Search results for: HR artificial intelligence
817 Medical Advances in Diagnosing Neurological and Genetic Disorders
Authors: Simon B. N. Thompson
Abstract:
Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning
Procedia PDF Downloads 386816 Machine Learning Based Digitalization of Validated Traditional Cognitive Tests and Their Integration to Multi-User Digital Support System for Alzheimer’s Patients
Authors: Ramazan Bakir, Gizem Kayar
Abstract:
It is known that Alzheimer and Dementia are the two most common types of Neurodegenerative diseases and their visibility is getting accelerated for the last couple of years. As the population sees older ages all over the world, researchers expect to see the rate of this acceleration much higher. However, unfortunately, there is no known pharmacological cure for both, although some help to reduce the rate of cognitive decline speed. This is why we encounter with non-pharmacological treatment and tracking methods more for the last five years. Many researchers, including well-known associations and hospitals, lean towards using non-pharmacological methods to support cognitive function and improve the patient’s life quality. As the dementia symptoms related to mind, learning, memory, speaking, problem-solving, social abilities and daily activities gradually worsen over the years, many researchers know that cognitive support should start from the very beginning of the symptoms in order to slow down the decline. At this point, life of a patient and caregiver can be improved with some daily activities and applications. These activities include but not limited to basic word puzzles, daily cleaning activities, taking notes. Later, these activities and their results should be observed carefully and it is only possible during patient/caregiver and M.D. in-person meetings in hospitals. These meetings can be quite time-consuming, exhausting and financially ineffective for hospitals, medical doctors, caregivers and especially for patients. On the other hand, digital support systems are showing positive results for all stakeholders of healthcare systems. This can be observed in countries that started Telemedicine systems. The biggest potential of our system is setting the inter-user communication up in the best possible way. In our project, we propose Machine Learning based digitalization of validated traditional cognitive tests (e.g. MOCA, Afazi, left-right hemisphere), their analyses for high-quality follow-up and communication systems for all stakeholders. R. Bakir and G. Kayar are with Gefeasoft, Inc, R&D – Software Development and Health Technologies company. Emails: ramazan, gizem @ gefeasoft.com This platform has a high potential not only for patient tracking but also for making all stakeholders feel safe through all stages. As the registered hospitals assign corresponding medical doctors to the system, these MDs are able to register their own patients and assign special tasks for each patient. With our integrated machine learning support, MDs are able to track the failure and success rates of each patient and also see general averages among similarly progressed patients. In addition, our platform also supports multi-player technology which helps patients play with their caregivers so that they feel much safer at any point they are uncomfortable. By also gamifying the daily household activities, the patients will be able to repeat their social tasks and we will provide non-pharmacological reminiscence therapy (RT – life review therapy). All collected data will be mined by our data scientists and analyzed meaningfully. In addition, we will also add gamification modules for caregivers based on Naomi Feil’s Validation Therapy. Both are behaving positively to the patient and keeping yourself mentally healthy is important for caregivers. We aim to provide a therapy system based on gamification for them, too. When this project accomplishes all the above-written tasks, patients will have the chance to do many tasks at home remotely and MDs will be able to follow them up very effectively. We propose a complete platform and the whole project is both time and cost-effective for supporting all stakeholders.Keywords: alzheimer’s, dementia, cognitive functionality, cognitive tests, serious games, machine learning, artificial intelligence, digitalization, non-pharmacological, data analysis, telemedicine, e-health, health-tech, gamification
Procedia PDF Downloads 137815 Parental Investment in Education: A Pathway for the Children's Access to Quality Education
Authors: Tukur Husaini Nahuche
Abstract:
The parent resources play a vital role in the life of the offspring. It help give children basic necessities of life like food, clothing, and housing. In a like manner financial assets allow parents to move into neighborhood with more affluent school systems, to pay school bills, purchase expensive technologies like personal computer, save money for tutoring books, magazines, journals, Newspapers etc. Making of proper provision in the home environment conducive for learning after school hours and creation of other outdoor activities for them are what necessitate in enhancing and accelerating children’s learning opportunities. Indeed, this paper intends to discuss parental investment in education, parent income resources, parental education, occupation, and income as relatively influencing children’s access to quality education. With the hope that families would provide equal opportunities for children irrespective of their sex, intelligence, subject choice,etc.Keywords: parental investment, children's access, quality education
Procedia PDF Downloads 551814 Wireless Sensor Anomaly Detection Using Soft Computing
Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh
Abstract:
We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.Keywords: IDS, Machine learning, WSN, ZigBee technology
Procedia PDF Downloads 543813 New Approach for Load Modeling
Authors: Slim Chokri
Abstract:
Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression
Procedia PDF Downloads 435812 Effects of Coastal Structure Construction on Ecosystem
Authors: Afshin Jahangirzadeh, Shatirah Akib, Keyvan Kimiaei, Hossein Basser
Abstract:
Coastal defense structures were built to protect part of shore from beach erosion and flooding by sea water. Effects of coastal defense structures can be negative or positive. Some of the effects are beneficial in socioeconomic aspect, but environment matters should be given more concerns because it can bring bad consequences to the earth landscape and make the ecosystem be unbalanced. This study concerns on the negative impacts as they are dominant. Coastal structures can extremely impact the shoreline configuration. Artificial structures can influence sediment transport, split the coastal space, etc. This can result in habitats loss and lead to noise and visual disturbance of birds. There are two types of coastal defense structures, hard coastal structure and soft coastal structure. Both coastal structures have their own impacts. The impacts are induced during the construction, maintaining, and operation of the structures.Keywords: ecosystem, environmental impact, hard coastal structures, soft coastal structures
Procedia PDF Downloads 487811 Heat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs
Authors: Varun Goel
Abstract:
Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimental investigations of single pass solar air heater having triangular duct and provided with roughness element on the underside of the absorber plate. V-shaped ribs are used for investigation having three different values of relative roughness pitch (p/e) ranges from 4-16 for a fixed value of angle of attack (α), relative roughness height (e/Dh) and a relative gap distance (d/x) values are 60°, 0.044 and 0.60 respectively. Result shows that considerable augmentation in heat transfer has been obtained by providing roughness.Keywords: artificial roughness, solar air heater, triangular duct, V-shaped ribs
Procedia PDF Downloads 452810 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification
Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui
Abstract:
Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.Keywords: EEG, ICA, SVM, wavelet
Procedia PDF Downloads 384809 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy
Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko
Abstract:
In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy
Procedia PDF Downloads 528808 Smart Airport: Application of Internet of Things for Confronting Airport Challenges
Authors: Ali Safaeianpour, Nima Shamandi
Abstract:
As air traffic expands, many airports have evolved into transit centers for people, information, and commerce, and technology implementation is an absolute part of airport development. Several challenges are in the way of implementing technology in an airport. Airport 4.0 proposes the "Smart Airport" concept, which focuses on using modern technologies such as Big Data, the Internet of Things (IoT), advanced biometric systems, blockchain, and cloud computing to alter and enhance passengers' journeys. Several common IoT concrete topics as partial keys to smart airports are discussed and introduced, ranging from automated check-in systems to exterior tracking processes, with the goal of enlightening more and more insightful ideas and proposals about smart airport solutions. IoT will dramatically alter people's lives by infusing intelligence, boosting the quality of life, and assembling it smarter. This paper reviews the approaches to transforming an airport into a smart airport and describes several enabling components of IoT and challenges that can hinder the implementation of a smart airport's function, which require to be addressed.Keywords: airport 4.0, digital airport, smart airport, IoT
Procedia PDF Downloads 113807 LED Lighting Interviews and Assessment in Forest Machines
Authors: Rauno Pääkkönen, Fabriziomaria Gobba, Leena Korpinen
Abstract:
The objective of the study is to assess the implementation of LED lighting into forest machine work in the dark. In addition, the paper includes a wide variety of important and relevant safety and health parameters. In modern, computerized work in the cab of forest machines, artificial illumination is a demanding task when performing duties, such as the visual inspections of wood and computer calculations. We interviewed entrepreneurs and gathered the following as the most pertinent themes: (1) safety, (2) practical problems, and (3) work with LED lighting. The most important comments were in regards to the practical problems of LED lighting. We found indications of technical problems in implementing LED lighting, like snow and dirt on the surfaces of lamps that dim the emission of light. Moreover, service work in the dark forest is dangerous and increases the risks of on-site accidents. We also concluded that the amount of blue light to the eyes should be assessed, especially, when the drivers are working in a semi-dark cab.Keywords: forest machines, health, LED, safety
Procedia PDF Downloads 431806 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.Keywords: settlement, Subway Line, FLAC3D, ANFIS Method
Procedia PDF Downloads 233805 The Role of Context in Interpreting Emotional Body Language in Robots
Authors: Jekaterina Novikova, Leon Watts
Abstract:
In the emerging world of human-robot interaction, people and robots will interact socially in real-world situations. This paper presents the results of an experimental study probing the interaction between situational context and emotional body language in robots. 34 people rated video clips of robots performing expressive behaviours in different situational contexts both for emotional expressivity on Valence-Arousal-Dominance dimensions and by selecting a specific emotional term from a list of suggestions. Results showed that a contextual information enhanced a recognition of emotional body language of a robot, although it did not override emotional signals provided by robot expressions. Results are discussed in terms of design guidelines on how an emotional body language of a robot can be used by roboticists developing social robots.Keywords: social robotics, non-verbal communication, situational context, artificial emotions, body language
Procedia PDF Downloads 289804 The Significance of ‘Practice’ in Art Research: Indian and Western Perspective
Authors: Mukta Avachat-Shirke
Abstract:
The process of manifestation in art has been studied deeply by various Indian and Western philosophers through times. In the art of painting, ‘Practice’ is always considered as techniques or making and ‘Theory’ is related to intelligence or the ‘conceptual.' The question about the significance of ‘Practice’ in artistic research has been a topic of debate. The aim of this qualitative study is to find the relevance of practice and theory while creating artworks. This study analyzes the thoughts and philosophy of Abhinavgupta, Hegel, and Croce to find a new perspective for looking at practice and theory within artistic research. With the method of grounded theory, the study attempts to establish the importance of both in artistic research. It discusses the issues like stages of creating art, role of tacit knowledge and importance of the decision-making the ability of the artist. This comparative analysis of these three philosophers along with the present systems can be used as a point of reference for further developments in the pedagogy of art research and artists, to understand the psychology and to follow the process of creativity effectively.Keywords: artistic research, Indian philosophy, practice, Western Philosophy
Procedia PDF Downloads 299803 Verification of the Supercavitation Phenomena: Investigation of the Cavity Parameters and Drag Coefficients for Different Types of Cavitator
Authors: Sezer Kefeli, Sertaç Arslan
Abstract:
Supercavitation is a pressure dependent process which gives opportunity to eliminate the wetted surface effects on the underwater vehicle due to the differences of viscosity and velocity effects between liquid (freestream) and gas phase. Cavitation process occurs depending on rapid pressure drop or temperature rising in liquid phase. In this paper, pressure based cavitation is investigated due to the fact that is encountered in the underwater world, generally. Basically, this vapor-filled pressure based cavities are unstable and harmful for any underwater vehicle because these cavities (bubbles or voids) lead to intense shock waves while collapsing. On the other hand, supercavitation is a desired and stabilized phenomena than general pressure based cavitation. Supercavitation phenomena offers the idea of minimizing form drag, and thus supercavitating vehicles are revived. When proper circumstances are set up, which are either increasing the operating speed of the underwater vehicle or decreasing the pressure difference between free stream and artificial pressure, the continuity of the supercavitation is obtainable. There are 2 types of supercavitation to obtain stable and continuous supercavitation, and these are called as natural and artificial supercavitation. In order to generate natural supercavitation, various mechanical structures are discovered, which are called as cavitators. In literature, a lot of cavitator types are studied either experimentally or numerically on a CFD platforms with intent to observe natural supercavitation since the 1900s. In this paper, firstly, experimental results are obtained, and trend lines are generated based on supercavitation parameters in terms of cavitation number (), form drag coefficientC_D, dimensionless cavity diameter (d_m/d_c), and length (L_c/d_c). After that, natural cavitation verification studies are carried out for disk and cone shape cavitators. In addition, supercavitation parameters are numerically analyzed at different operating conditions, and CFD results are fitted into trend lines of experimental results. The aims of this paper are to generate one generally accepted drag coefficient equation for disk and cone cavitators at different cavitator half angle and investigation of the supercavitation parameters with respect to cavitation number. Moreover, 165 CFD analysis are performed at different cavitation numbers on FLUENT version 21R2. Five different cavitator types are modeled on SCDM with respect tocavitator’s half angles. After that, CFD database is generated depending on numerical results, and new trend lines are generated based on supercavitation parameters. These trend lines are compared with experimental results. Finally, the generally accepted drag coefficient equation and equations of supercavitation parameters are generated.Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavitating flows, supercavitation parameters, drag reduction, viscous force elimination, natural cavitation verification
Procedia PDF Downloads 131802 Seismic Behavior of a Jumbo Container Crane in the Low Seismicity Zone Using Time-History Analyses
Authors: Huy Q. Tran, Bac V. Nguyen, Choonghyun Kang, Jungwon Huh
Abstract:
Jumbo container crane is an important part of port structures that needs to be designed properly, even when the port locates in low seismicity zone such as in Korea. In this paper, 30 artificial ground motions derived from the elastic response spectra of Korean Building Code (2005) are used for time history analysis. It is found that the uplift might not occur in this analysis when the crane locates in the low seismic zone. Therefore, a selection of a pinned or a gap element for base supporting has not much effect on the determination of the total base shear. The relationships between the total base shear and peak ground acceleration (PGA) and the relationships between the portal drift and the PGA are proposed in this study.Keywords: jumbo container crane, portal drift, time history analysis, total base shear
Procedia PDF Downloads 189801 Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing
Authors: Saad Al-Baddai, Karema Al-Subari, Elmar Lang, Bernd Ludwig
Abstract:
Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50.Keywords: empirical mode decomposition (EMD), mode mixing, sifting process, over-sifting
Procedia PDF Downloads 395800 Enhancing Value of Dam Dredged Sediments as a Component of a Self Compacting Concrete
Authors: N. Belas, O. Belaribi, S. Aggoun, K. Bendani, N. Bouhamou, A. Mebrouki
Abstract:
This experimental work is a part of a long research on the valorization of the dam dredged sediments issued from Fergoug Dam (Mascara-West Algeria). These sediments have to be subjected to thermal treatment to become reactive with the cement and thus to obtain an artificial pozzolana. It is therefore a question of developing the calcined mud as substitutable material in part to the cement used in the composition of self compacting concrete. The objective of the present work is to highlight its influence on the behavior of self compacting concrete compared to that of the natural pozzolana and this, in fresh and hardened states. The study is being conducted on three SCC, the first using 20% in volume of natural pozzolana, the second with 20 % of calcined mud and the third for the sake of comparison is made with cement only. The first results showed the possibility of obtaining SCC with calcined mud complying with the AFGC recommendations having a good mechanical behavior which makes interesting its development as construction materials.Keywords: dam, fresh state, hardened state mud, sediments, self compacting concrete, valorization
Procedia PDF Downloads 515799 Printed Thai Character Recognition Using Particle Swarm Optimization Algorithm
Authors: Phawin Sangsuvan, Chutimet Srinilta
Abstract:
This Paper presents the applications of Particle Swarm Optimization (PSO) Method for Thai optical character recognition (OCR). OCR consists of the pre-processing, character recognition and post-processing. Before enter into recognition process. The Character must be “Prepped” by pre-processing process. The PSO is an optimization method that belongs to the swarm intelligence family based on the imitation of social behavior patterns of animals. Route of each particle is determined by an individual data among neighborhood particles. The interaction of the particles with neighbors is the advantage of Particle Swarm to determine the best solution. So PSO is interested by a lot of researchers in many difficult problems including character recognition. As the previous this research used a Projection Histogram to extract printed digits features and defined the simple Fitness Function for PSO. The results reveal that PSO gives 67.73% for testing dataset. So in the future there can be explored enhancement the better performance of PSO with improve the Fitness Function.Keywords: character recognition, histogram projection, particle swarm optimization, pattern recognition techniques
Procedia PDF Downloads 477798 Precipitation and Age Hardening in Al-Mg-Si-(Cu) Alloys for Automotive Body Sheet
Authors: Tahar Abid, Haoues Ghouss, Abdelhamid Boubertakh
Abstract:
This present work is focused on the hardening precipitation in two AlMgSi(Cu) automotive body sheets. The effect of pre-aging, aging treatment and 0.10 wt % copper addition on the hardening response was investigated using scanning calorimetry (DSC), transmission electron microscopy (TEM), and Vickers microhardness measurements (Hv). The results reveal the apparition of α-AlFeSi, α-AlFe(Mn)Si type precipitates frequently present and witch remain stable at high temperature in Al-Mg-Si alloys. Indeed, the hardening response in both sheets is certainly due to the predominance of very fine typical phases β' and β'' as rods and needles developed during aging with and without pre-aging. The effect of pre ageing just after homogenization and quenching is to correct the undesirable effect of aging at ambient temperature by making faster alloy hardening during artificial aging.The addition of 0.10 wt % copper has allowed to refine and to enhance the precipitation hardening after quenching.Keywords: AlMgSi alloys, precipitation, hardening, activation energy
Procedia PDF Downloads 91797 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 370796 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach
Authors: Vijay Kr. Yadav, Nilam Rathi
Abstract:
Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy
Procedia PDF Downloads 257795 Modeling of System Availability and Bayesian Analysis of Bivariate Distribution
Authors: Muhammad Farooq, Ahtasham Gul
Abstract:
To meet the desired standard, it is important to monitor and analyze different engineering processes to get desired output. The bivariate distributions got a lot of attention in recent years to describe the randomness of natural as well as artificial mechanisms. In this article, a bivariate model is constructed using two independent models developed by the nesting approach to study the effect of each component on reliability for better understanding. Further, the Bayes analysis of system availability is studied by considering prior parametric variations in the failure time and repair time distributions. Basic statistical characteristics of marginal distribution, like mean median and quantile function, are discussed. We use inverse Gamma prior to study its frequentist properties by conducting Monte Carlo Markov Chain (MCMC) sampling scheme.Keywords: reliability, system availability Weibull, inverse Lomax, Monte Carlo Markov Chain, Bayesian
Procedia PDF Downloads 72794 The Role of Tourism Industry in the Creation of Youth Employment Opportunities in Africa: A Case Study of Nigeria
Authors: Isiya Salihu Shinkafi
Abstract:
The focus of this paper is to elaborate on employment opportunities within the tourism sector and the solutions to youth unemployment in Africa and Nigeria in particular. Youth unemployment creates a monumental social problem to African continent, the world over and Nigeria in particular. The intelligence of this paper was collected from secondary sources using previews researches and analysis of scholars to gather empirical data. The findings revealed that unemployment in Africa and specifically Nigeria among youths were caused by certain factors which constitute a greater challenge to the economy and the existence of the continent. The tourism sector provides the enabling environment to address the different categories of unemployment among the youths. One of the unique characteristics of the tourism industry that makes it a prime sector from which employment can be engineered; especially in the case of the African countries, are its labour intensive characteristics of both experts, skilled, semi-skilled and unskilled labour.Keywords: tourism industry, employment opportunities, youth employment
Procedia PDF Downloads 509793 Numerical Simulation of Bio-Chemical Diffusion in Bone Scaffolds
Authors: Masoud Madadelahi, Amir Shamloo, Seyedeh Sara Salehi
Abstract:
Previously, some materials like solid metals and their alloys have been used as implants in human’s body. In order to amend fixation of these artificial hard human tissues, some porous structures have been introduced. In this way, tissues in vicinity of the porous structure can be attached more easily to the inserted implant. In particular, the porous bone scaffolds are useful since they can deliver important biomolecules like growth factors and proteins. This study focuses on the properties of the degradable porous hard tissues using a three-dimensional numerical Finite Element Method (FEM). The most important studied properties of these structures are diffusivity flux and concentration of different species like glucose, oxygen, and lactate. The process of cells migration into the scaffold is considered as a diffusion process, and related parameters are studied for different values of production/consumption rates.Keywords: bone scaffolds, diffusivity, numerical simulation, tissue engineering
Procedia PDF Downloads 385792 Schooling Culture in Egyptian Public Schools: Reform in Professional Development for Equity and hope in Education
Authors: Nora El-Bilawia
Abstract:
This paper discovers the challenges and/or opportunities to implementing multiple intelligence (MI) practices in English as foreign language (EFL) classrooms at Egyptian public schools as part of the government’s educational reform plan. It is found that Egyptian EFL teachers value the use of MI’s ways of teaching as means for active and higher order thinking. However, teachers believed they were underprivileged, as the government did not provide appropriate trainings, tools, or means to integrate MI in their daily lessons. They also conferred challenges they face due to some Egyptian schooling cultural practices. At the end of this chapter, a proposed need for a paradigm shift in the schooling culture in Egypt to implement practical changes in schools to promote hope in education such as the use of MI teaching tools. This study promotes cross-cultural understanding of educational opportunities and efforts for equal learning outcomes around the globe.Keywords: professional development, schooling culture, acculturation, equitable education
Procedia PDF Downloads 102791 Analytical Study of Data Mining Techniques for Software Quality Assurance
Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar
Abstract:
Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.Keywords: data mining, defect prediction, missing requirements, software quality
Procedia PDF Downloads 468790 Mapping of Potential Areas for Groundwater Storage in the Sais Plateau and Its Middle Atlas Borders, Morocco
Authors: Abdelghani Qadem, Zohair Qadem, Mohamed Lasri
Abstract:
At the level of the Moroccan Sais Plateau, groundwater constitutes strategic natural resources for agricultural, industrial, and domestic use. Today, due to climate change and population growth, the pressure on groundwater has increased considerably. This contribution aims to delineate and map potential areas for groundwater storage in the area in question using GIS and remote sensing. The methodology adopted is based on the identification of the thematic layers used to assess the potential recharge of the aquifer. The mapping of potential areas for groundwater storage is developed through the method of modeling and weighted overlay using the spatial analysis tool on the Geographic Information System. The results obtained can be used for the planning of future artificial recharge projects in the study area in order to ensure the good sustainable use of this underground gift.Keywords: Morocco, climate change, groundwater, mapping, recharge
Procedia PDF Downloads 83789 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 478788 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations
Authors: Boudemagh Naime
Abstract:
Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling
Procedia PDF Downloads 364