, multitasking, field experiment, experimental economics

Procedia PDF Downloads 159
7299 Comprehensive Risk Analysis of Decommissioning Activities with Multifaceted Hazard Factors

Authors: Hyeon-Kyo Lim, Hyunjung Kim, Kune-Woo Lee

Abstract:

Decommissioning process of nuclear facilities can be said to consist of a sequence of problem solving activities, partly because there may exist working environments contaminated by radiological exposure, and partly because there may also exist industrial hazards such as fire, explosions, toxic materials, and electrical and physical hazards. As for an individual hazard factor, risk assessment techniques are getting known to industrial workers with advance of safety technology, but the way how to integrate those results is not. Furthermore, there are few workers who experienced decommissioning operations a lot in the past. Therefore, not a few countries in the world have been trying to develop appropriate counter techniques in order to guarantee safety and efficiency of the process. In spite of that, there still exists neither domestic nor international standard since nuclear facilities are too diverse and unique. In the consequence, it is quite inevitable to imagine and assess the whole risk in the situation anticipated one by one. This paper aimed to find out an appropriate technique to integrate individual risk assessment results from the viewpoint of experts. Thus, on one hand the whole risk assessment activity for decommissioning operations was modeled as a sequence of individual risk assessment steps, and on the other, a hierarchical risk structure was developed. Then, risk assessment procedure that can elicit individual hazard factors one by one were introduced with reference to the standard operation procedure (SOP) and hierarchical task analysis (HTA). With an assumption of quantification and normalization of individual risks, a technique to estimate relative weight factors was tried by using the conventional Analytic Hierarchical Process (AHP) and its result was reviewed with reference to judgment of experts. Besides, taking the ambiguity of human judgment into consideration, debates based upon fuzzy inference was added with a mathematical case study.

Keywords: decommissioning, risk assessment, analytic hierarchical process (AHP), fuzzy inference

Procedia PDF Downloads 424
7298 Direct Blind Separation Methods for Convolutive Images Mixtures

Authors: Ahmed Hammed, Wady Naanaa

Abstract:

In this paper, we propose a general approach to deal with the problem of a convolutive mixture of images. We use a direct blind source separation method by adding only one non-statistical justified constraint describing the relationships between different mixing matrix at the aim to make its resolution easy. This method can be applied, provided that this constraint is known, to degraded document affected by the overlapping of text-patterns and images. This is due to chemical and physical reactions of the materials (paper, inks,...) occurring during the documents aging, and other unpredictable causes such as humidity, microorganism infestation, human handling, etc. We will demonstrate that this problem corresponds to a convolutive mixture of images. Subsequently, we will show how the validation of our method through numerical examples. We can so obtain clear images from unreadable ones which can be caused by pages superposition, a phenomenon similar to that we find every often in archival documents.

Keywords: blind source separation, convoluted mixture, degraded documents, text-patterns overlapping

Procedia PDF Downloads 322
7297 Design of a Thrust Vectoring System for an Underwater ROV

Authors: Isaac Laryea

Abstract:

Underwater remote-operated vehicles (ROVs) are highly useful in aquatic research and underwater operations. Unfortunately, unsteady and unpredictable conditions underwater make it difficult for underwater vehicles to maintain a steady attitude during motion. Existing underwater vehicles make use of multiple thrusters positioned at specific positions on their frame to maintain a certain pose. This study proposes an alternate way of maintaining a steady attitude during horizontal motion at low speeds by making use of a thrust vector-controlled propulsion system. The study began by carrying out some preliminary calculations to get an idea of a suitable shape and form factor. Flow simulations were carried out to ensure that enough thrust could be generated to move the system. Using the Lagrangian approach, a mathematical system was developed for the ROV, and this model was used to design a control system. A PID controller was selected for the control system. However, after tuning, it was realized that a PD controller satisfied the design specifications. The designed control system produced an overshoot of 6.72%, with a settling time of 0.192s. To achieve the effect of thrust vectoring, an inverse kinematics synthesis was carried out to determine what angle the actuators need to move to. After building the system, intermittent angular displacements of 10°, 15°, and 20° were given during bench testing, and the response of the control system as well as the servo motor angle was plotted. The final design was able to move in water but was not able to handle large angular displacements as a result of the small angle approximation used in the mathematical model.

Keywords: PID control, thrust vectoring, parallel manipulators, ROV, underwater, attitude control

Procedia PDF Downloads 68
7296 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery

Authors: Mohammed Abdulhameed, Sagir M. Abdullahi

Abstract:

In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.

Keywords: nanoparticles, blood flow, stenosed artery, mathematical models

Procedia PDF Downloads 267
7295 Belief-Based Games: An Appropriate Tool for Uncertain Strategic Situation

Authors: Saied Farham-Nia, Alireza Ghaffari-Hadigheh

Abstract:

Game theory is a mathematical tool to study the behaviors of a rational and strategic decision-makers, that analyze existing equilibrium in interest conflict situation and provides an appropriate mechanisms for cooperation between two or more player. Game theory is applicable for any strategic and interest conflict situation in politics, management and economics, sociology and etc. Real worlds’ decisions are usually made in the state of indeterminacy and the players often are lack of the information about the other players’ payoffs or even his own, which leads to the games in uncertain environments. When historical data for decision parameters distribution estimation is unavailable, we may have no choice but to use expertise belief degree, which represents the strength with that we believe the event will happen. To deal with belief degrees, we have use uncertainty theory which is introduced and developed by Liu based on normality, duality, subadditivity and product axioms to modeling personal belief degree. As we know, the personal belief degree heavily depends on the personal knowledge concerning the event and when personal knowledge changes, cause changes in the belief degree too. Uncertainty theory not only theoretically is self-consistent but also is the best among other theories for modeling belief degree on practical problem. In this attempt, we primarily reintroduced Expected Utility Function in uncertainty environment according to uncertainty theory axioms to extract payoffs. Then, we employed Nash Equilibrium to investigate the solutions. For more practical issues, Stackelberg leader-follower Game and Bertrand Game, as a benchmark models are discussed. Compared to existing articles in the similar topics, the game models and solution concepts introduced in this article can be a framework for problems in an uncertain competitive situation based on experienced expert’s belief degree.

Keywords: game theory, uncertainty theory, belief degree, uncertain expected value, Nash equilibrium

Procedia PDF Downloads 415
7294 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design

Authors: Qing K. Zhu

Abstract:

Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.

Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise

Procedia PDF Downloads 254
7293 Parallel Evaluation of Sommerfeld Integrals for Multilayer Dyadic Green's Function

Authors: Duygu Kan, Mehmet Cayoren

Abstract:

Sommerfeld-integrals (SIs) are commonly encountered in electromagnetics problems involving analysis of antennas and scatterers embedded in planar multilayered media. Generally speaking, the analytical solution of SIs is unavailable, and it is well known that numerical evaluation of SIs is very time consuming and computationally expensive due to the highly oscillating and slowly decaying nature of the integrands. Therefore, fast computation of SIs has a paramount importance. In this paper, a parallel code has been developed to speed up the computation of SI in the framework of calculation of dyadic Green’s function in multilayered media. OpenMP shared memory approach is used to parallelize the SI algorithm and resulted in significant time savings. Moreover accelerating the computation of dyadic Green’s function is discussed based on the parallel SI algorithm developed.

Keywords: Sommerfeld-integrals, multilayer dyadic Green’s function, OpenMP, shared memory parallel programming

Procedia PDF Downloads 247
7292 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (Rsm)

Authors: Salem Alsanusi, Loubna Bentaher

Abstract:

Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarse-aggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.

Keywords: mix proportioning, response surface methodology, compressive strength, optimal design

Procedia PDF Downloads 267
7291 An Improved Ant Colony Algorithm for Genome Rearrangements

Authors: Essam Al Daoud

Abstract:

Genome rearrangement is an important area in computational biology and bioinformatics. The basic problem in genome rearrangements is to compute the edit distance, i.e., the minimum number of operations needed to transform one genome into another. Unfortunately, unsigned genome rearrangement problem is NP-hard. In this study an improved ant colony optimization algorithm to approximate the edit distance is proposed. The main idea is to convert the unsigned permutation to signed permutation and evaluate the ants by using Kaplan algorithm. Two new operations are added to the standard ant colony algorithm: Replacing the worst ants by re-sampling the ants from a new probability distribution and applying the crossover operations on the best ants. The proposed algorithm is tested and compared with the improved breakpoint reversal sort algorithm by using three datasets. The results indicate that the proposed algorithm achieves better accuracy ratio than the previous methods.

Keywords: ant colony algorithm, edit distance, genome breakpoint, genome rearrangement, reversal sort

Procedia PDF Downloads 344
7290 Selecting Skyline Mash-Ups under Uncertainty

Authors: Aymen Gammoudi, Hamza Labbaci, Nizar Messai, Yacine Sam

Abstract:

Web Service Composition (Mash-up) has been considered as a new approach used to offer the user a set of Web Services responding to his request. These approaches can return a set of similar Mash-ups in a given context that makes users unable to select the perfect one. Recent approaches focus on computing the skyline over a set of Quality of Service (QoS) attributes. However, these approaches are not sufficient in a dynamic web service environment where the delivered QoS by a Web service is inherently uncertain. In this paper, we treat the problem of computing the skyline over a set of similar Mash-ups under certain dimension values. We generate dimensions for each Mash-up using aggregation operations applied to the QoS attributes. We then tackle the problem of computing the skyline under uncertain dimensions. We present each dimension value of mash-up using a frame of discernment and introduce the d-dominance using the Evidence Theory. Finally, we propose our experimental results that show both the effectiveness of the introduced skyline extensions and the efficiency of the proposed approaches.

Keywords: web services, uncertain QoS, mash-ups, uncertain dimensions, skyline, evidence theory, d-dominance

Procedia PDF Downloads 234
7289 Convertible Lease, Risky Debt and Financial Structure with Growth Option

Authors: Ons Triki, Fathi Abid

Abstract:

The basic objective of this paper is twofold. It resides in designing a model for a contingent convertible lease contract that can ensure the financial stability of a company and recover the losses of the parties to the lease in the event of default. It also aims to compare the convertible lease contract on inefficiencies resulting from the debt-overhang problem and asset substitution with other financing policies. From this perspective, this paper highlights the interaction between investments and financing policies in a dynamic model with existing assets and a growth option where the investment cost is financed by a contingent convertible lease and equity. We explore the impact of the contingent convertible lease on the capital structure. We also check the reliability and effectiveness of the use of the convertible lease contract as a means of financing. Findings show that the rental convertible contract with a sufficiently high conversion ratio has less severe inefficiencies arising from risk-shifting and debt overhang than those entailed by risky debt and pure-equity financing. The problem of underinvestment pointed out by Mauer and Ott (2000) and the problem of overinvestment mentioned by Hackbarth and Mauer (2012) may be reduced under contingent convertible lease financing. Our findings predict that the firm value under contingent convertible lease financing increases globally with asset volatility instead of decreasing with business risk. The study reveals that convertible leasing contracts can stand for a reliable solution to ensure the lessee and quickly recover the counterparties of the lease upon default.

Keywords: contingent convertible lease, growth option, debt overhang, risk-shifting, capital structure

Procedia PDF Downloads 72
7288 The Coexistence of Quality Practices and Frozen Concept in R and D Projects

Authors: Ayala Kobo-Greenhut, Amos Notea, Izhar Ben-Shlomo

Abstract:

In R&D projects, there is no doubt about the need to change a current concept to an alternative one over time (i.e., concept leaping). Concept leaping is required since with most R&D projects uncertainty is present as they take place in dynamic environments. Despite the importance of concept leaping when needed, R&D teams may fail to do so (i.e., frozen concept). This research suggests a possible reason why frozen concept happens in the framework of quality engineering and control engineering. We suggest that frozen concept occurs since concept determines the derived plan and its implementation may be considered as equivalent to a closed-loop process, and is subject to the problem of not recognizing gaps as failures. We suggest that although implementing quality practices into an R&D project’s routine has many advantages, it intensifies the frozen concept problem since working according to quality practices relates to exploitation of learning behavior, while leaping to a new concept relates to exploring learning behavior.

Keywords: closed loop, control engineering, design, leaping, frozen concept, quality engineering, quality practices

Procedia PDF Downloads 472
7287 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning

Procedia PDF Downloads 472
7286 Mixed Model Sequencing in Painting Production Line

Authors: Unchalee Inkampa, Tuanjai Somboonwiwat

Abstract:

Painting process of automobiles and automobile parts, which is a continuous process based on EDP (Electrode position paint, EDP). Through EDP, all work pieces will be continuously sent to the painting process. Work process can be divided into 2 groups based on the running time: Painting Room 1 and Painting Room 2. This leads to continuous operation. The problem that arises is waiting for workloads onto Painting Room. The grading process EDP to Painting Room is a major problem. Therefore, this paper aim to develop production sequencing method by applying EDP to painting process. It also applied fixed rate launching for painting room and earliest due date (EDD) for EDP process and swap pairwise interchange for waiting time to a minimum of machine. The result found that the developed method could improve painting reduced waiting time, on time delivery, meeting customers wants and improved productivity of painting unit.

Keywords: sequencing, mixed model lines, painting process, electrode position paint

Procedia PDF Downloads 420
7285 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 186
7284 Graph Planning Based Composition for Adaptable Semantic Web Services

Authors: Rihab Ben Lamine, Raoudha Ben Jemaa, Ikram Amous Ben Amor

Abstract:

This paper proposes a graph planning technique for semantic adaptable Web Services composition. First, we use an ontology based context model for extending Web Services descriptions with information about the most suitable context for its use. Then, we transform the composition problem into a semantic context aware graph planning problem to build the optimal service composition based on user's context. The construction of the planning graph is based on semantic context aware Web Service discovery that allows for each step to add most suitable Web Services in terms of semantic compatibility between the services parameters and their context similarity with the user's context. In the backward search step, semantic and contextual similarity scores are used to find best composed Web Services list. Finally, in the ranking step, a score is calculated for each best solution and a set of ranked solutions is returned to the user.

Keywords: semantic web service, web service composition, adaptation, context, graph planning

Procedia PDF Downloads 521