Search results for: magnetic circuit material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8510

Search results for: magnetic circuit material

6680 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging

Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan

Abstract:

With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.

Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs

Procedia PDF Downloads 472
6679 Demonstrating a Relationship of Frequency and Weight with Arduino UNO and Visual Basic Program

Authors: Woraprat Chaomuang, Sirikorn Sringern, Pawanrat Chamnanwongsritorn, Kridsada Luangthongkham

Abstract:

In this study, we have applied a digital scale to demonstrate the electricity concept of changing the capacity (C), due to the weight of an object, as a function of the distance between the conductor plates and the pressing down. By calibrating on standard scales with the Visual Basic program and the Arduino Uno microcontroller board, we can obtain the weight of the object from the frequency (ƒ) that is measured from the electronic circuit (Astable Multivibrator). Our results support the concept, showing a linear correlation between the frequency and weight with an equation y = –0.0112x + 379.78 and the R2 value of 0.95. In addition, the effects of silicone rods shrinkage, permittivity and temperature were also examined and have found to affect various graph patterns observed.

Keywords: Arduino Uno board, frequency, microcontroller board, parallel plate conductor

Procedia PDF Downloads 207
6678 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications

Authors: Bryan D. Llenarizas, Maria Carla F. Manzano

Abstract:

The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.

Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole

Procedia PDF Downloads 81
6677 Photovoltaic-Driven Thermochemical Storage for Cooling Applications to Be Integrated in Polynesian Microgrids: Concept and Efficiency Study

Authors: Franco Ferrucci, Driss Stitou, Pascal Ortega, Franck Lucas

Abstract:

The energy situation in tropical insular regions, as found in the French Polynesian islands, presents a number of challenges, such as high dependence on imported fuel, high transport costs from the mainland and weak electricity grids. Alternatively, these regions have a variety of renewable energy resources, which favor the exploitation of smart microgrids and energy storage technologies. With regards to the electrical energy demand, the high temperatures in these regions during the entire year implies that a large proportion of consumption is used for cooling buildings, even during the evening hours. In this context, this paper presents an air conditioning system driven by photovoltaic (PV) electricity that combines a refrigeration system and a thermochemical storage process. Thermochemical processes are able to store energy in the form of chemical potential with virtually no losses, and this energy can be used to produce cooling during the evening hours without the need to run a compressor (thus no electricity is required). Such storage processes implement thermochemical reactors in which a reversible chemical reaction between a solid compound and a gas takes place. The solid/gas pair used in this study is BaCl2 reacting with ammonia (NH3), which is also the coolant fluid in the refrigeration circuit. In the proposed system, the PV-driven electric compressor is used during the daytime either to run the refrigeration circuit when a cooling demand occurs or to decompose the ammonia-charged salt and remove the gas from thermochemical reactor when no cooling is needed. During the evening, when there is no electricity from solar source, the system changes its configuration and the reactor reabsorbs the ammonia gas from the evaporator and produces the cooling effect. In comparison to classical PV-driven air conditioning units equipped with electrochemical batteries (e.g. Pb, Li-ion), the proposed system has the advantage of having a novel storage technology with a much longer charge/discharge life cycle, and no self-discharge. It also allows a continuous operation of the electric compressor during the daytime, thus avoiding the problems associated with the on-off cycling. This work focuses on the system concept and on the efficiency study of its main components. It also compares the thermochemical with electrochemical storage as well as with other forms of thermal storage, such as latent (ice) and sensible heat (chilled water). The preliminary results show that the system seems to be a promising alternative to simultaneously fulfill cooling and energy storage needs in tropical insular regions.

Keywords: microgrid, solar air-conditioning, solid/gas sorption, thermochemical storage, tropical and insular regions

Procedia PDF Downloads 241
6676 Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays

Authors: Nikolaos Petropoulos, Elena Blokhina, Andrii Sokolov, Andrii Semenov, Panagiotis Giounanlis, Xutong Wu, Dmytro Mishagli, Eugene Koskin, Robert Bogdan Staszewski, Dirk Leipold

Abstract:

We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research.

Keywords: condensed matter physics, quantum computing, quantum information theory, quantum physics

Procedia PDF Downloads 99
6675 Gadolinium-Based Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents

Authors: Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino

Abstract:

Recent advances in diagnostic imaging technology have significantly contributed to a better understanding of specific changes associated with diseases progression. Among different imaging modalities, Magnetic Resonance Imaging (MRI) represents a noninvasive medical diagnostic technique, which shows low sensitivity and long acquisition time and it can discriminate between healthy and diseased tissues by providing 3D data. In order to improve the enhancement of MRI signals, some imaging exams require intravenous administration of contrast agents (CAs). Recently, emerging research reports a progressive deposition of these drugs, in particular, gadolinium-based contrast agents (GBCAs), in the body many years after multiple MRI scans. These discoveries confirm the need to have a biocompatible system able to boost a clinical relevant Gd-chelate. To this aim, several approaches based on engineered nanostructures have been proposed to overcome the common limitations of conventional CAs, such as the insufficient signal-to-noise ratios due to relaxivity and poor safety profile. In particular, nanocarriers, labeling or loading with CAs, capable of carrying high payloads of CAs have been developed. Currently, there’s no a comprehensive understanding of the thermodynamic contributions enable of boosting the efficacy of conventional CAs by using biopolymers matrix. Thus, considering the importance of MRI in diagnosing diseases, here it is reported a successful example of the next generation of these drugs where the commercial gadolinium chelate is incorporate into a biopolymer nanostructure, formed by cross-linked hyaluronic acid (HA), with improved relaxation properties. In addition, they are highlighted the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA by adopting a multidisciplinary experimental approach. On the basis of these discoveries, it is clear that the main point consists in increasing the rigidification of readily-available Gd-CAs within the biopolymer matrix by controlling the water dynamics, the physicochemical interactions, and the polymer conformations. In the end, the acquired knowledge about polymer-CA systems has been applied to develop of Gd-based HA nanoparticles with enhanced relaxometric properties.

Keywords: biopolymers, MRI, nanoparticles, contrast agent

Procedia PDF Downloads 149
6674 Effect of the Nature of Silica Precursor in Zeolite ZSM-22 Synthesis

Authors: Nyiko M. Chauke, James Ramontja, Richard M. Moutloali

Abstract:

The zeolite ZSM-22 material demonstrated effective hydrophilic character as a nanoadditive filler in the preparation of nanocomposite membranes. In this study, nanorods ZSM-22 zeolite materials were hydrothermally synthesised from a homogenous gel mixture prepared using different silica precursors: colloidal silica, fumed silica, tetraethylorthosilicate (TEOS), and aluminium precursor: aluminium sulphate octadecahydrate (Al₂(SO₄)₃.18H₂O to Si/Al of 60. This was focused on developing a defect-free zeolite framework for effective use in applications such as membrane separation process, adsorption, and catalysis. The obtained ZSM-22 zeolite materials with 60 Si/Al ratio exhibits high crystallinity, hydrophilicity, and needle-like morphologies, suggesting successful synthesis as shown by X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) physicochemical analysis. It was revealed that the use of different nature of silica precursors significantly influenced the properties of the final product and contributed to the development of defect-free zeolite material. As such, the crystalline nanorods of Theta-1 (TON) ZSM-22 obtained from TEOS silica showed high phase purity, defect-free, and narrow particle size distribution. Morphological analysis exhibited that the use of TEOS as silica precursor was effective than its counterparts and produced high crystalline need-like agglomerated particles.

Keywords: silica precursor, hydrothermal synthesis, zeolite material, ZSM-22

Procedia PDF Downloads 136
6673 Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic

Authors: Larbi Hammadi, N. Boudjenane, N. Benhallou, R. Houjedje, R. Reffis, M. Belhadri

Abstract:

Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant.

Keywords: ceramic, clays, structural kinetic model, thixotropy, viscosity

Procedia PDF Downloads 410
6672 Changes in Kidney Tissue at Postmortem Magnetic Resonance Imaging Depending on the Time of Fetal Death

Authors: Uliana N. Tumanova, Viacheslav M. Lyapin, Vladimir G. Bychenko, Alexandr I. Shchegolev, Gennady T. Sukhikh

Abstract:

All cases of stillbirth undoubtedly subject to postmortem examination, since it is necessary to find out the cause of the stillbirths, as well as a forecast of future pregnancies and their outcomes. Determination of the time of death is an important issue which is addressed during the examination of the body of a stillborn. It is mean the period from the time of death until the birth of the fetus. The time for fetal deaths determination is based on the assessment of the severity of the processes of maceration. To study the possibilities of postmortem magnetic resonance imaging (MRI) for determining the time of intrauterine fetal death based on the evaluation of maceration in the kidney. We have conducted MRI morphological comparisons of 7 dead fetuses (18-21 gestational weeks) and 26 stillbirths (22-39 gestational weeks), and 15 bodies of died newborns at the age of 2 hours – 36 days. Postmortem MRI 3T was performed before the autopsy. The signal intensity of the kidney tissue (SIK), pleural fluid (SIF), external air (SIA) was determined on T1-WI and T2-WI. Macroscopic and histological signs of maceration severity and time of death were evaluated in the autopsy. Based on the results of the morphological study, the degree of maceration varied from 0 to 4. In 13 cases, the time of intrauterine death was up to 6 hours, in 2 cases - 6-12 hours, in 4 -12-24 hours, in 9 -2-3 days, in 3 -1 week, in 2 -1,5-2 weeks. At 15 dead newborns, signs of maceration were absent, naturally. Based on the data from SIK, SIF, SIA on MR-tomograms, we calculated the coefficient of MR-maceration (M). The calculation of the time of intrauterine death (MP-t) (hours) was performed by our formula: МR-t = 16,87+95,38×М²-75,32×М. A direct positive correlation of MR-t and autopsy data from the dead at the gestational ages 22-40 weeks, with a dead time, not more than 1 week, was received. The maceration at the antenatal fetal death is characterized by changes in T1-WI and T2-WI signals at postmortem MRI. The calculation of MP-t allows defining accurately the time of intrauterine death within one week at the stillbirths who died on 22-40 gestational weeks. Thus, our study convincingly demonstrates that radiological methods can be used for postmortem study of the bodies, in particular, the bodies of stillborn to determine the time of intrauterine death. Postmortem MRI allows for an objective and sufficiently accurate analysis of pathological processes with the possibility of their documentation, storage, and analysis after the burial of the body.

Keywords: intrauterine death, maceration, postmortem MRI, stillborn

Procedia PDF Downloads 125
6671 Internal Node Stabilization for Voltage Sense Amplifiers in Multi-Channel Systems

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer by the parasitic capacitances of the input transistors in a voltage sense amplifier. Due to its intrinsic rail-to-rail voltage transition, the input sides are inevitably disturbed. It can possible disturb the stabilities of the reference voltage levels. Moreover, it becomes serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the systems. In order to alleviate the internal node voltage transition, the internal node stabilization technique is proposed by utilizing an additional biasing circuit. It achieves 47% and 43% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 479
6670 Spectroscopic Study of a Eu-Complex Containing Hybrid Material

Authors: Y. A. R. Oliveira, M. A. Couto dos Santos, N. B. C. Júnior, S. J. L. Ribeiro, L. D. Carlos

Abstract:

The Eu(TTA)3(H2O)2 complex (TTA = thenoyltrifluoroacetone) pure (EuTTA) and incorporated in an organicinorganic hybrid material (EuTTA-hyb) are revisited, this time from the crystal field parameters (CFP) and Judd-Ofelt intensity parameters (Ωλ) point of view. A detailed analysis of the emission spectra revealed that the EuTTA phase still remains in the hybrid phase. Sparkle Model calculations of the EuTTA ground state geometry have been performed and satisfactorily compared to the X-ray structure. The observed weaker crystal field strength of the phase generated by the incorporation is promptly interpreted through the existing EXAFS results of the EuTTA-hyb structure. Satisfactory predictions of the CFP, of the 7F1 level splitting and of the Ωλ in all cases were obtained by using the charge factors and polarizabilities as degrees of freedom of non-parametric models.

Keywords: crystal field parameters, europium complexes, Judd-Ofelt intensity parameters

Procedia PDF Downloads 408
6669 Practical Simulation Model of Floating-Gate MOS Transistor in Sub 100 nm Technologies

Authors: Zina Saheb, Ezz El-Masry

Abstract:

As CMOS technology scaling down, Silicon oxide thickness (SiO2) become very thin (few Nano meters). When SiO2 is less than 3nm, gate direct tunneling (DT) leakage current becomes a dormant problem that impacts the transistor performance. Floating gate MOSFET (FGMOSFET) has been used in many low-voltage and low-power applications. Most of the available simulation models of FGMOSFET for analog circuit design does not account for gate DT current and there is no accurate analysis for the gate DT. It is a crucial to use an accurate mode in order to get a realistic simulation result that account for that DT impact on FGMOSFET performance effectively.

Keywords: CMOS transistor, direct-tunneling current, floating-gate, gate-leakage current, simulation model

Procedia PDF Downloads 529
6668 Large Strain Creep Analysis of Composite Thick-Walled Anisotropic Cylinders

Authors: Vinod Kumar Arya

Abstract:

Creep analysis of a thick-walled composite anisotropic cylinder under internal pressure and considering large strains is presented. Using a threshold creep law for composite materials, expressions for stresses, strains, and strain rates are derived for several anisotropic cases. Numerical results, presented through several graphs and tables, depict the effect of anisotropy on the stress, strain, and strain rate distributions. Since for a specific type of material anisotropy described in the paper, these quantities are found to have the lowest values at the inner radius (the potential location of cylinder failure), it is concluded that by employing such an anisotropic material for the design of a thick-walled cylinder a longer service life for the cylinder may be achieved.

Keywords: creep, composites, large strains, thick-walled cylinders, anisotropy

Procedia PDF Downloads 149
6667 Rectenna Modeling Based on MoM-GEC Method for RF Energy Harvesting

Authors: Soulayma Smirani, Mourad Aidi, Taoufik Aguili

Abstract:

Energy harvesting has arisen as a prominent research area for low power delivery to RF devices. Rectennas have become a key element in this technology. In this paper, electromagnetic modeling of a rectenna system is presented. In our approach, a hybrid technique was demonstrated to associate both the method of auxiliary sources (MAS) and MoM-GEC (the method of moments combined with the generalized equivalent circuit technique). Auxiliary sources were used in order to substitute specific electronic devices. Therefore, a simple and controllable model is obtained. Also, it can easily be interconnected to form different topologies of rectenna arrays for more energy harvesting. At last, simulation results show the feasibility and simplicity of the proposed rectenna model with high precision and computation efficiency.

Keywords: computational electromagnetics, MoM-GEC method, rectennas, RF energy harvesting

Procedia PDF Downloads 171
6666 Feasibility Study of a Solar Solid Desiccant Cooling System in Algerian Areas

Authors: N. Hatraf, l. Merabeti, M. Abbas

Abstract:

The interest in air conditioning using renewable energies is increasing. The Thermal energy produced from the solar energy can be transformed to useful cooling and heating through the thermo chemical or thermo physical processes by using thermally activated energy conversion system. Solid desiccant conditioning systems can represent a reliable alternative solution compared with other thermal cooling technologies. Their basic characteristics refer to the capability to regulate both temperature and humidity of the conditioned space in one side and to its potential in electrical energy saving in the other side. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). Basically, solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: absorption process and the regeneration process; The silica gel in the desiccant wheel which is the most important device in the system absorbs the moisture from the incoming air to the desiccant material in this case the silica gel, then it changes the heat with an rotary heat exchanger, after that the air passes through an humidifier to have the humidity required before entering to the local. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software.

Keywords: desiccation, dehumidification, TRNSYS, efficiency

Procedia PDF Downloads 419
6665 Rock-Bed Thermocline Storage: A Numerical Analysis of Granular Bed Behavior and Interaction with Storage Tank

Authors: Nahia H. Sassine, Frédéric-Victor Donzé, Arnaud Bruch, Barthélemy Harthong

Abstract:

Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost–effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. For instance, when rocks are used as storage material, the tank wall expands more than the solid medium during charge process, a gap is created between the rocks and tank walls and the filler material settles down to fill it. During discharge, the tank contracts against the bed, resulting in thermal stresses that may exceed the wall tank yield stress and generate plastic deformation. This phenomenon is repeated over the cycles and the tank will be slowly ratcheted outward until it fails. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogeneously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material. Besides the study of the influence of different thermal configurations on the storage tank response, other parameters are varied, such as the internal angle of friction of the granular material, the dispersion of particles diameters as well as the tank’s dimensions. Then, their influences on the kinematics of the granular bed submitted to thermal cycles are highlighted.

Keywords: discrete element method (DEM), thermal cycles, thermal energy storage, thermocline

Procedia PDF Downloads 402
6664 Paper Concrete: A Step towards Sustainability

Authors: Hemanth K. Balaga, Prakash Nanthagopalan

Abstract:

Every year a huge amount of paper gets discarded of which only a minute fraction is being recycled and the rest gets dumped as landfills. Paper fibres can be recycled only a limited number of times before they become too short or weak to make high quality recycled paper. This eventually adds to the already big figures of waste paper that is being generated and not recycled. It would be advantageous if this prodigious amount of waste can be utilized as a low-cost sustainable construction material and make it as a value added product. The generic term for the material under investigation is paper-concrete. This is a fibrous mix made of Portland cement, water and pulped paper and/or other aggregates. The advantages of this material include light weight, good heat and sound insulation capability and resistance to flame. The disadvantages include low strength compared to conventional concrete and its hydrophilic nature. The properties vary with the variation of cement and paper content in the mix. In the present study, Portland Pozzolona Cement and news print paper were used for the preparation of paper concrete cubes. Initially, investigations were performed to determine the minimum soaking period required for the softening of the paper fibres. Further different methodologies were explored for proper blending of the pulp with cement paste. The properties of paper concrete vary with the variation of cement to paper to water ratio. The study mainly addresses the parameters of strength and weight loss of the concrete cubes with age and the time that is required for the dry paper fibres to become soft enough in water to bond with the cement. The variation of compressive strength with cement content, water content, and time was studied. The water loss of the cubes with time and the minimum time required for the softening of paper fibres were investigated .Results indicate that the material loses 25-50 percent of the initial weight at the end of 28 days, and a maximum 28 day compressive strength (cubes) of 5.4 Mpa was obtained.

Keywords: soaking time, difference water, minimum water content, maximum water content

Procedia PDF Downloads 256
6663 Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads

Authors: Kent Salomonsson, Xuefang Zhao, Sara Kallin

Abstract:

Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models.

Keywords: FEM, tissue, indentation, properties

Procedia PDF Downloads 358
6662 Ion Beam Induced 2D Mesophase Patterning of Nanocrystallites in Polymer

Authors: Srutirekha Giri, Manoranjan Sahoo, Anuradha Das, Pravanjan Mallick, Biswajit Mallick

Abstract:

Ion Beam (IB) technique is a very powerful experimental technique for both material synthesis and material modifications. In this work, 3MeV proton beam was generated using the 3MV Tandem machine of the Institute of Physics, Bhubaneswar and extracted into air for the irradiation-induced modification purpose[1]. The polymeric material can be modeled for a three-phase system viz. crystalline(I), amorphous(II) and mesomorphic(III). So far, our knowledge is concerned. There are only few techniques reported for the synthesis of this third-phase(III) of polymer. The IB induced technique is one of them and has been reported very recently [2-4]. It was observed that by irradiating polyethylene terephthalate (PET) fiber at very low proton fluence, 10¹⁰ - 10¹² p/s, possess 2D mesophase structure. This was confirmed using X-ray diffraction technique. A low-intensity broad peak was observed at small angle of about 2θ =6º, when the fiber axis was mounted parallel to the X-ray direction. Such peak vanished in the diffraction spectrum when the fiber axis was mounted perpendicular to the beam direction. The appearance of this extra peak in a particular orientation confirms that the phase is 2-dimensionally oriented (mesophase). It is well known that the mesophase is a 2-dimensionally ordered structure but 3-dimensionally disordered. Again, the crystallite of the mesophase peak particle was measured about 3nm. The MeV proton-induced 2D mesophase patterning of nanocrystallites (3nm) of PET due to irradiation was observed within the above low fluence range and failed in high proton fluence. This is mainly due to the breaking of crystallites, radiation-induced thermal degradation, etc.

Keywords: Ion irradiation, mesophase, nanocrystallites, polymer

Procedia PDF Downloads 201
6661 Solar Cell Using Chemical Bath Deposited PbS:Bi3+ Films as Electron Collecting Layer

Authors: Melissa Chavez Portillo, Mauricio Pacio Castillo, Hector Juarez Santiesteban, Oscar Portillo Moreno

Abstract:

Chemical bath deposited PbS:Bi3+ as an electron collection layer is introduced between the silicon wafer and the Ag electrode the performance of the PbS heterojunction thin film solar thin film solar cells with 1 cm2 active area. We employed Bi-doping to transform it into an n-type semiconductor. The experimental results reveal that the cell response parameters depend critically on the deposition procedures in terms of bath temperature, deposition time. The device achieves an open-circuit voltage of 0.4 V. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication.

Keywords: Bi doping, PbS, thin films, solar cell

Procedia PDF Downloads 514
6660 Structuralism of Architectural Details in the Design of Modern High-Rise Buildings

Authors: Joanna Pietrzak, Anna Stefanska, Wieslaw Rokicki

Abstract:

Contemporary high-rise buildings constructed in recent years are often tremendous examples of original and unique architectural forms, being at the same time the affirmation of technical and technological progress accomplishments. The search for more efficient, sophisticated generations of structures also concerns the shaping of high-quality details. The concept of structural detail designing is connected with the rationalization of engineering solutions as well as through the optimisation and reduction of used material. Contemporary structural detail perceived through the development of building technologies is often a very aesthetic technical and material solution, which significantly influences the visual perception of architecture. Structural details are more often seen in shaping the forms of high-rise buildings, which are erected in many culturally different countries.

Keywords: aesthetic expression, high-rise buildings, structural detail, tall buildings

Procedia PDF Downloads 164
6659 Modeling the Effect of Thermal Gradation on Steady-State Creep Behavior of Isotropic Rotating Disc Made of Functionally Graded Material

Authors: Tania Bose, Minto Rattan, Neeraj Chamoli

Abstract:

In this paper, an attempt has been made to study the effect of thermal gradation on the steady-state creep behavior of rotating isotropic disc made of functionally graded material using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate have been taken for analysis. The stress and strain rate distributions have been calculated for the discs rotating at elevated temperatures having thermal gradation. The material parameters of creep vary radially and have been estimated by regression fit of the available experimental data. Investigations for discs made up of linearly increasing particle content operating under linearly decreasing temperature from inner to outer radii have been done using von Mises’ yield criterion. The results are displayed and compared graphically in designer friendly format for the above said disc profile with the disc made of particle reinforced composite operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: creep, isotropic, steady-state, thermal gradation

Procedia PDF Downloads 233
6658 Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications

Authors: G. Korotcenkov, V. Brinzari, B. K. Cho

Abstract:

The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.

Keywords: energy conversion technologies, thermoelectricity, In2O3-based films, power factor, nanocomposites, stability

Procedia PDF Downloads 231
6657 The Effects of Dimethyl Adipate (DMA) on Coated Diesel Engine

Authors: Hanbey Hazar

Abstract:

An experimental study is conducted to evaluate the effects of using blends of diesel fuel with dimethyl adipate (DMA) in proportions of 2%, 6/%, and 12% on a coated engine. In this study, cylinder, piston, exhaust and inlet valves which are combustion chamber components have been coated with a ceramic material. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Due to thermal barrier coating, the diesel engine's hazardous emission values decreased.

Keywords: diesel engine, dimethyl adipate (DMA), exhaust emissions, coating

Procedia PDF Downloads 273
6656 Diagnostic Accuracy in the Detection of Cervical Lymph Node Metastases in Head and Neck Squamous Cell Carcinoma Patients: A Comparison of Sonography, CT, PET/CT and MRI

Authors: Di Luo, Maria Buchberger, Anja Pickhard

Abstract:

Objectives: The purpose of this study was to assess and compare the diagnostic accuracy of four common morphological approaches, including sonography, computed tomography (CT), positron emission tomography/computed tomography (PET/CT), and magnetic resonance imaging (MRI) for the evaluation of cervical lymph node metastases in head and neck squamous cell carcinoma (HNSCC) patients. Material and Methods: Included in this retrospective study were 26 patients diagnosed with HNSCC between 2010 and 2011 who all underwent sonography, CT, PET/CT, and MRI imaging before neck dissection. Morphological data were compared to the corresponding histopathological results. Statistical analysis was performed with SPSS statistic software (version 26.0), calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for detection of cervical lymph node metastases. Results: The 5-year survival rate of the patient collective was 55.5%.Risk factors for survival included initial primary tumor stage, initial lymph node stage, initial metastasis status, and therapeutic approaches. Cox regression showed initial metastasis status(HR 8.671, 95%CI 1.316-57.123, p=0.025) and therapeutic approaches(HR 6.699, 95%CI 1.746-25.700, p=0.006)to be independent predictive risk factors for survival. Sensitivity was highest for MRI (96% compared to 85% for sonography and 89% for CT and PET/CT). Specificity was comparable with 95 % for CT and 98 % for sonography and PET/CT, but only 68% for MRI. While the MRI showed the least PPV (34%) compared to all other methods (85% for sonography,75% for CT, and 86% for PET/CT), the NPV was comparable in all methods(98-99%). The overall accuracy of cervical lymph node metastases detection was comparable for sonography, CT, and PET/CT with 96%,97%,94%, respectively, while MRI had only 72% accuracy. Conclusion: Since the initial status of metastasis is an independent predictive risk factor for patients’ survival, efficient detection is crucial to plan adequate therapeutic approaches. Sonography, CT, and PET/CT have better diagnostic accuracy than MRI for the evaluation of cervical lymph node metastases in HNSCC patients.

Keywords: cervical lymph node metastases, diagnostic accuracy, head and neck squamous carcinoma, risk factors, survival

Procedia PDF Downloads 132
6655 Laboratory Investigation of Fly Ash Based Geopolymer Stabilized Recycled Asphalt Pavement as a Base Material

Authors: Menglim Hoy, Suksun Horpibulsuk, Arul Arulrajah

Abstract:

The results of laboratory investigation of recycled asphalt pavement (RAP) – fly ash (FA) based geopolymer as a base material is presented in this paper. An alkaline activator, the mixture of NaOH and Na₂SiO₃, is used to synthesis RAP-FA based geopolymer. RAP-FA with water (RAP-FA blend) prepared as a control material. The strength develops and the strength against wet-dry was determined by the unconfined compression strength (UCS) test, then the microstructural properties were examined by scanning electron microscopy (SEM) and X-ray Diffraction (XRD) analysis. The toxicity characteristic leaching procedure (TCLP) test is conducted to measure its leachability of heavy metal. The results show both the RAP-FA blend and geopolymer can be used as a base course as its UCS values meet the minimum strength requirement specified by the Department of Highway, Thailand. The durability test results show the UCS of these materials increases with increasing the number of wet-dry cycles, reaching its peak at six wet-dry cycles. The XRD and SEM analyses indicate strength development of the RAP-FA blend occurs due to chemical reaction between a high Calcium in RAP with a high Silica and Alumina in FA led to producing calcium aluminate hydrate formation. The strength development of the RAP-FA geopolymer occurred resulted from the polymerization reaction. The TCLP results demonstrate there is no environmental risk of these stabilized materials. Furthermore, FA based geopolymer can reduce the leachability of heavy metal in the RAP-FA blend.

Keywords: recycled asphalt pavement, geopolymer, heavy metal, microstructure

Procedia PDF Downloads 98
6654 Innovation and Analysis of Vibrating Fork Level Switch

Authors: Kuen-Ming Shu, Cheng-Yu Chen

Abstract:

A vibrating-fork sensor can measure the level height of solids and liquids and operates according to the principle that vibrations created by piezoelectric ceramics are transmitted to the vibrating fork, which produces resonance. When the vibrating fork touches an object, its resonance frequency changes and produces a signal that returns to a controller for immediate adjustment, so as to effectively monitor raw material loading. The design of the vibrating fork in a vibrating-fork material sensor is crucial. In this paper, ANSYS finite element analysis software is used to perform modal analysis on the vibrations of the vibrating fork. In addition, to design and produce a superior vibrating fork, the dimensions and welding shape of the vibrating fork are compared in a simulation performed using the Taguchi method.

Keywords: vibrating fork, piezoelectric ceramics, sound wave, ANSYS, Taguchi method, modal analysis

Procedia PDF Downloads 249
6653 Finite Element-Based Stability Analysis of Roadside Settlements Slopes from Barpak to Yamagaun through Laprak Village of Gorkha, an Epicentral Location after the 7.8Mw 2015 Barpak, Gorkha, Nepal Earthquake

Authors: N. P. Bhandary, R. C. Tiwari, R. Yatabe

Abstract:

The research employs finite element method to evaluate the stability of roadside settlements slopes from Barpak to Yamagaon through Laprak village of Gorkha, Nepal after the 7.8Mw 2015 Barpak, Gorkha, Nepal earthquake. It includes three major villages of Gorkha, i.e., Barpak, Laprak and Yamagaun that were devastated by 2015 Gorkhas’ earthquake. The road head distance from the Barpak to Laprak and Laprak to Yamagaun are about 14 and 29km respectively. The epicentral distance of main shock of magnitude 7.8 and aftershock of magnitude 6.6 were respectively 7 and 11 kilometers (South-East) far from the Barpak village nearer to Laprak and Yamagaon. It is also believed that the epicenter of the main shock as said until now was not in the Barpak village, it was somewhere near to the Yamagaun village. The chaos that they had experienced during the earthquake in the Yamagaun was much more higher than the Barpak. In this context, we have carried out a detailed study to investigate the stability of Yamagaun settlements slope as a case study, where ground fissures, ground settlement, multiple cracks and toe failures are the most severe. In this regard, the stability issues of existing settlements and proposed road alignment, on the Yamagaon village slope are addressed, which is surrounded by many newly activated landslides. Looking at the importance of this issue, field survey is carried out to understand the behavior of ground fissures and multiple failure characteristics of the slopes. The results suggest that the Yamgaun slope in Profile 2-2, 3-3 and 4-4 are not safe enough for infrastructure development even in the normal soil slope conditions as per 2, 3 and 4 material models; however, the slope seems quite safe for at Profile 1-1 for all 4 material models. The result also indicates that the first three profiles are marginally safe for 2, 3 and 4 material models respectively. The Profile 4-4 is not safe enough for all 4 material models. Thus, Profile 4-4 needs a special care to make the slope stable.

Keywords: earthquake, finite element method, landslide, stability

Procedia PDF Downloads 348
6652 Treatment of Neuronal Defects by Bone Marrow Stem Cells Differentiation to Neuronal Cells Cultured on Gelatin-PLGA Scaffolds Coated with Nano-Particles

Authors: Alireza Shams, Ali Zamanian, Atefehe Shamosi, Farnaz Ghorbani

Abstract:

Introduction: Although the application of a new strategy remains a remarkable challenge for treatment of disabilities due to neuronal defects, progress in Nanomedicine and tissue engineering, suggesting the new medical methods. One of the promising strategies for reconstruction and regeneration of nervous tissue is replacing of lost or damaged cells by specific scaffolds after Compressive, ischemic and traumatic injuries of central nervous system. Furthermore, ultrastructure, composition, and arrangement of tissue scaffolds are effective on cell grafts. We followed implantation and differentiation of mesenchyme stem cells to neural cells on Gelatin Polylactic-co-glycolic acid (PLGA) scaffolds coated with iron nanoparticles. The aim of this study was to evaluate the capability of stem cells to differentiate into motor neuron-like cells under topographical cues and morphogenic factors. Methods and Materials: Bone marrow mesenchymal stem cells (BMMSCs) was obtained by primary cell culturing of adult rat bone marrow got from femur bone by flushing method. BMMSCs were incubated with DMEM/F12 (Gibco), 15% FBS and 100 U/ml pen/strep as media. Then, BMMSCs seeded on Gel/PLGA scaffolds and tissue culture (TCP) polystyrene embedded and incorporated by Fe Nano particles (FeNPs) (Fe3o4 oxide (M w= 270.30 gr/mol.). For neuronal differentiation, 2×10 5 BMMSCs were seeded on Gel/PLGA/FeNPs scaffolds was cultured for 7 days and 0.5 µ mol. Retinoic acid, 100 µ mol. Ascorbic acid,10 ng/ml. Basic fibroblast growth factor (Sigma, USA), 250 μM Iso butyl methyl xanthine, 100 μM 2-mercaptoethanol, and 0.2 % B27 (Invitrogen, USA) added to media. Proliferation of BMMSCs was assessed by using MTT assay for cell survival. The morphology of BMMSCs and scaffolds was investigated by scanning electron microscopy analysis. Expression of neuron-specific markers was studied by immunohistochemistry method. Data were analyzed by analysis of variance, and statistical significance was determined by Turkey’s test. Results: Our results revealed that differentiation and survival of BMMSCs into motor neuron-like cells on Gel/PLGA/FeNPs as a biocompatible and biodegradable scaffolds were better than those cultured in Gel/PLGA in absence of FeNPs and TCP scaffolds. FeNPs had raised physical power but decreased capacity absorption of scaffolds. Well defined oriented pores in scaffolds due to FeNPs may activate differentiation and synchronized cells as a mechanoreceptor. Induction effects of magnetic FeNPs by One way flow of channels in scaffolds help to lead the cells and can facilitate direction of their growth processes. Discussion: Progression of biological properties of BMMSCs and the effects of FeNPs spreading under magnetic field was evaluated in this investigation. In vitro study showed that the Gel/PLGA/FeNPs scaffold provided a suitable structure for motor neuron-like cells differentiation. This could be a promising candidate for enhancing repair and regeneration in neural defects. Dynamic and static magnetic field for inducing and construction of cells can provide better results for further experimental studies.

Keywords: differentiation, mesenchymal stem cells, nano particles, neuronal defects, Scaffolds

Procedia PDF Downloads 166
6651 Sliding Mode Controlled Quadratic Boost Converter

Authors: Viji Vijayakumar, R. Divya, A. Vivek

Abstract:

This paper deals with a quadratic boost converter which belongs to cascade boost family, controlled by sliding mode controller. In the cascade boost family, quadratic boost converter is the best trade-off when circuit complexity and modulator saturation is considered. Sliding mode control being a nonlinear control results in a robust and stable system when applied to switching converters which are inherently variable structured systems. The stability of this system is analyzed through Lyapunov’s approach. Analysis is done for load regulation, line regulation and step response of the system. Also these results are compared with that of PID controller based system.

Keywords: DC-DC converter, quadratic boost converter, sliding mode control, PID control

Procedia PDF Downloads 993