Search results for: extreme climate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3424

Search results for: extreme climate

1594 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading

Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth

Abstract:

The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.

Keywords: collapse load analysis, inelastic buckling, liquefaction, pile group

Procedia PDF Downloads 162
1593 Building Carbon Footprint Comparison between Building Permit, as Built, as Built with Circular Material Usage

Authors: Kadri-Ann Kertsmik, Martin Talvik, Kimmo Lylykangas, Simo Ilomets, Targo Kalamees

Abstract:

This study compares the building carbon footprint (CF) values for a case study of a private house located in a cold climate, using the Level(s) methodology. It provides a framework for measuring the environmental performance of buildings throughout their life cycle, taking into account various factors. The study presents the results of the three scenarios, comparing their carbon emissions and highlighting the benefits of circular material usage. The construction process was thoroughly documented, and all materials and components (including minuscule mechanical fasteners, each meter of cable, a kilogram of mortar, and the component of HVAC systems, among other things) delivered to the construction site were noted. Transportation distances of each delivery, the fuel consumption of construction machines, and electricity consumption for temporary heating and electrical tools were also monitored. Using the detailed data on material and energy resources, the CF was calculated for two scenarios: one where circular material usage was applied and another where virgin materials were used instead of reused ones. The results were compared with the CF calculated based on the building permit design model using the Level(s) methodology. To study the range of possible results in the early stage of CF assessment, the same building permit design was given to several experts. Results showed that embodied carbon values for a built scenario were significantly lower than the values predicted by the building permit stage as a result of more precise material quantities, as the calculation methodology is designed to overestimate the CF. Moreover, designers made an effort to reduce the building's CF by reusing certain materials such as ceramic tiles, lightweight concrete blocks, and timber during the construction process. However, in a cold climate context where operational energy (B6) continues to dominate, the total building CF value changes between the three scenarios were less significant. The calculation for the building permit project was performed by several experts, and CF results were in the same range. It alludes that, for the first estimation of preliminary building CF, using average values proves to be an appropriate method for the Estonian national carbon footprint estimation phase during building permit application. The study also identified several opportunities for reducing the carbon footprint of the building, such as reusing materials from other construction sites, preferring local material producers, and reducing wastage on site. The findings suggest that using circular materials can significantly reduce the carbon footprint of buildings. Overall, the study highlights the importance of using a comprehensive approach to measure the environmental performance of buildings, taking into account both the project and the actually built house. It also emphasises the need for ongoing monitoring for designing the building and construction site waste. The study also gives some examples of how to enable future circularity of building components and materials, e.g., building in layers, using wood as untreated, etc.

Keywords: carbon footprint, circular economy, sustainable construction, level(s) methodology

Procedia PDF Downloads 87
1592 Modelling of Silicon Solar Cell with Anti-reflecting Coating

Authors: Ankita Gaur, Mouli Karmakar, Shyam

Abstract:

In this study, a silicon solar cell has been modeled and analyzed to enhance its electrical performance by improving the optical properties using an antireflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various Anti-Reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF₂ coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for Anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively.

Keywords: antireflecting coating, electrical efficiency, reflectance, solar cell, transmittance

Procedia PDF Downloads 153
1591 Investigating the Suitability of Utilizing Lyophilized Gels to Improve the Stability of Ufasomes

Authors: Mona Hassan Aburahma, Alaa Hamed Salama

Abstract:

Ufasomes “unsaturated fatty acids liposomes” are unique nano-sized self-assembled bilayered vesicles that can be easily created from the readily available unsaturated fatty acid. Ufasomes are formed due to weak associative interaction of the fully ionized and unionized fatty acids into bilayers structures. In the ufasomes constructs, the fatty acid molecules are oriented with their hydrocarbon tails directed toward the membrane interior and the carboxyl groups are in contact with water. Although ufasomes can be employed as a safe vesicular carrier for drugs, the extreme instability of their aqueous dispersions hinders their effective use in drug delivery field. Accordingly, in our study, lyophilized gels containing ufasomes were prepared using a simple assembling technique form the readily available oleic acid to overcome the colloidal instability of the ufasomes dispersions and convert them into accurate unit dosage forms. The influence of changing cholesterol percentage relative to oleic acid on the ufasomes vesicles were investigated using factorial design. The optimized oleic acid ufasomes comprised nanoscaled spherical vesicles. Scanning electron micrographs of the lyophilized gels revealed that the included ufasomes were intact, non-aggregating, and preserved their spherical morphology. Rheological characterization (viscosity and shear stress versus shear rate) of reconstituted ufasomal lyophilized gel ensured the ease of application. The capability of the ufasomes, included in the gel, to penetrate deep through the mucosa layers was illustrated using ex-vivo confocal laser imaging, thereby, highlighting the feasibility of stabilizing ufasomes using lyophilized gel platforms.

Keywords: ufasomes, lyophilized gel, confocal scanning microscopy, rheological characterization, oleic acid

Procedia PDF Downloads 408
1590 Land Suitability Analysis for Rice Production in a Typical Watershed of Southwestern Nigeria: A Sustainability Pathway

Authors: Oluwagbenga O. Isaac Orimoogunje, Omolola Helen Oshosanya

Abstract:

The study examined land management in a typical watershed in southwestern Nigeria with a view to ascertaining its impact on land suitability analysis for rice cultivation and production. The study applied the analytical hierarchy process (AHP), weighted overlay analysis (WOA), multi-criteria decision-making techniques, and suitability map calculations within a Geographic Information System environment. Five main criteria were used, and these include climate, topography, soil fertility, macronutrients, and micronutrients. A consistency ratio (CR) of 0.067 was obtained for rice cultivation. The results showed that 95% of the land area is suitable for rice cultivation, with pH units ranging between 4.6 and 6.0, organic matter of 1.4–2.5 g kg-1 and base saturation of more than 80%. The study concluded that the Ofiki watershed is a potential site for large-scale rice cultivation in a sustainable capacity.

Keywords: land management, land characteristics, land suitability, rice production, watershed

Procedia PDF Downloads 77
1589 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen

Abstract:

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

Keywords: contact angle, contact angle hysteresis, contact time, superhydrophobic

Procedia PDF Downloads 426
1588 Green Aviation System: The Way Forward for Better Environment

Authors: Ramana Reddy, Vijay Kothari

Abstract:

Aircraft provide a fast, reliable mode of transport with no comparable alternative for long distance travel. Throughout the years, technology improvements have been made to aircraft and engines to make them more fuel efficient. Air traffic continues to grow around the world and needs more aircrafts to accommodate such rapid growth. This has direct consequences on two of the most important environmental factors i.e. emissions and noise. Aviation contributes about 2% of global greenhouse gas emissions. Aviation emits a number of pollutants that alter the chemical composition of the atmosphere, changing its radiative balance and hence influencing the climate. In order to reduce or if possible eliminate potential harm to the environment and also make air travel efficient and economical, an environmentally beneficial concept called “Green Aviation System” is required. This is a structured frame work with elements like innovative technologies/tools in engineering design, manufacturing, airport and fleet operations.

Keywords: air traffic, environment, emissions, noise, green aviation system

Procedia PDF Downloads 456
1587 The Technics of Desalination Water in Algeria

Authors: H. Aburideh, Z.Tigrine, D. Ziou, S. Hout, R. Bellatreche, D. Belhout, Z. Belgroun, M. Abbas

Abstract:

Faced with climate hazards in recent decades and the constant increase of the population, Algeria is making considerable efforts to provide water resources and water availability, both for its nascent industry, agriculture and for the drinking water supply of cities and arid region of the country. Following a remarkable worldwide technological breakthrough in seawater and brackish water desalination, known in recent years, the specialists have seen that the use of desalination of sea water in Algeria is a promising alternative as long as it has a coastline of 1200 km. Seawater is clean and virtually inexhaustible resource; mainly for population and industry that have high water consumption and are close to the sea. The purpose of this work is to present information on the number of sea water desalination stations and demineralization plants existing in Algeria. The constraints related to the operation of certain stations; those which are operational, those that are not operational as well as the seawater desalination program that was hired to cover 49 desalination plants across the country at the end of 2019 with the aim of increasing and diversifying water resources.

Keywords: desalination, water, membrane, demineralization

Procedia PDF Downloads 388
1586 Relationships of Plasma Lipids, Lipoproteins and Cardiovascular Outcomes with Climatic Variations: A Large 8-Year Period Brazilian Study

Authors: Vanessa H. S. Zago, Ana Maria H. de Avila, Paula P. Costa, Welington Corozolla, Liriam S. Teixeira, Eliana C. de Faria

Abstract:

Objectives: The outcome of cardiovascular disease is affected by environment and climate. This study evaluated the possible relationships between climatic and environmental changes and the occurrence of biological rhythms in serum lipids and lipoproteins in a large population sample in the city of Campinas, State of Sao Paulo, Brazil. In addition, it determined the temporal variations of death due to atherosclerotic events in Campinas during the time window examined. Methods: A large 8-year retrospective study was carried out to evaluate the lipid profiles of individuals attended at the University of Campinas (Unicamp). The study population comprised 27.543 individuals of both sexes and of all ages. Normolipidemic and dyslipidemic individuals classified according to Brazilian guidelines on dyslipidemias, participated in the study. For the same period, the temperature, relative humidity and daily brightness records were obtained from the Centro de Pesquisas Meteorologicas e Climaticas Aplicadas a Agricultura/Unicamp and frequencies of death due to atherosclerotic events in Campinas were acquired from the Brazilian official database DATASUS, according to the International Classification of Diseases. Statistical analyses were performed using both Cosinor and ARIMA temporal analysis methods. For cross-correlation analysis between climatic and lipid parameters, cross-correlation functions were used. Results: Preliminary results indicated that rhythmicity was significant for LDL-C and HDL-C in the cases of both normolipidemic and dyslipidemic subjects (n =respectively 11.892 and 15.651 both measures increasing in the winter and decreasing in the summer). On the other hand, for dyslipidemic subjects triglycerides increased in summer and decreased in winter, in contrast to normolipidemic ones, in which triglycerides did not show rhythmicity. The number of deaths due to atherosclerotic events showed significant rhythmicity, with maximum and minimum frequencies in winter and summer, respectively. Cross-correlation analyzes showed that low humidity and temperature, higher thermal amplitude and dark cycles are associated with increased levels of LDL-C and HDL-C during winter. In contrast, TG showed moderate cross-correlations with temperature and minimum humidity in an inverse way: maximum temperature and humidity increased TG during the summer. Conclusions: This study showed a coincident rhythmicity between low temperatures and high concentrations of LDL-C and HDL-C and the number of deaths due to atherosclerotic cardiovascular events in individuals from the city of Campinas. The opposite behavior of cholesterol and TG suggest different physiological mechanisms in their metabolic modulation by climate parameters change. Thus, new analyses are underway to better elucidate these mechanisms, as well as variations in lipid concentrations in relation to climatic variations and their associations with atherosclerotic disease and death outcomes in Campinas.

Keywords: atherosclerosis, climatic variations, lipids and lipoproteins, associations

Procedia PDF Downloads 117
1585 Killing Your Children to Hurt Your Partner: Motivations for Revenge Filicide

Authors: Melanie Moen, Christiaan Bezuidenhout

Abstract:

Cases of parents murdering their offspring are incomprehensible but sadly as old as humanity itself. The act of killing your own child is known as filicide. Revenge filicide is an act where one parent kills their own offspring for retribution for hurting and upsetting the other parent. The true extent of filicide in South Africa is unknown, but in the United States, filicide constitutes more or less 2.5% of all murders. The focus of this contribution is to extend the knowledge of revenge filicide. Data was collected through court documents and newspaper articles. Newspapers that cover murder cases are between 75% to 100% accurate compared to official sources. Often family-related murders are violent in nature, and for this reason, these crimes receive extensive media coverage. The cases of twenty revenge filicide murderers (14 male and 6 female) were qualitatively analyzed to determine the motivations and offense characteristics of revenge filicide offenders. Findings related to a loss of social identity due to rejection; extreme rage-type anger; external locus of control; sadism; a desire to cause pain, and a need to inflict harm. The initial emotional response may escalate from mild anger to a level of narcissistic rage which eventually culminates in the murdering of the child to punish and hurt the other parent and to restore control. To our knowledge, our study is the first to systematically examine the motivations related to revenge filicides from a South African perspective. Filicide is a complex phenomenon with diverse possibilities and reasons why it occurs. However, it was apparent in this study that the motivations for revenge filicides were often linked to complex personal and interpersonal relationship problems. Further research within this field is imperative.

Keywords: revenge filicide, child murder, rage, anger, narcissistic rage, parent kills child

Procedia PDF Downloads 79
1584 Environmental Effect on Yield and Quality of French Bean Genotypes Grown in Poly-Net House of India

Authors: Ramandeep Kaur, Tarsem Singh Dhillon, Rajinder Kumar Dhall, Ruma Devi

Abstract:

French bean (Phaseolous vulgaris L.) is an economically potential legume vegetable grown at high altitude (>1000 ft.). More recently, its cultivation in Northern Indian plans is gaining popularity but there is severe reduction in its yield and quality due to low temperature during extreme winter conditions of December-January in open field conditions. Therefore, present study was undertaken to evaluate 29 indeterminate French bean genotypes for various yield and quality traits in poly-net house with the objective to identify best performing genotypes during winter conditions. The significant variation was observed among all the genotypes for all the studied traits. The green pod yield was significantly higher in genotype Lakshmi (992.33 g/plant) followed by Star-I (955.50 g/plant) and FBK-4 (911.17 g/plant). However, the genotypes FBK-10 (105.50 days) and Lakshmi (106.83 days) took least number of days to first harvest and were significantly better than all other genotypes (109.00-136.83 days). The maximum numbers of 10 pickings were recorded in genotype Lakshmi whereas maximum harvesting span as also observed in Lakshmi (60.50 days) which was significantly higher than all other genotypes (31.17-56.50 days). Regarding quality traits, maximum dry matter was observed in FBK-13 (13.87%), protein content in FBK-1 (9.67%), sugar content in FBK-5 (9.60%) and minimum fiber content in FBK-12 (0.69%). It is hereby concluded that high productivity and better quality of French bean (genotypes: Lakshmi, Star-I, FBK-4) was produced in poly-net house conditions of Punjab, India and these pods fetches premium price in the market as there is no availability of green pods at that time in high altitudes. Hence, there is a great scope of cultivation of indeterminate French bean under poly-net house conditions in Punjab.

Keywords: earliness, pod, protected environment, quality, yield

Procedia PDF Downloads 106
1583 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio

Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park

Abstract:

Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.

Keywords: concrete, mixing ratio, textile, TRC

Procedia PDF Downloads 405
1582 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 82
1581 The Effect of Climatic and Cultural Conditions in Increasing the Sense of Community in Residential Complexes (Case Study: Saedyeh Residential Complex)

Authors: Razieh Esfandiarisedgh

Abstract:

Community architecture has been proposed as an alternative approach in architecture, with three political, sociological, and psychological approaches. In community architecture, the psychological approach, as the only approach related to community design, has an important index called a sense of community. Changes in today's modern society, such as the shrinking of families, cause a decrease in the sense of community and unwillingness of people. It has become a residential complex to be present in public spaces. This issue can be increased by creating motivation with the help of design for the presence and participation of people in public spaces and taking advantage of the facilities and quality of these spaces. This research used the qualitative research method, studied and collected information, and used observation and interviews in the selected sample. Through targeted sampling and matching it with the extracted design table, it was concluded that climate and culture are known as two important factors in the collective view of housing in Hamedan.

Keywords: community architecture, sense of community, environmental psychology, architecture

Procedia PDF Downloads 64
1580 Violence in the School Environment: When the Teenager Encounters the Threat of Depression

Authors: Ndje Ndje Mireille

Abstract:

For some years in Cameroon, there has been an increase in violence in schools. This violence has gone from verbal to physical, sometimes going as far as murder. At the centre of this violence, we find the student who is a teenager in the midst of both physical and psychological changes. The unpredictable transformations of his body, the unexpected emotions arrouse when he encouters someonelse, intrusion, shortcomings, boredom, loneliness and self-deception are the threats to which the teenager faces daily. From the psychopathological point of view, the greatest threat in adolesence is probably the depresive threat. During adolescence and for several resons, the subject is confronted with the self image. He displays certantity which sometimes hides great uncertaintity about what leads him to manifest some particular behaviours or undertake certain actions. Faced with aggressiveness twards those he confronts, he feels more or less guilt. This can lead a certain number of adolescents to feel heplessness faced to their vis-à-vis, faced to life. This helplessness is sometimes reinforced by the social, cultural and economic context in which they are. The teeneger then feels threatens by this depression which, when it reaches its extreme, it is manifested by the feeling that he can no longer do anything. Generally, the depressive threats manifest itself in defensive forms vis-à-vis with the depression itself. Reason why, it is indeed a threat and not a threshold already crossed. This threat often manifests itself in inappropriate forms of attack on one’s own body as seen in a number of repetitive risky behaviours. We also see teenegers confront peers and even adults through physical attacks and often go as far as murder. All these behaviours appears as an absurd way of attacking and at the same time confronting the feeling of remaining alive. This depressive threats can also be expressed in forms of attacks on an individual’s thinking abilities or more explicitely in the form of accademic downfall. The depressive threats does not sum up all the problems of adolescence, but, undoubtly represents currently, one of the deepest form of unease adolescents face.

Keywords: violence, school, depression threats, adolescent, behavior

Procedia PDF Downloads 82
1579 Accelerating Personalization Using Digital Tools to Drive Circular Fashion

Authors: Shamini Dhana, G. Subrahmanya VRK Rao

Abstract:

The fashion industry is advancing towards a mindset of zero waste, personalization, creativity, and circularity. The trend of upcycling clothing and materials into personalized fashion is being demanded by the next generation. There is a need for a digital tool to accelerate the process towards mass customization. Dhana’s D/Sphere fashion technology platform uses digital tools to accelerate upcycling. In essence, advanced fashion garments can be designed and developed via reuse, repurposing, recreating activities, and using existing fabric and circulating materials. The D/Sphere platform has the following objectives: to provide (1) An opportunity to develop modern fashion using existing, finished materials and clothing without chemicals or water consumption; (2) The potential for an everyday customer and designer to use the medium of fashion for creative expression; (3) A solution to address the global textile waste generated by pre- and post-consumer fashion; (4) A solution to reduce carbon emissions, water, and energy consumption with the participation of all stakeholders; (5) An opportunity for brands, manufacturers, retailers to work towards zero-waste designs and as an alternative revenue stream. Other benefits of this alternative approach include sustainability metrics, trend prediction, facilitation of disassembly and remanufacture deep learning, and hyperheuristics for high accuracy. A design tool for mass personalization and customization utilizing existing circulating materials and deadstock, targeted to fashion stakeholders will lower environmental costs, increase revenues through up to date upcycled apparel, produce less textile waste during the cut-sew-stitch process, and provide a real design solution for the end customer to be part of circular fashion. The broader impact of this technology will result in a different mindset to circular fashion, increase the value of the product through multiple life cycles, find alternatives towards zero waste, and reduce the textile waste that ends up in landfills. This technology platform will be of interest to brands and companies that have the responsibility to reduce their environmental impact and contribution to climate change as it pertains to the fashion and apparel industry. Today, over 70% of the $3 trillion fashion and apparel industry ends up in landfills. To this extent, the industry needs such alternative techniques to both address global textile waste as well as provide an opportunity to include all stakeholders and drive circular fashion with new personalized products. This type of modern systems thinking is currently being explored around the world by the private sector, organizations, research institutions, and governments. This technological innovation using digital tools has the potential to revolutionize the way we look at communication, capabilities, and collaborative opportunities amongst stakeholders in the development of new personalized and customized products, as well as its positive impacts on society, our environment, and global climate change.

Keywords: circular fashion, deep learning, digital technology platform, personalization

Procedia PDF Downloads 64
1578 On the Exergy Analysis of the Aluminum Smelter

Authors: Ayoola T. Brimmo, Mohamed I. Hassan

Abstract:

The push to mitigate the aluminum smelting industry’s enormous energy consumption and high emission releases is now even more persistent with the recent climate change happenings. Common approaches to achieve this have been focused on improving energy efficiency in the pot line and cast house sections of the smelter. However, the conventional energy efficiency analyses are based on the first law of thermodynamics, which do not shed proper light on the smelter’s degradation of energy. This just gives a general idea of the furnace’s performance with no reference to locations where improvement is a possibility based on the second law of thermodynamics. In this study, we apply exergy analyses on the pot line and cast house sections of the smelter to identify the locality and causes of energy degradation. The exergy analyses, which are based on a real life smelter conditions, highlight the possible locations for technology improvement in a typical smelter. With this established, methods of minimizing the smelter’s exergy losses are assessed.

Keywords: exergy analysis, electrolytic cell, furnace, heat transfer

Procedia PDF Downloads 289
1577 Circular Economy: Development of Quantitative Material Wastage Management Plan for Effective Waste Reduction in Building Construction Industry

Authors: Kwok Tak Kit

Abstract:

Combating climate change is becoming a hot topic in various sectors. Building construction and infrastructure sectors contributed a significant proportion of waste and GHGs emissions in the economy of different countries and cities. Many types of research had conducted and discussed the topic of waste management and waste management being a macro-level control is well developed in the building and construction industry. However, there is little research and studies on the micro-level of waste management, “building construction material wastage management,” and fewer reviews about regulatory control in the building construction sector. In this paper, we will focus on the potentialities and importance of material wastage management and review the deficiencies of the current standard to take into account the reduction of material wastage in a systematic and quantitative approach.

Keywords: quantitative measurement, material wastage management plan, waste management, uncalculated waste, circular economy

Procedia PDF Downloads 153
1576 Biomimetic Building Envelopes to Reduce Energy Consumption in Hot and Dry Climates

Authors: Aswitha Bachala

Abstract:

Energy shortage became a worldwide major problem since the 1970s, due to high energy consumption. Buildings are the primary energy users which consume 40% of global energy consumption, in which, 40%-50% of building’s energy usage is consumed due to its envelope. In hot and dry climates, 40% of energy is consumed only for cooling purpose, which implies major portion of energy savings can be worked through the envelopes. Biomimicry can be one solution for extracting efficient thermoregulation strategies found in nature. This paper aims to identify different biomimetic building envelopes which shall offer a higher potential to reduce energy consumption in hot and dry climates. It focuses on investigating the scope for reducing energy consumption through biomimetic approach in terms of envelopes. An in-depth research on different biomimetic building envelopes will be presented and analyzed in terms of heat absorption, in addition to, the impact it had on reducing the buildings energy consumption. This helps to understand feasible biomimetic building envelopes to mitigate heat absorption in hot and dry climates.

Keywords: biomimicry, building envelopes, energy consumption, hot and dry climate

Procedia PDF Downloads 215
1575 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction

Authors: Zhengrong Wu, Haibo Yang

Abstract:

In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.

Keywords: large language model, knowledge graph, disaster, deep learning

Procedia PDF Downloads 56
1574 Indoor Air Pollution and Reduced Lung Function in Biomass Exposed Women: A Cross Sectional Study in Pune District, India

Authors: Rasmila Kawan, Sanjay Juvekar, Sandeep Salvi, Gufran Beig, Rainer Sauerborn

Abstract:

Background: Indoor air pollution especially from the use of biomass fuels, remains a potentially large global health threat. The inefficient use of such fuels in poorly ventilated conditions results in high levels of indoor air pollution, most seriously affecting women and young children. Objectives: The main aim of this study was to measure and compare the lung function of the women exposed in the biomass fuels and LPG fuels and relate it to the indoor emission measured using a structured questionnaire, spirometer and filter based low volume samplers respectively. Methodology: This cross-sectional comparative study was conducted among the women (aged > 18 years) living in rural villages of Pune district who were not diagnosed of chronic pulmonary diseases or any other respiratory diseases and using biomass fuels or LPG for cooking for a minimum period of 5 years or more. Data collection was done from April to June 2017 in dry season. Spirometer was performed using the portable, battery-operated ultrasound Easy One spirometer (Spiro bank II, NDD Medical Technologies, Zurich, Switzerland) to determine the lung function over Forced expiratory volume. The primary outcome variable was forced expiratory volume in 1 second (FEV1). Secondary outcome was chronic obstruction pulmonary disease (post bronchodilator FEV1/ Forced Vital Capacity (FVC) < 70%) as defined by the Global Initiative for Obstructive Lung Disease. Potential confounders such as age, height, weight, smoking history, occupation, educational status were considered. Results: Preliminary results showed that the lung function of the women using Biomass fuels (FEV1/FVC = 85% ± 5.13) had comparatively reduced lung function than the LPG users (FEV1/FVC = 86.40% ± 5.32). The mean PM 2.5 mass concentration in the biomass user’s kitchen was 274.34 ± 314.90 and 85.04 ± 97.82 in the LPG user’s kitchen. Black carbon amount was found higher in the biomass users (black carbon = 46.71 ± 46.59 µg/m³) than LPG users (black carbon=11.08 ± 22.97 µg/m³). Most of the houses used separate kitchen. Almost all the houses that used the clean fuel like LPG had minimum amount of the particulate matter 2.5 which might be due to the background pollution and cross ventilation from the houses using biomass fuels. Conclusions: Therefore, there is an urgent need to adopt various strategies to improve indoor air quality. There is a lacking of current state of climate active pollutants emission from different stove designs and identify major deficiencies that need to be tackled. Moreover, the advancement in research tools, measuring technique in particular, is critical for researchers in developing countries to improve their capability to study the emissions for addressing the growing climate change and public health concerns.

Keywords: black carbon, biomass fuels, indoor air pollution, lung function, particulate matter

Procedia PDF Downloads 174
1573 The Strategy of the International Organization for Migration in Dealing with the Phenomenon of Migration

Authors: Djehich Mohamed Yousri

Abstract:

Nowadays, migration has become a phenomenon that attracts the attention of researchers, countries, agencies, and national and international bodies. Wars and climate change, demographics, poverty, natural disasters, and epidemics are all threats that are contributing daily to forcing more people to migrate. There are those who resort to emigration because of the deteriorating political conditions in their country, others resort to emigration to improve their financial situation, and others emigrate from their country for fear of some penalties and judgments issued against them. In the field of migration, becoming a member of the United Nations as a "relevant organization" gives the United Nations a clear mandate on migration. Its primary goal is to facilitate the management of international migration in an orderly and humane manner. In order to achieve this goal, the organization adopts an international policy to meet the challenges posed in the field of migration. This paper attempts to study the structure of this international organization and its strategy in dealing with the phenomenon of international migration.

Keywords: international organization for migration, immigrants, immigrant rights, resettlement, migration organization strategy

Procedia PDF Downloads 121
1572 Judicial Trendsetting: European Courts as Pacemakers for Defining, Redefining, and Potentially Expanding Protection for People Fleeing Armed Conflict and Natural Disasters

Authors: Charlotte Lülf

Abstract:

Migration flows cannot be tackled by single states but need to be addressed as a transnational and international responsibility. However, the current international framework staggers. Widely excluded from legal protection are people that flee from the indiscriminate effects of an armed conflict as well as people fleeing natural disasters. This paper as part of an on-going PhD Project deals with the current and partly contradicting approaches to the protection of so-called war- and climate refugees in the European Union. The analysis will emphasize and evaluate the role of the European judiciary to define, redefine and potentially expand legal protection. Changing jurisprudential practice of national and regional courts will be assessed, as will be their dialogue to interpret the international obligations of human rights law, migration laws and asylum laws in an interacting world.

Keywords: human rights law, asylum law, migration, refugee protection

Procedia PDF Downloads 266
1571 Depression among University Students an Epidemiological Study on a Sample of University Students

Authors: Laid Fekih

Abstract:

Background: Depression affects people in all communities across the world and in all aspects of their lives. Its spread varies from one country to another, can happen at any age and get rid of it is not easy. There is no clear policy in Algeria's higher education institutions to detect and treat these disorders or pay particular attention to those at risk. Identifying the prevalence of depression among Algerian students, its correlation with different variables, and studying gender differences in the light of a range of variables is necessary to develop an appropriate plan to raise the level of hope and love of life among students. Method: Random samples of 1500 University of Tlemcen students (967 girls and 533 boys), aged 19 to 24 years completed a self-administered questionnaire that included Beck's Depression Inventory ®-II (BDI®-II), (School Health Promotion: The Mood part), Other questions included in this survey focused on demographic characteristics including gender, age and year of study, academic performance (Annual Average Score (0-20) AAS), were examined. Results: The rate of depression (moderate, severe and extreme) varied from 03% to 13% among university students in Tlemcen University. There was no difference in the rates of depression in male and female students, which means that male and female students do have similar rates of depression. The rate of depression in the first-year of the study shows a higher score relative to students of other years. Depression has a negative relationship with academic performance, which means that depressed students have many difficulties in academic tasks at university. Conclusion: Depression among university students is an important center of interest in the world, not only because of the ease with which they can be followed, or the difficulties encountered during their studies and their technical courses but for the link between the level of depression and the quality of care of mental health services, especially if many students with mood and emotional problems don't meet the criteria for psychotherapy.

Keywords: depression, epidemiology, university students, academic performance

Procedia PDF Downloads 144
1570 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils

Procedia PDF Downloads 305
1569 Extraction, Synthesis, Characterization and Antioxidant Properties of Oxidized Starch from an Abundant Source in Nigeria

Authors: Okafor E. Ijeoma, Isimi C. Yetunde, Okoh E. Judith, Kunle O. Olobayo, Emeje O. Martins

Abstract:

Starch has gained interest as a renewable and environmentally compatible polymer due to the increase in its use. However, starch by itself could not be satisfactorily applied in industrial processes due to some inherent disadvantages such as its hydrophilic character, poor mechanical properties, its inability to withstand processing conditions such as extreme temperatures, diverse pH, high shear rate, freeze-thaw variation and dimensional stability. The range of physical properties of parent starch can be enlarged by chemical modification which invariably enhances their use in a number of applications found in industrial processes and food manufacture. In this study, Manihot esculentus starch was subjected to modification by oxidation. Fourier Transmittance Infra- Red (FTIR) and Raman spectroscopies were used to confirm the synthesis while Scanning Electron Microscopy (SEM) and X- Ray Diffraction (XRD) were used to characterize the new polymer. DPPH (2, 2-diphenyl-1-picryl-hydrazyl-hydrate) free radical assay was used to determine the antioxidant property of the oxidized starch. Our results show that the modification had no significant effect on the foaming capacity as well as on the emulsion capacity. Scanning electron microscopy revealed that oxidation did not alter the predominantly circular-shaped starch granules, while the X-ray pattern of both starch, native and modified were similar. FTIR results revealed a new band at 3007 and 3283cm-1. Differential scanning calorimetry returned two new endothermic peaks in the oxidized starch with an improved gelation capacity and increased enthalpy of gelatinization. The IC50 of oxidized starch was notably higher than that of the reference standard, ascorbic acid.

Keywords: antioxidant activity, DPPH, M. esculentus, oxidation, starch

Procedia PDF Downloads 298
1568 Food Security Model and the Role of Community Empowerment: The Case of a Marginalized Village in Mexico, Tatoxcac, Puebla

Authors: Marco Antonio Lara De la Calleja, María Catalina Ovando Chico, Eduardo Lopez Ruiz

Abstract:

Community empowerment has been proved to be a key element in the solution of the food security problem. As a result of a conceptual analysis, it was found that agricultural production, economic development and governance, are the traditional basis of food security models. Although the literature points to social inclusion as an important factor for food security, no model has considered it as the basis of it. The aim of this research is to identify different dimensions that make an integral model for food security, with emphasis on community empowerment. A diagnosis was made in the study community (Tatoxcac, Zacapoaxtla, Puebla), to know the aspects that impact the level of food insecurity. With a statistical sample integrated by 200 families, the Latin American and Caribbean Food Security Scale (ELCSA) was applied, finding that: in households composed by adults and children, have moderated food insecurity, (ELCSA scale has three levels, low, moderated and high); that result is produced mainly by the economic income capacity and the diversity of the diet on its food. With that being said, a model was developed to promote food security through five dimensions: 1. Regional context of the community; 2. Structure and system of local food; 3. Health and nutrition; 4. Information and technology access; and 5. Self-awareness and empowerment. The specific actions on each axis of the model, allowed a systemic approach needed to attend food security in the community, through the empowerment of society. It is concluded that the self-awareness of local communities is an area of extreme importance, which must be taken into account for participatory schemes to improve food security. In the long term, the model requires the integrated participation of different actors, such as government, companies and universities, to solve something such vital as food security.

Keywords: community empowerment, food security, model, systemic approach

Procedia PDF Downloads 372
1567 Catalytic Soot Gasification in Single and Mixed Atmospheres of CO2 and H2O in the Presence of CO and H2

Authors: Yeidy Sorani Montenegro Camacho, Samir Bensaid, Nunzio Russo, Debora Fino

Abstract:

LiFeO2 nano-powders were prepared via solution combustion synthesis (SCS) method and were used as carbon gasification catalyst in a reduced atmosphere. The gasification of soot with CO2 and H2O in the presence of CO and H2 (syngas atmosphere) were also investigated under atmospheric conditions using a fixed-bed micro-reactor placed in an electric, PID-regulated oven. The catalytic bed was composed of 150 mg of inert silica, 45 mg of carbon (Printex-U) and 5 mg of catalyst. The bed was prepared by ball milling the mixture at 240 rpm for 15 min to get an intimate contact between the catalyst and soot. A Gas Hourly Space Velocity (GHSV) of 38.000 h-1 was used for the tests campaign. The furnace was heated up to the desired temperature, a flow of 120 mL/min was sent into the system and at the same time the concentrations of CO, CO2 and H2 were recorded at the reactor outlet using an EMERSON X-STREAM XEGP analyzer. Catalytic and non-catalytic soot gasification reactions were studied in a temperature range of 120°C – 850°C with a heating rate of 5 °C/min (non-isothermal case) and at 650°C for 40 minutes (isothermal case). Experimental results show that the gasification of soot with H2O and CO2 are inhibited by the H2 and CO, respectively. The soot conversion at 650°C decreases from 70.2% to 31.6% when the CO is present in the feed. Besides, the soot conversion was 73.1% and 48.6% for H2O-soot and H2O-H2-soot gasification reactions, respectively. Also, it was observed that the carbon gasification in mixed atmosphere, i.e., when simultaneous carbon gasification with CO2 and steam take place, with H2 and CO as co-reagents; the gasification reaction is strongly inhibited by CO and H2, as well has been observed in single atmospheres for the isothermal and non-isothermal reactions. Further, it has been observed that when CO2 and H2O react with carbon at the same time, there is a passive cooperation of steam and carbon dioxide in the gasification reaction, this means that the two gases operate on separate active sites without influencing each other. Finally, despite the extreme reduced operating conditions, it has been demonstrated that the 32.9% of the initial carbon was gasified using LiFeO2-catalyst, while in the non-catalytic case only 8% of the soot was gasified at 650°C.

Keywords: soot gasification, nanostructured catalyst, reducing environment, syngas

Procedia PDF Downloads 261
1566 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 75
1565 Precipitation Intensity: Duration Based Threshold Analysis for Initiation of Landslides in Upper Alaknanda Valley

Authors: Soumiya Bhattacharjee, P. K. Champati Ray, Shovan L. Chattoraj, Mrinmoy Dhara

Abstract:

The entire Himalayan range is globally renowned for rainfall-induced landslides. The prime focus of the study is to determine rainfall based threshold for initiation of landslides that can be used as an important component of an early warning system for alerting stake holders. This research deals with temporal dimension of slope failures due to extreme rainfall events along the National Highway-58 from Karanprayag to Badrinath in the Garhwal Himalaya, India. Post processed 3-hourly rainfall intensity data and its corresponding duration from daily rainfall data available from Tropical Rainfall Measuring Mission (TRMM) were used as the prime source of rainfall data. Landslide event records from Border Road Organization (BRO) and some ancillary landslide inventory data for 2013 and 2014 have been used to determine Intensity Duration (ID) based rainfall threshold. The derived governing threshold equation, I= 4.738D-0.025, has been considered for prediction of landslides of the study region. This equation was validated with an accuracy of 70% landslides during August and September 2014. The derived equation was considered for further prediction of landslides of the study region. From the obtained results and validation, it can be inferred that this equation can be used for initiation of landslides in the study area to work as a part of an early warning system. Results can significantly improve with ground based rainfall estimates and better database on landslide records. Thus, the study has demonstrated a very low cost method to get first-hand information on possibility of impending landslide in any region, thereby providing alert and better preparedness for landslide disaster mitigation.

Keywords: landslide, intensity-duration, rainfall threshold, TRMM, slope, inventory, early warning system

Procedia PDF Downloads 273