Search results for: textiles waste management
9950 Elasticity of Soil Fertility Indicators and pH in Termite Infested Cassava Field as Influenced by Tillage and Organic Manure Sources
Authors: K. O. Ogbedeh, T. T. Epidi, E. U. Onweremadu, E. E. Ihem
Abstract:
Apart from the devastating nature of termites as pest of cassava, nearly all termite species have been implicated in soil fertility modifications. Elasticity of soil fertility indicators and pH in termite infested cassava field as influenced by tillage and organic manure sources in Owerri, Southeast, Nigeria was investigated in this study. Three years of of field trials were conducted in 2007, 2008 and 2009 cropping seasons respectively at the Teaching and Research Farm of the Federal University of Technology, Owerri. The experiments were laid out in a 3x6 split-plot factorial arrangement fitted into a randomized complete block design (RCBD) with three replications. The TMS 4 (2)1425 was the cassava cultivar used. Treatments consists three tillage methods (zero, flat and mound), two rates of municipal waste (1.5 and 3.0tonnes/ha), two rates of Azadirachta indica (neem) leaves (20 and 30tonnes/ha), control (0.0 tonnes/ha) and a unit dose of carbofuran (chemical check). Data were collected on pre-planting soil physical and chemical properties, post-harvest soil pH (both in water and KCl) and residual total exchangeable bases (Ca, K, Mg and Na). These were analyzed using a Mixed-model procedure of Statistical Analysis Software (SAS). Means were separated using Least Significant Difference (LSD.) at 5% level of probability. Result shows that the native soil fertility status of the experimental site was poor. However soil pH increased substantially in plots where mounds, A.indica leaves at 30t/ha and municipal waste (1.5 and 3.0t/ha) were treated especially in 2008 and 2009. In 2007 trial, highest soil pH was maintained with flat (5.41 in water and 4.97 in KCl). Control on the other hand, recorded least soil pH especially in 2009 with values of 5.18 and 4.63 in water and KCl respectively. Equally, mound, A. indica leaves at 30t/ha and municipal waste at 3.0t/ha consistently increased organic matter content of the soil than other treatments. Finally, mound and A. indica leaves at 30t/ha linearly and consistently increased residual total exchangeable bases of the soil.Keywords: elasticity, fertility, indicators, termites, tillage, cassava and manure sources
Procedia PDF Downloads 3019949 Bio-Hub Ecosystems: Profitability through Circularity for Sustainable Forestry, Energy, Agriculture and Aquaculture
Authors: Kimberly Samaha
Abstract:
The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding biomass as a feedstock for power plants. Yet the lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. This study analyzed data and submittals to the Born Global Maine Innovation Challenge. The Innovation Challenge was a global innovation challenge to identify process innovations that could address a ‘whole-tree’ approach of maximizing the products, byproducts, energy value and process slip-streams into a circular zero-waste design. Participating companies were at various stages of developing bioproducts and included biofuels, lignin-based products, carbon capture platforms and biochar used as both a filtration medium and as a soil amendment product. This case study shows the QCA (Qualitative Comparative Analysis) methodology of the prequalification process and the resulting techno-economic model that was developed for the maximizing profitability of the Bio-Hub Ecosystem through continuous expansion of system waste streams into valuable process inputs for co-hosts. A full site plan for the integration of co-hosts (biorefinery, land-based shrimp and salmon aquaculture farms, a tomato green-house and a hops farm) at an operating forestry-based biomass to energy plant in West Enfield, Maine USA. This model and process for evaluating the profitability not only proposes models for integration of forestry, aquaculture and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. In this particular study, profitability is assessed at two levels CAPEX (Capital Expenditures) and in OPEX (Operating Expenditures). Given that these projects start with repurposing facilities where the industrial level infrastructure is already built, permitted and interconnected to the grid, the addition of co-hosts first realizes a dramatic reduction in permitting, development times and costs. In addition, using the biomass energy plant’s waste streams such as heat, hot water, CO₂ and fly ash as valuable inputs to their operations and a significant decrease in the OPEX costs, increasing overall profitability to each of the co-hosts bottom line. This case study utilizes a proprietary techno-economic model to demonstrate how utilizing waste streams of a biomass energy plant and/or biorefinery, results in significant reduction in OPEX for both the biomass plants and the agriculture and aquaculture co-hosts. Economically viable Bio-Hubs with favorable environmental and community impacts may prove critical in garnering local and federal government support for pilot programs and more wide-scale adoption, especially for those living in severely economically depressed rural areas where aging industrial sites have been shuttered and local economies devastated.Keywords: bio-economy, biomass energy, financing, zero-waste
Procedia PDF Downloads 1349948 Effect of the Magnetite Nanoparticles Concentration on Biogas and Methane Production from Chicken Litter
Authors: Guadalupe Stefanny Aguilar-Moreno, Miguel Angel Aguilar-Mendez, Teodoro Espinosa-Solares
Abstract:
In the agricultural sector, one of the main emitters of greenhouse gases is manure management, which has been increased considerably in recent years. Biogas is an energy source that can be produced from different organic materials through anaerobic digestion (AD); however, production efficiency is still low. Several techniques have been studied to increase its performance, such as co-digestion, the variation of digestion conditions, and nanomaterials used. Therefore, the aim of this investigation was to evaluate the effect of magnetite nanoparticles (NPs) concentration, synthesized by co-precipitation, on the biogas and methane production in AD using chicken litter as a substrate. Synthesis of NPs was performed according to the co-precipitation method, for which a fractional factorial experimental design 25⁻² with two replications was used. The study factors were concentrations (precursors and passivating), time of sonication and dissolution temperatures, and the response variables were size, hydrodynamic diameter (HD) and zeta potential. Subsequently, the treatment that presented the smallest NPs was chosen for their use on AD. The AD was established in serological bottles with a working volume of 250 mL, incubated at 36 ± 1 °C for 80 days. The treatments consisted of the addition of different concentrations of NPs in the microcosms: chicken litter only (control), 20 mg∙L⁻¹ of NPs + chicken litter, 40 mg∙L⁻¹ of NPs + chicken litter and 60 mg∙L⁻¹ of NPs + chicken litter, all by triplicate. Methane and biogas production were evaluated daily. The smallest HD (49.5 nm) and the most stable NPs (21.22 mV) were obtained with the highest passivating concentration and the lower precursors dissolution temperature, which were the only factors that had a significant effect on the HD. In the transmission electron microscopy performed to these NPs, an average size of 4.2 ± 0.73 nm was observed. The highest biogas and methane production was obtained with the treatment that had 20 mg∙L⁻¹ of NPs, being 29.5 and 73.9%, respectively, higher than the control, while the treatment with the highest concentration of NPs was not statistically different from the control. From the above, it can be concluded that the magnetite NPs promote the biogas and methane production in AD; however, high concentrations may cause inhibitory effects among methanogenic microorganisms.Keywords: agricultural sector, anaerobic digestion, nanotechnology, waste management
Procedia PDF Downloads 1379947 Arc Plasma Application for Solid Waste Processing
Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev
Abstract:
Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator
Procedia PDF Downloads 2509946 Sustainable Development in Orthodontics: Orthodontic Archwire Waste
Authors: Saarah Juman, Ilona Johnson, Stephen Richmond, Brett Duane, Sheelagh Rogers
Abstract:
Introduction: Researchers suggest that within 50 years or less, the available supply of a range of metals will be exhausted, potentially leading to increases in resource conflict and largescale production shortages. The healthcare, dental and orthodontic sectors will undoubtedly be affected as stainless steel instruments are generally heavily relied on. Although changing orthodontic archwires are unavoidable and necessary to allow orthodontic tooth movement through the progression of an archwire sequence with fixed appliances, they are thought to be manufactured in excess of what is needed. Furthermore, orthodontic archwires require trimming extraorally to allow safe intraoral insertion, thus contributing to unnecessary waste of natural resources. Currently, there is no evidence to support the optimisation of archwire length according to orthodontic fixed appliance stage. As such, this study aims to quantify archwire excess (extraoral archwire trimmings) for different stages of orthodontic fixed appliance treatment. Methodology: This prospective, observational, quantitative study observed trimmings made extraorally against pre-treatment study models by clinicians over a 3-month period. Archwires were categorised into one of three categories (initial aligning, sequence, working/finishing arcwhires) within the orthodontic fixed appliance archwire sequence. Data collection included archwire material composition and the corresponding length and weight of excess archwire. Data was entered using a Microsoft Excel spreadsheet and imported into statistical software to obtain simple descriptive statistics. Results: Measurements were obtained for a total of 144 archwires. Archwire materials included nickel titanium and stainless steel. All archwires observed required extraorally trimming to allow safe intraoral insertion. The manufactured lengths of orthodontic initial aligning, sequence, and working/finishing arcwhires were at least 31%, 26%, and 39% in excess, respectively. Conclusions: Orthodontic archwires are manufactured to be excessively long at all orthodontic archwire sequence stages. To conserve natural resources, this study’s findings support the optimisation of orthodontic archwire lengths by manufacturers according to the typical stages of an orthodontic archwire sequence.Keywords: archwire, orthodontics, sustainability, waste
Procedia PDF Downloads 1969945 Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed, and Temperature of Incubator Shaker
Authors: A. A. M. Azoddein, R. M. Yunus, N. M. Sulaiman, A. B. Bustary, K. Sabar
Abstract:
Microbes have been used to solve environmental problems for many years. The use microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Processes by which microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida, pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P.putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of Pseudomonas putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to reduce ionic mercury from mercury nitrate solution. The overall levels of mercury removal in this study were between 80% and 90%. The information obtained in this study is of fundamental for understanding of the survival of P.putida ATTC 49128 in mercury solution. Thus, microbial mercury environmental pollutants removal is a potential biological treatment for waste water treatment especially in petrochemical industries in Malaysia.Keywords: Pseudomonas putida, growth kinetic, biosorption, mercury, petrochemical waste water
Procedia PDF Downloads 6689944 Assessment of Drainage Water Quality in South Africa: Case Study of Vaal-Harts Irrigation Scheme
Authors: Josiah A. Adeyemo, Fred A. O. Otieno, Olumuyiwa I. Ojo
Abstract:
South Africa is water-stressed being a semi-arid country with limited annual rainfall supply and a lack of perennial streams. The future implications of population growth combined with the uncertainty of climate change are likely to have significant financial, human and ecological impacts on already scarce water resources. The waste water from the drainage canals of the Vaal-Harts irrigation scheme (VHS) located in Jan Kempdorp, a farming community in South Africa, were investigated for possible irrigation re-use and their effects on the immediate environment. Three major drains within the scheme were identified and sampled. Drainage water samples were analysed to determine its characteristics. The water samples analyzed had pH values in the range of 5.5 and 6.4 which is below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.09-0.82 dS/m). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. The nitrate concentration in most of the samples was high, ranging from 4.8 to 53 mg/l. The reuse of the drainage water for irrigation is possible, but with further treatment. Some suggestions were offered in the safe management of drainage water in VHS.Keywords: drainage canal, water quality, irrigation, pollutants, environment
Procedia PDF Downloads 3359943 A Universal Approach to Categorize Failures in Production
Authors: Konja Knüppel, Gerrit Meyer, Peter Nyhuis
Abstract:
The increasing interconnectedness and complexity of production processes raise the susceptibility of production systems to failure. Therefore, the ability to respond quickly to failures is increasingly becoming a competitive factor. The research project "Sustainable failure management in manufacturing SMEs" is developing a methodology to identify failures in the production and select preventive and reactive measures in order to correct failures and to establish sustainable failure management systems.Keywords: failure categorization, failure management, logistic performance, production optimization
Procedia PDF Downloads 3749942 Assessing the Effect of Waste-based Geopolymer on Asphalt Binders
Authors: Amani A. Saleh, Maram M. Saudy, Mohamed N. AbouZeid
Abstract:
Asphalt cement concrete is a very commonly used material in the construction of roads. It has many advantages, such as being easy to use as well as providing high user satisfaction in terms of comfortability and safety on the road. However, there are some problems that come with asphalt cement concrete, such as its high carbon footprint, which makes it environmentally unfriendly. In addition, pavements require frequent maintenance, which could be very costly and uneconomic. The aim of this research is to study the effect of mixing waste-based geopolymers with asphalt binders. Geopolymer mixes were prepared by combining alumino-silicate sources such as fly ash, silica fumes, and metakaolin with alkali activators. The purpose of mixing geopolymers with the asphalt binder is to enhance the rheological and microstructural properties of asphalt. This was done through two phases, where the first phase was developing an optimum mix design of the geopolymer additive itself. The following phase was testing the geopolymer-modified asphalt binder after the addition of the optimum geopolymer mix design to it. The testing of the modified binder is performed according to the Superpave testing procedures, which include the dynamic shear rheometer to measure parameters such as rutting and fatigue cracking, and the rotational viscometer to measure workability. In addition, the microstructural properties of the modified binder is studied using the environmental scanning electron microscopy test (ESEM). In the testing phase, the aim is to observe whether the addition of different geopolymer percentages to the asphalt binder will enhance the properties of the binder and yield desirable results. Furthermore, the tests on the geopolymer-modified binder were carried out at fixed time intervals, therefore, the curing time was the main parameter being tested in this research. It was observed that the addition of geopolymers to asphalt binder has shown an increased performance of asphalt binder with time. It is worth mentioning that carbon emissions are expected to be reduced since geopolymers are environmentally friendly materials that minimize carbon emissions and lead to a more sustainable environment. Additionally, the use of industrial by-products such as fly ash and silica fumes is beneficial in the sense that they are recycled into producing geopolymers instead of being accumulated in landfills and therefore wasting space.Keywords: geopolymer, rutting, superpave, fatigue cracking, sustainability, waste
Procedia PDF Downloads 1299941 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis
Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe
Abstract:
Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism
Procedia PDF Downloads 1459940 Architectural Building Safety and Health Performance Model for Stratified Low-Cost Housing: Education and Management Tool for Building Managers
Authors: Zainal Abidin Akasah, Maizam Alias, Azuin Ramli
Abstract:
The safety and health performances aspects of a building are the most challenging aspect of facility management. It requires a deep understanding by the building managers on the factors that contribute to health and safety performances. This study attempted to develop an explanatory architectural safety performance model for stratified low-cost housing in Malaysia. The proposed Building Safety and Health Performance (BSHP) model was tested empirically through a survey on 308 construction practitioners using Partial Least Squares (PLS) and Structural Equation Modelling (SEM) tool. Statistical analysis results supports the conclusion that architecture, building services, external environment, management approaches and maintenance management have positive influence on safety and health performance of stratified low-cost housing in Malaysia. The findings provide valuable insights for construction industry to introduce BSHP model in the future where the model could be used as a guideline for training purposes of managers and better planning and implementation of building management.Keywords: building management, stratified low-cost housing, safety, health model
Procedia PDF Downloads 5569939 GIS Based Project Management Information System for Infrastructure Projects
Authors: Riki Panchal, Debasis Sarkar
Abstract:
This paper describes the work done for the GIS-based project management for different infrastructure projects. It is a review paper which gives the idea of the trends in the construction project management and various models adopted for the betterment of the project planning and execution. Traditional scheduling and progress control techniques such as bar charts and the critical path method fail to provide information pertaining to the spatial aspects of a construction project. An integrated system was developed to represent construction progress not only in terms of a CPM schedule but also in terms of a graphical representation of the construction that is synchronized with the work schedule. Hence, it is suggested to work on the common platform from where all the data can be shared and analyzed.Keywords: GIS, project management, integrated model, infrastructure project
Procedia PDF Downloads 5199938 Application of Customer Relationship Management Systems in Business: Challenges and Opportunities
Authors: K. Liagkouras, K. Metaxiotis
Abstract:
Customer relationship management (CRM) systems in business are a reality of the contemporary business world for the last decade or so. Still, there are grey areas regarding the successful implementation and operation of CRM systems in business. This paper, through the systematic study of the CRM implementation paradigm, attempts to identify the most important challenges and opportunities that the CRM systems face in a rapidly changing business world.Keywords: customer relationship management, CRM, business, literature review
Procedia PDF Downloads 5129937 The Rail Traffic Management with Usage of C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
This paper presents development results of usage of C-OTDR monitoring systems for rail traffic management. The C-OTDR method is based on vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes which take place due to microscopic seismoacoustic impacts on the optical fiber allows to determine seismoacoustic emission source positions and to identify their types. This approach proved successful for rail traffic management (moving block system, weigh- in-motion system etc).Keywords: C-OTDR systems, moving block-sections, rail traffic management, Rayleigh backscattering, weigh-in-motion
Procedia PDF Downloads 5849936 The Use of Sustainable Tourism, Decrease Performance Levels, and Change Management for Image Branding as a Contemporary Tool of Foreign Policy
Authors: Mehtab Alam
Abstract:
Sustainable tourism practices require to improve the decreased performance levels in phases of change management for image branding. This paper addresses the innovative approach of using sustainable tourism for image branding as a contemporary tool of foreign policy. The sustainable tourism-based foreign policy promotes cultural values, green tourism, economy, and image management for the avoidance of rising global conflict. The mixed-method approach (quantitative 382 surveys, qualitative 11 interviews at saturation point) implied for the data analysis. The research finding provides the potential of using sustainable tourism by implying skills and knowledge, capacity, and personal factors of change management in improving tourism-based performance levels. It includes the valuable tourism performance role for the success of a foreign policy through sustainable tourism. Change management in tourism-based foreign policy provides the destination readiness for international engagement and curbing of climate issues through green tourism. The research recommends the impact of change management in improving the tourism-based performance levels of image branding for a coercive foreign policy. The paper’s future direction for the immediate implementation of tourism-based foreign policy is to overcome the contemporary issues of travel marketing management, green infrastructure, and cross-border regulation.Keywords: decrease performance levels, change management, sustainable tourism, image branding, foreign policy
Procedia PDF Downloads 1249935 Sustainable Reinforcement: Investigating the Mechanical Properties of Concrete with Recycled Aggregates and Sisal Fibers
Authors: Salahaldein Alsadey, Issa Amaish
Abstract:
Recycled aggregates (RA) have the potential to compromise concrete performance, contributing to issues such as reduced strength and increased susceptibility to cracking. This study investigates the impact of sisal fiber (SF) on the mechanical properties of concrete, with the objective of utilizing sisal fibers as a reinforcing element in concrete compositions containing natural aggregate and varying percentages (25%, 50%, and 75%) of coarse recycled aggregate replacement. The investigation aims to discern the positive and negative effects on compressive and flexural strength, thereby assessing the viability of sisal fiber-reinforced recycled concrete in comparison to conventional concrete composed of natural aggregate without sisal fiber. Test results revealed that concrete samples incorporating sisal fiber exhibited elevated compressive and flexural strength. Comparative analysis of these strength values was conducted with reference to samples devoid of sisal fiber.Keywords: sustainable construction, construction materials, recycled aggregate, sisal fibers, compressive strength, flexural strength, eco-friendly concrete, natural fiber composites, recycled materials, construction waste management
Procedia PDF Downloads 739934 Designing AI-Enabled Smart Maintenance Scheduler: Enhancing Object Reliability through Automated Management
Authors: Arun Prasad Jaganathan
Abstract:
In today's rapidly evolving technological landscape, the need for efficient and proactive maintenance management solutions has become increasingly evident across various industries. Traditional approaches often suffer from drawbacks such as reactive strategies, leading to potential downtime, increased costs, and decreased operational efficiency. In response to these challenges, this paper proposes an AI-enabled approach to object-based maintenance management aimed at enhancing reliability and efficiency. The paper contributes to the growing body of research on AI-driven maintenance management systems, highlighting the transformative impact of intelligent technologies on enhancing object reliability and operational efficiency.Keywords: AI, machine learning, predictive maintenance, object-based maintenance, expert team scheduling
Procedia PDF Downloads 589933 Secure Intelligent Information Management by Using a Framework of Virtual Phones-On Cloud Computation
Authors: Mohammad Hadi Khorashadi Zadeh
Abstract:
Many new applications and internet services have been emerged since the innovation of mobile networks and devices. However, these applications have problems of security, management, and performance in business environments. Cloud systems provide information transfer, management facilities, and security for virtual environments. Therefore, an innovative internet service and a business model are proposed in the present study for creating a secure and consolidated environment for managing the mobile information of organizations based on cloud virtual phones (CVP) infrastructures. Using this method, users can run Android and web applications in the cloud which enhance performance by connecting to other CVP users and increases privacy. It is possible to combine the CVP with distributed protocols and central control which mimics the behavior of human societies. This mix helps in dealing with sensitive data in mobile devices and facilitates data management with less application overhead.Keywords: BYOD, mobile cloud computing, mobile security, information management
Procedia PDF Downloads 3179932 Development of Carrageenan-Psyllium/Montmorillonite Clay Hybrid Hydrogels for Agriculture Purpose
Authors: D. Aydinoglu, N. Karaca, O. Ceylan
Abstract:
Limited water resources on the earth come first among the most alarming issues. In this respect, several solutions from treatment of waste water to water management have been proposed. Recently, use of hydrogels as soil additive, which is one of the water management ways in agriculture, has gained increasing interest. In traditional agriculture applications, water used with irrigation aim, rapidly flows down between the pore structures in soil, without enough useful for soil. To overcome this fact and increase the abovementioned limit values, recently, several natural based hydrogels have been suggested and tested to find out their efficiency in soil. However, most of these researches have dealt with grafting of synthetic acrylate based monomers on natural gelling agents, most probably due to reinforced of the natural gels. These results motivated us to search a natural based hydrogel formulations, not including any synthetic component, and strengthened with montmorillonite clay instead of any grafting polymerization with synthetic monomer and examine their potential in this field, as well as characterize of them. With this purpose, carrageenan-psyllium/ montmorillonite hybrid hydrogels have been successively prepared. Their swelling capacities were determined both in deionized and tap water and were found to be dependent on the carrageenan, psyllium and montmorillonite ratios, as well as the water type. On the other hand, mechanical tests revealed that especially carrageenan and montmorillonite contents have a great effect on gel strength, which is one of the essential features, preventing the gels from cracking resulted in readily outflow of all the water in the gel without beneficial for soil. They found to reach 0.23 MPa. The experiments carried out with soil indicated that hydrogels significantly improved the water uptake capacities and water retention degrees of the soil from 49 g to 85 g per g of soil and from 32 to 67%, respectively, depending on the ingredient ratios. Also, biodegradation tests demonstrated that all the hydrogels undergo biodegradation, as expected from their natural origin. The overall results suggested that these hybrid hydrogels have a potential for use as soil additive and can be safely used owing to their totally natural structure.Keywords: carrageenan, hydrogel, montmorillonite, psyllium
Procedia PDF Downloads 1159931 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production
Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara
Abstract:
Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management
Procedia PDF Downloads 4919930 Solar-Electric Pump-out Boat Technology: Impacts on the Marine Environment, Public Health, and Climate Change
Authors: Joy Chiu, Colin Hemez, Emma Ryan, Jia Sun, Robert Dubrow, Michael Pascucilla
Abstract:
The popularity of recreational boating is on the rise in the United States, which raises numerous national-level challenges in the management of air and water pollution, aquatic habitat destruction, and waterway access. The need to control sewage discharge from recreational vessels underlies all of these challenges. The release of raw human waste into aquatic environments can lead to eutrophication and algal blooms; can increase human exposure to pathogenic viruses, bacteria, and parasites; can financially impact commercial shellfish harvest/fisheries and marine bathing areas; and can negatively affect access to recreational and/or commercial waterways to the detriment of local economies. Because of the damage that unregulated sewage discharge can do to environments and human health/marine life, recreational vessels in the United States are required by law to 'pump-out' sewage from their holding tanks into sewage treatment systems in all designated 'no discharge areas'. Many pump-out boats, which transfer waste out of recreational vessels, are operated and maintained using funds allocated through the Federal Clean Vessel Act (CVA). The East Shore District Health Department of Branford, Connecticut is protecting this estuary by pioneering the design and construction of the first-in-the-nation zero-emissions, the solar-electric pump-out boat of its size to replace one of its older traditional gasoline-powered models through a Connecticut Department of Energy and Environmental Protection CVA Grant. This study, conducted in collaboration with the East Shore District Health Department, the Connecticut Department of Energy and Environmental Protection, States Organization for Boating Access and Connecticut’s CVA program coordinators, had two aims: (1) To perform a national assessment of pump-out boat programs, supplemented by a limited international assessment, to establish best pump-out boat practices (regardless of how the boat is powered); and (2) to estimate the cost, greenhouse gas emissions, and environmental and public health impacts of solar-electric versus traditional gasoline-powered pump-out boats. A national survey was conducted of all CVA-funded pump-out program managers and selected pump-out boat operators to gauge best practices; costs associated with gasoline-powered pump-out boat operation and management; and the regional, cultural, and policy-related issues that might arise from the adoption of solar-electric pump-out boat technology. We also conducted life-cycle analyses of gasoline-powered and solar-electric pump-out boats to compare their greenhouse gas emissions; production of air, soil and water pollution; and impacts on human health. This work comprises the most comprehensive study into pump-out boating practices in the United States to date, in which information obtained at local, state, national, and international levels is synthesized. This study aims to enable CVA programs to make informed recommendations for sustainable pump-out boating practices and identifies the challenges and opportunities that remain for the wide adoption of solar-electric pump-out boat technology.Keywords: pump-out boat, marine water, solar-electric, zero emissions
Procedia PDF Downloads 1289929 Utilization of Waste Glass Powder in Mortar
Authors: Suhaib Salahuddin Alzubair Suliman
Abstract:
This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars.Keywords: glass powder, pozzolana, compressive strength, flexural strength, mortar
Procedia PDF Downloads 709928 Performance Evaluation of Construction Projects by Earned Value Management Method, Using Primavera P6 – A Case Study in Istanbul, Turkey
Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali
Abstract:
Most of the construction projects are exposed to time and cost overruns due to various factors and this is a major problem. As a solution to this, the Earned Value Management (EVM) method is considered. EVM is a powerful and well-known method used in monitoring and controlling the project. EVM is a technique that project managers use to track the performance of their project against project baselines. EVM gives an early indication that either project is delayed or not, and the project is either over budget or under budget at any particular day by tracking it. Thus, it helps to improve the management control system of a construction project, to detect and control the problems in potential risk areas and to suggest the importance and purpose of monitoring the construction work. This paper explains the main parameters of the EVM system involved in the calculation of time and cost for construction projects. In this study, the project management software Primavera P6 is used to deals with the project monitoring process of a seven-storeyed (G+6) faculty building whose construction is in progress at Istanbul, Turkey. A comparison between the planned progress of construction activities and actual progress is performed, and the analysis results are interpreted. This case study justifies the benefits of using EVM for project cash flow analysis and forecasting.Keywords: earned value management (EVM), construction cost management, construction planning, primavera P6, project management, project scheduling
Procedia PDF Downloads 2439927 Motivation and Efficiency of Quality Management Systems Implementation: A Study of Kosovo Organizations
Authors: Naim Ismajli, Ilir Rexhepi
Abstract:
The article presents the results of the study about the motives and efficiency of quality management system (Quality System, QS) implementation in Kosovo companies. The main purpose of the study was to find out why Kosovo companies seek the implementation and certification of QS in accordance with the requirements of the ISO 9001 series of the standards and what has changed after the QS implementation. Furthermore, the results of the research were compared with similar performed in the other European countries. The performed research revealed that the implementation of QS mostly results in the benefits of an intangible nature that are internal to the company. In addition, although the main reasons to start implementing QS are the expectations of the external advantages, the implementation results mostly in the increase of the internal benefits such as an improvement in the definition of the responsibilities and obligations of the employees, a decrease in the nonconformities, better communication among the employees, and increased efficiency.Keywords: quality management systems, ISO 9001, total quality management, environmental management system, ISO 14000, competitiveness, efciency
Procedia PDF Downloads 3659926 Risk Management in Islamic Banks: A Case Study of the Faisal Islamic Bank of Egypt
Authors: Mohamed Saad Ahmed Hussien
Abstract:
This paper discusses the risk management in Islamic banks and aims to determine the difference in the practices and methods of risk management in those banks compared to the conventional banks, and to make a case study of the biggest Islamic bank in Egypt (Faisal Islamic Bank of Egypt) to identify the most important financial risks faced and how to manage those risks. It was found that Islamic banks face two types of risks. The first type is similar to the risks in conventional banks; the second type is the additional risks which facing the Islamic banks only as a result of some Islamic modes of financing. With regard to the risk management, Islamic banks such as conventional banks applied the regulatory rules issued by the Central Banks and the Basel Committee; Islamic banks also applied the instructions and procedures issued by the Islamic Financial Services Board (IFSB). Also, Islamic banks are similar to the conventional banks in the practices and methods which they use to manage the risks. And there are some factors that may affect the risk management in Islamic banks, such as the size of the bank and the efficiency of the administration and the staff of the bank.Keywords: conventional banks, Faisal Islamic Bank of Egypt, Islamic banks, risk management
Procedia PDF Downloads 4599925 Impact of Pulsing and Trickle Flow on Catalytic Wet Air Oxidation of Phenolic Compounds in Waste Water at High Pressure
Authors: Safa'a M. Rasheed, Saba A. Gheni, Wadood T. Mohamed
Abstract:
Phenolic compounds are the most carcinogenic pollutants in waste water in effluents of refineries and pulp industry. Catalytic wet air oxidation is an efficient industrial treatment process to oxidize phenolic compounds into unharmful organic compounds. Mode of flow of the fluid to be treated is a dominant factor in determining effectiveness of the catalytic process. The present study aims to obtain a mathematical model describing the conversion of phenolic compounds as a function of the process variables; mode of flow (trickling and pulsing), temperature, pressure, along with a high concentration of phenols and a platinum supported alumina catalyst. The model was validated with the results of experiments obtained in a fixed bed reactor. High pressure and temperature were employed at 8 bar and 140 °C. It has been found that conversion of phenols is highly influenced by mode of flow and the change is caused by changes occurred in hydrodynamic regime at the time of pulsing flow mode, thereby a temporal variation in wetting efficiency of platinum prevails; which in turn increases and/or decreases contact time with phenols in wastewater. The model obtained was validated with experimental results, and it is found that the model is a good agreement with the experimental results.Keywords: wastewater, phenol, pulsing flow, wet oxidation, high pressure
Procedia PDF Downloads 1379924 Comparing Bestseller Books in Japanese Public Libraries Managed by Outsourcing and by Local Governments
Authors: Yuhiro Mizunuma, Keita Tsuji
Abstract:
In Japan, local governments have long managed public libraries; however, organizations including private enterprises took over their management with the introduction of an outsourcing system in 2003. Now, whether local governments should apply this system to public libraries is under discussion, and many argue that it is inappropriate for public libraries. In this study, to provide basic data for such discussions, the differences between public libraries managed by outsourcing (henceforth, 'outsourcing libraries') and those managed directly by local governments (henceforth 'direct management libraries') were examined, focusing on bestsellers. We chose the 435 books on the top-20 bestseller lists published from 1996 to 2015 inclusive, as our sample bestseller books; and 413 outsourcing libraries' and 2,619 direct management libraries' holdings of them were investigated using the Calil API (a free Web service that can perform cross-library searches on libraries in Japan). Results show that outsourcing libraries tend to hold fewer bestsellers than direct management libraries. It was also found that direct management libraries tend to hold many duplicates of bestsellers, and that, in many cases, many of those were not being borrowed in direct management libraries.Keywords: bestseller books, book collection, Japanese public libraries, outsourcing
Procedia PDF Downloads 2169923 An Overview of Risk Types and Risk Management Strategies to Improve Financial Performance
Authors: Azar Baghtaghi
Abstract:
Financial risk management is critically important as it enables companies to maintain stability and profitability amidst market fluctuations and unexpected events. It involves the precise identification of risks that could impact investments, assets, and potential revenues. By implementing effective risk management strategies, companies can insure themselves against adverse market changes and prevent potential losses. In today's era, where markets are highly complex and influenced by various factors such as macroeconomic policies, exchange rate fluctuations, and natural disasters, the need for meticulous planning to cope with these uncertainties is more pronounced. Ultimately, financial risk management means being prepared for the future and the ability to sustain business in changing environments. A company capable of managing its risks not only achieves sustainable profitability but also gains the confidence of shareholders, investors, and business partners, enhancing its competitive position in the market. In this article, the types of financial risk and risk management strategies for improving financial performance were investigated. By identifying the risks stated in this article and their evaluation techniques, it is possible to improve the organization's financial performance.Keywords: strategy, risk, risk management, financial performance.
Procedia PDF Downloads 99922 Management of First Trimester Miscarriage
Authors: Madeleine Cox
Abstract:
Objective; analyse patient choices in management of first trimester miscarriage, rates of complications including repeat procedure. Design: all first trimester miscarriages from a tertiary institution on the Gold Coast in a 6 month time frame (July to December 2021) were reviewed, including choice of management, histopathology, any representations or admissions, and potential complications. Results: a total of 224 first trimester miscarriages were identified. Of these, 183 (81%) opted to have surgical management in the first instance. Of the remaining patients, 18 (8%) opted to have medical management, and 28 (12.5%) opted to have expectant management. In total, 33(15%) patients required a repeat treatment for retained products. 1 had medical management for a small volume PROC post suction curette. A significant number of these patients initially opted for medical management but then elected to have shorter follow up than usual and went on to have retained products noted. 5 women who had small volumes of RPOC post medical or surgical management had repeat suction curette, however, had very small volumes of products on scan and on curette and may have had a good result with repeated misoprostol administration. It is important to note that whilst a common procedure, suction curettes are not without risk. 2 women had significant blood loss of 1L and 1.5L. A third women had a uterine perforation, a rare but recognised complication, she went on to require a laparoscopy which identified a small serosal bowel injury which was closed by the colorectal team. Conclusion: Management of first trimester miscarriage should be guided by patient preference. It is important to be able to provide patients with their choice of management, however, it is also important to have a good understanding of the risks of each management choice, chances of repeated procedure, appropriate time frame for follow up. Women who choose to undertake medical or expectant management should be supported through this time, with appropriate time frame between taking misoprostol and repeat scan so that the true effects can be evaluated. Patients returning for scans within 2-3 days are more likely to be booked for further surgery, however, may reflect patients who did not have adequate counselling or simply changed their mind on their preferred management options.Keywords: miscarriage, gynaecology, obstetrics, first trimester
Procedia PDF Downloads 1019921 Impact of El-Matrouha Landfill on Oued El-Kebir (North East of Algeria)
Authors: Mohamed Djalil Zaafour, Samir Chekchaki, Mohamed Benslama
Abstract:
The Landfill of El Matrouha is located in El-Tarf town (extreme north east of Algeria), the Landfill is present as a gigantic wild dump. This waste dump occupies an area of over four hectares, tons of rubbish that is sent daily are scattered over kilometers, reaching farmland located west of the town, the landfill is close to a temporary Oued, which supply Oued Guergour the last tributary Oued El Kebir. The landfills are causing serious environmental damage, following the infiltration of leachates, which contribute to the degradation of water quality, in the context of this problem, the purpose of the work is focused on assessing the impact of this landfill on Oued El-Kebir, for this a series of sampling and analysis of the soil and water of this Oued was performed; The results show that the soil collected reveal the sandy texture facilitating infiltration and percolation of leachate from the landfill; the physicochemical analysis of the quality of the river water reveals high levels of sulfates in fact this element is one of the essential constituents of the mineral fraction of the waste presenting a risk of pollution by this element, The recorded values for nutrients are sub-standard, for trace elements analysis shows very low metal load on the river except for lead, which is present at high concentrations exceeding all standard.Keywords: Algeria, landfill, leachates, Oued El-kebir
Procedia PDF Downloads 369