Search results for: surface functionalization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6687

Search results for: surface functionalization

4887 Urban Impervious and its Impact on Storm Water Drainage Systems

Authors: Ratul Das, Udit Narayan Das

Abstract:

Surface imperviousness in urban area brings significant changes in storm water drainage systems and some recent studies reveals that the impervious surfaces that passes the storm water runoff directly to drainage systems through storm water collection systems, called directly connected impervious area (DCIA) is an effective parameter rather than total impervious areas (TIA) for computation of surface runoff. In the present study, extension of DCIA and TIA were computed for a small sub-urban area of Agartala, the capital of state Tripura. Total impervious surfaces covering the study area were identified on the existing storm water drainage map from landuse map of the study area in association with field assessments. Also, DCIA assessed through field survey were compared to DCIA computed by empirical relationships provided by other investigators. For the assessment of DCIA in the study area two methods were adopted. First, partitioning the study area into four drainage sub-zones based on average basin slope and laying of existing storm water drainage systems. In the second method, the entire study area was divided into small grids. Each grid or parcel comprised of 20m× 20m area. Total impervious surfaces were delineated from landuse map in association with on-site assessments for efficient determination of DCIA within each sub-area and grid. There was a wide variation in percent connectivity of TIA across each sub-drainage zone and grid. In the present study, total impervious area comprises 36.23% of the study area, in which 21.85% of the total study area is connected to storm water collection systems. Total pervious area (TPA) and others comprise 53.20% and 10.56% of the total area, respectively. TIA recorded by field assessment (36.23%) was considerably higher than that calculated from the available land use map (22%). From the analysis of recoded data, it is observed that the average percentage of connectivity (% DCIA with respect to TIA) is 60.31 %. The analysis also reveals that the observed DCIA lies below the line of optimal impervious surface connectivity for a sub-urban area provided by other investigators and which indicate the probable reason of water logging conditions in many parts of the study area during monsoon period.

Keywords: Drainage, imperviousness, runoff, storm water.

Procedia PDF Downloads 351
4886 A Numerical Study for Mixing Depth and Applicability of Partial Cement Mixing Method Utilizing Geogrid and Fixing Unit

Authors: Woo-seok Choi, Eun-sup Kim, Nam-Seo Park

Abstract:

The demand for new technique in soft ground improvement continuously increases as general soft ground methods like PBD and DCM have a application problem in soft grounds with deep depth and wide distribution in Southern coast of Korea and Southeast. In this study, partial cement mixing method utilizing geogrid and fixing unit(CMG) is suggested and Finite element analysis is performed for analyzing the depth of surface soil and deep soil stabilization and comparing with DCM method. In the result of the experiment, the displacement in DCM method were lower than the displacement in CMG, it's because the upper load is transferred to deep part soil not treated by cement in CMG method case. The differential settlement in DCM method was higher than the differential settlement in CMG, because of the effect load transfer effect by surface part soil treated by cement and geogrid. In conclusion, CMG method has the advantage of economics and constructability in embankment road, railway, etc in which differential settlement is the important consideration.

Keywords: soft ground, geogrid, fixing unit, partial cement mixing, finite element analysis

Procedia PDF Downloads 379
4885 Dielectric Spectroscopy Investigation of Hydrophobic Silica Aerogel

Authors: Deniz Bozoglu, Deniz Deger, Kemal Ulutas, Sahin Yakut

Abstract:

In recent years, silica aerogels have attracted great attention due to their outstanding properties, and their wide variety of potential applications such as microelectronics, nuclear and high-energy physics, optics and acoustics, superconductivity, space-physics. Hydrophobic silica aerogels were successfully synthesized in one-step by surface modification at ambient pressure. FT-IR result confirmed that Si-OH groups were successfully converted into hydrophobic and non-polar Si-CH3 groups by surface modification using trimethylchloro silane (TMCS) as co-precursor. Using Alpha-A High-Resolution Dielectric, Conductivity and Impedance Analyzer, AC conductivity of samples were examined at temperature range 293-423 K and measured over frequency range between 1-106 Hz. The characteristic relaxation time decreases with increasing temperature. The AC conductivity follows σ_AC (ω)=σ_t-σ_DC=Aω^s relation at frequencies higher than 10 Hz, and the dominant conduction mechanism is found to obey the Correlated Barrier Hopping (CBH) mechanism. At frequencies lower than 10 Hz, the electrical conduction is found to be in accordance with DC conduction mechanism. The activation energies obtained from AC conductivity results and it was observed two relaxation regions.

Keywords: aerogel, synthesis, dielectric constant, dielectric loss, relaxation time

Procedia PDF Downloads 190
4884 Numerical Multi-Scale Modeling of Rubber Friction on Rough Pavements Using Finite Element Method

Authors: Ashkan Nazari, Saied Taheri

Abstract:

Knowledge of tire-pavement interaction plays a crucial role in designing safer and more reliable tires. Characterizing the tire-pavement frictional interaction leads to a better understanding of vehicle performance in braking and acceleration. In this work, we devise a multi-scale simulation approach to incorporate the effect of pavement surface asperities in different length-scales. We construct two- and three-dimensional Finite Element (FE) models to simulate the interaction between a rubber block and a rough pavement surface with asperities in different scales. To achieve this, the road profile is scanned via a laser profilometer and the obtained asperities are implemented in an FE software (ABAQUS) in micro and macro length-scales. The hysteresis friction, which is due to the dissipative nature of rubber, is the main component of the friction force and therefore is the subject of study in this work. Using different scales not only will assist in characterizing the pavement asperities with sufficient details but also, it is highly effective in preventing extreme local deformations and stress gradients which results in divergence in FE simulations. The simulation results will be validated with experimental results as well as the results reported in the literature.

Keywords: friction, finite element, multi-scale modeling, rubber

Procedia PDF Downloads 137
4883 Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array

Authors: P. Behera, K. K. Singh, D. K. Saini, M. De

Abstract:

Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis.

Keywords: array-based sensing, drug resistant bacteria, linear discriminant analysis, two-dimensional MoS₂

Procedia PDF Downloads 144
4882 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy

Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang

Abstract:

This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.

Keywords: liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion

Procedia PDF Downloads 577
4881 A Systematic Approach to Mitigate the Impact of Increased Temperature and Air Pollution in Urban Settings

Authors: Samain Sabrin, Joshua Pratt, Joshua Bryk, Maryam Karimi

Abstract:

Globally, extreme heat events have led to a surge in the number of heat-related moralities. These incidents are further exacerbated in high-density population centers due to the Urban Heat Island (UHI) effect. Varieties of anthropogenic activities such as unsupervised land surface modifications, expansion of impervious areas, and lack of use of vegetation are all contributors to an increase in the amount of heat flux trapped by an urban canopy which intensifies the UHI effect. This project aims to propose a systematic approach to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (mean radiant temperature, Tmrt). We utilized the Rayman model (capable of calculating short and long wave radiation fluxes affecting the human body) to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning, and street design. Our current results suggest a strong correlation between building height and increased surface temperature in megacities. This model will help with; 1. Quantify the impacts of the built environment and surface properties on surrounding temperature, 2. Identify priority urban neighborhoods by analyzing Tmrt and air quality data at pedestrian level, 3. Characterizing the need for urban green infrastructure or better urban planning- maximizing the cooling benefit from existing Urban Green Infrastructure (UGI), and 4. Developing a hierarchy of streets for new UGI integration and propose new UGI based on site characteristics and cooling potential.

Keywords: air quality, heat mitigation, human-biometeorological indices, increased temperature, mean radiant temperature, radiation flux, sustainable development, thermal comfort, urban canopy, urban planning

Procedia PDF Downloads 143
4880 Evaluation of Deteriorated Fired Clay Bricks Based on Schmidt Hammer Tests

Authors: Laurent Debailleux

Abstract:

Although past research has focused on parameters influencing the vulnerability of brick and its decay, in practice ancient fired clay bricks are usually replaced without any particular assessment of their characteristics. This paper presents results of non-destructive Schmidt hammer tests performed on ancient fired clay bricks sampled from historic masonry. Samples under study were manufactured between the 18th and 20th century and came from facades and interior walls. Tests were performed on three distinct brick surfaces, depending on their position within the masonry unit. Schmidt hammer tests were carried out in order to measure the mean rebound value (Rn), which refers to the resistance of the surface to successive impacts of the hammer plunger tip. Results indicate that rebound values increased with successive impacts at the same point. Therefore, mean Schmidt hammer rebound values (Rn), limited to the first impact on a surface minimises the estimation of compressive strength. In addition, the results illustrate that this technique is sensitive enough to measure weathering differences, even for different surfaces of a particular sample. Finally, the paper also highlights the relevance of considering the position of the brick within the masonry when conducting particular assessments of the material’s strength.

Keywords: brick, non-destructive tests, rebound number, Schmidt hammer, weathering grade

Procedia PDF Downloads 161
4879 Comparison of the Toxicity of Silver and Gold Nanoparticles in Murine Fibroblasts

Authors: Šárka Hradilová, Aleš Panáček, Radek Zbořil

Abstract:

Nanotechnologies are considered the most promising fields with high added value, brings new possibilities in various sectors from industry to medicine. With the growing of interest in nanomaterials and their applications, increasing nanoparticle production leads to increased exposure of people and environment with ‘human made’ nanoparticles. Nanoparticles (NPs) are clusters of atoms in the size range of 1–100 nm. Metal nanoparticles represent one of the most important and frequently used types of NPs due to their unique physical, chemical and biological properties, which significantly differ from those of bulk material. Biological properties including toxicity of metal nanoparticles are generally determined by their size, size distribution, shape, surface area, surface charge, surface chemistry, stability in the environment and ability to release metal ions. Therefore, the biological behavior of NPs and their possible adverse effect cannot be derived from the bulk form of material because nanoparticles show unique properties and interactions with biological systems just due to their nanodimensions. Silver and gold NPs are intensively studied and used. Both can be used for instance in surface enhanced Raman spectroscopy, a considerable number of applications of silver NPs is associated with antibacterial effects, while gold NPs are associated with cancer treatment and bio imaging. Antibacterial effects of silver ions are known for centuries. Silver ions and silver-based compounds are highly toxic to microorganisms. Toxic properties of silver NPs are intensively studied, but the mechanism of cytoxicity is not fully understood. While silver NPs are considered toxic, gold NPs are referred to as toxic but also innocuous for eukaryotic cells. Therefore, gold NPs are used in various biological applications without a risk of cell damaging, even when we want to suppress the growth of cancer cells. Thus, gold NPs are toxic or harmless. Because most studies comparing particles of various sizes prepared in various ways, and testing is performed on different cell lines, it is very difficult to generalize. The novelty and significance of our research is focused to the complex biological effects of silver and gold NPs prepared by the same method, have the same parameters and the same stabilizer. That is why we can compare the biological effects of pure nanometals themselves based on their chemical nature without the influence of other variable. Aim of our study therefore is to compare the cytotoxic effect of two types of noble metal NPs focusing on the mechanisms that contribute to cytotoxicity. The study was conducted on murine fibroblasts by selected common used tests. Each of these tests monitors the selected area related to toxicity and together provides a comprehensive view on the issue of interactions of nanoparticles and living cells.

Keywords: cytotoxicity, gold nanoparticles, mechanism of cytotoxicity, silver nanoparticles

Procedia PDF Downloads 254
4878 Causes and Impacts of Marine Heatwaves in the Bay of Bengal Region in the Recent Period

Authors: Sudhanshu Kumar, Raghvendra Chandrakar, Arun Chakraborty

Abstract:

In the ocean, the temperature extremes have the potential to devastate marine habitats, ecosystems together with ensuing socioeconomic consequences. In recent years, these extreme events are more frequent and intense globally and their increasing trend is expected to continue in the upcoming decades. It recently attracted public interest, as well as scientific researchers, which motivates us to analyze the current marine heatwave (MHW) events in the Bay of Bengal region. we have isolated 107 MHW events (above 90th percentile threshold) in this region of the Indian Ocean and investigated the variation in duration, intensity, and frequency of MHW events during our test period (1982-2021). Our study reveals that in the study region the average of three MHW events per year with an increasing linear trend of 1.11 MHW events per decade. In the analysis, we found the longest MHW event which lasted about 99 days, which is far greater than an average MHW event duration. The maximum intensity was 5.29°C (above the climatology-mean), while the mean intensity was 2.03°C. In addition, we observed net heat flux accompanied by anticyclonic eddies to be the primary cause of these events. Moreover, we concluded that these events affect sea surface height and oceanic productivity, highlighting the adverse impact of MHWs on marine ecosystems.

Keywords: marine heatwaves, global warming, climate change, sea surface temperature, marine ecosystem

Procedia PDF Downloads 124
4877 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 181
4876 Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker

Authors: Parvin Samadi Pakchin, Reza Saber, Hossein Ghanbari, Yadollah Omidi

Abstract:

Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator.

Keywords: signal-off electrochemical biosensor, CA125, ovarian cancer, chitosan-gold nanoparticles

Procedia PDF Downloads 292
4875 Numerical Simulation of Precast Concrete Panels for Airfield Pavement

Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička

Abstract:

Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.

Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement

Procedia PDF Downloads 257
4874 The Sea Striker: The Relevance of Small Assets Using an Integrated Conception with Operational Performance Computations

Authors: Gaëtan Calvar, Christophe Bouvier, Alexis Blasselle

Abstract:

This paper presents the Sea Striker, a compact hydrofoil designed with the goal to address some of the issues raised by the recent evolutions of naval missions, threats and operation theatres in modern warfare. Able to perform a wide range of operations, the Sea Striker is a 40-meter stealth surface combatant equipped with a gas turbine and aft and forward foils to reach high speeds. The Sea Striker's stealthiness is enabled by the combination of composite structure, exterior design, and the advanced integration of sensors. The ship is fitted with a powerful and adaptable combat system, ensuring a versatile and efficient response to modern threats. Lightly Manned with a core crew of 10, this hydrofoil is highly automated and can be remoted pilote for special force operation or transit. Such a kind of ship is not new: it has been used in the past by different navies, for example, by the US Navy with the USS Pegasus. Nevertheless, the recent evolutions in science and technologies on the one hand, and the emergence of new missions, threats and operation theatres, on the other hand, put forward its concept as an answer to nowadays operational challenges. Indeed, even if multiples opinions and analyses can be given regarding the modern warfare and naval surface operations, general observations and tendencies can be drawn such as the major increase in the sensors and weapons types and ranges and, more generally, capacities; the emergence of new versatile and evolving threats and enemies, such as asymmetric groups, swarm drones or hypersonic missile; or the growing number of operation theatres located in more coastal and shallow waters. These researches were performed with a complete study of the ship after several operational performance computations in order to justify the relevance of using ships like the Sea Striker in naval surface operations. For the selected scenarios, the conception process enabled to measure the performance, namely a “Measure of Efficiency” in the NATO framework for 2 different kinds of models: A centralized, classic model, using large and powerful ships; and A distributed model relying on several Sea Strikers. After this stage, a was performed. Lethal, agile, stealth, compact and fitted with a complete set of sensors, the Sea Striker is a new major player in modern warfare and constitutes a very attractive response between the naval unit and the combat helicopter, enabling to reach high operational performances at a reduced cost.

Keywords: surface combatant, compact, hydrofoil, stealth, velocity, lethal

Procedia PDF Downloads 118
4873 Application of Box-Behnken Response Surface Design for Optimization of Essential Oil Based Disinfectant on Mixed Species Biofilm

Authors: Anita Vidacs, Robert Rajko, Csaba Vagvolgyi, Judit Krisch

Abstract:

With the optimization of a new disinfectant the number of tests could be decreased and the cost of processing too. Good sanitizers are eco-friendly and allow no resistance evolvement of bacteria. The essential oils (EOs) are natural antimicrobials, and most of them have the Generally Recognized As Safe (GRAS) status. In our study, the effect of the EOs cinnamon, marjoram, and thyme was investigated against mixed species bacterial biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. The optimal concentration of EOs, disinfection time and level of pH were evaluated with the aid of Response Surface Box-Behnken Design (RSD) on 1 day and 7 days old biofilms on metal, plastic, and wood surfaces. The variable factors were in the range of 1-3 times of minimum bactericide concentration (MBC); 10-110 minutes acting time and 4.5- 7.5 pH. The optimized EO disinfectant was compared to industrial used chemicals (HC-DPE, Hypo). The natural based disinfectants were applicable; the acting time was below 30 minutes. EOs were able to eliminate the biofilm from the used surfaces except from wood. The disinfection effect of the EO based natural solutions was in most cases equivalent or better compared to chemical sanitizers used in food industry.

Keywords: biofilm, Box-Behnken design, disinfectant, essential oil

Procedia PDF Downloads 220
4872 The Effect of Enamel Surface Preparation on the Self-Etch Bonding of Orthodontic Tubes: An in Vitro Study

Authors: Fernandes A. C. B. C. J., de Jesus V. C., Sepideh N., Vilela OFGG, Somarin K. K., França R., Pinheiro F. H. S. L.

Abstract:

Objective: The purpose of this study was to look at the effect of pre-treatment of enamel with pumice and/or 37% phosphoric acid on the shear bond strength (SBS) of orthodontic tubes bonded to enamel while simultaneously evaluating the efficacy of orthodontic tubes bonded by self-etch primer (SEP). Materials and Methods: 39 of the crown halves were divided into 3 groups at random. Group, I was the control group utilizing both prophy paste and the conventional double etching pre-treatment method. Group II excluded the use of prophy paste prior to double etching. Group III excluded the use of both prophy paste and double etching and only utilized SEP. Bond strength of the orthodontic tubes was measured by SBS. One way ANOVA and Tukey’s HSD test were used to compare SBS values between the three groups. The statistical significance was set to p<0.05. Results: The difference in SBS values of groups I (36.672 ± 9.315 Mpa), II (34.242 ± 9.986 Mpa), and III (39.055 ± 5.565) were not statistically significant (P<0.05). Conclusion: This study suggested that the use of prophy paste or pre-acid etch of the enamel surface did not provide a statistically significant difference in SBS between the three groups.

Keywords: shear bond strength, orthodontic bracket, self-etch primer, pumice, prophy

Procedia PDF Downloads 179
4871 Heat Accumulation in Soils of Belarus

Authors: Maryna Barushka, Aleh Meshyk

Abstract:

The research analyzes absolute maximum soil temperatures registered at 36 gauge stations in Belarus from 1950 to 2013. The main method applied in the research is cartographic, in particular, trend surface analysis. Warming that had never been so long and intensive before started in 1988. The average temperature in January and February of that year exceeded the norm by 7-7.5 С, in March and April by 3-5С. In general, that year, as well as the year of 2008, happened to be the hottest ones in the whole period of instrumental observation. Yearly average air temperature in Belarus in those years was +8.0-8.2 С, which exceeded the norm by 2.0 – 2.2 С. The warming has been observed so far. The only exception was in 1996 when the yearly average air temperature in Belarus was below normal by 0.5 С. In Belarus the value of trend line of standard temperature deviation in the warmest months (July-August) has been positive for the past 25 years. In 2010 absolute maximum air and soil temperature exceeded the norm at 15 gauge stations in Belarus. The structure of natural processes includes global, regional, and local constituents. Trend surface analysis of the investigated characteristics makes it possible to determine global, regional, and local components. Linear trend surface shows the occurrence of weather deviations on a global scale, outside Belarus. Maximum soil temperature appears to be growing in the south-west direction with the gradient of 5.0 С. It is explained by the latitude factor. Polynomial trend surfaces show regional peculiarities of Belarus. Extreme temperature regime is formed due to some factors. The prevailing one is advection of turbulent flow of the ground layer of the atmosphere. In summer influence of the Azores High producing anticyclones is great. The Gulf Stream current forms the values of temperature trends in a year period. The most intensive flow of the Gulf Stream in the second half of winter and the second half of summer coincides with the periods of maximum temperature trends in Belarus. It is possible to estimate a local component of weather deviations in the analysis of the difference in values of the investigated characteristics and their trend surfaces. Maximum positive deviation (up to +4 С) of averaged soil temperature corresponds to the flat terrain in Pripyat Polesie, Brest Polesie, and Belarusian Poozerie Area. Negative differences correspond to the higher relief which partially compensates extreme heat regime of soils. Another important factor for maximum soil temperature in these areas is peat-bog soils with the least albedo of 8-15%. As yearly maximum soil temperature reaches 40-60 С, this could be both negative and positive factors for Belarus’s environment and economy. High temperature causes droughts resulting in crops dying and soil blowing. On the other hand, vegetation period has lengthened thanks to bigger heat resources, which allows planting such heat-loving crops as melons and grapes with appropriate irrigation. Thus, trend surface analysis allows determining global, regional, and local factors in accumulating heat in the soils of Belarus.

Keywords: soil, temperature, trend surface analysis, warming

Procedia PDF Downloads 134
4870 Ground Water Contamination by Tannery Effluents and Its Impact on Human Health in Peshawar, Pakistan

Authors: Fawad Ali, Muhammad Ateeq, Ikhtiar Khan

Abstract:

Ground water, a major source of drinking water supply in Peshawar has been severely contaminated by leather tanning industry. Effluents from the tanneries contain high concentration of chromium besides several other chemical species. Release of untreated effluents from the tanning industry has severely damaged surface and ground water, agriculture soil as well as vegetables and crops. Chromium is a well-known carcinogenic and mutagenic agent. Once in the human food chain, it causes multiple problems to the exposed population including various types of cancer, skin dermatitis, and DNA damage. In order to assess the extent of chromium and other heavy metals contamination, water samples were analyzed for heavy metals using Graphite Furnace Atomic Absorption Spectrometer (GFAAS, Analyst 700, Perkin Elmer). Total concentration of chromium was above the permissible limit (0.048 mg/l) in 85% of the groundwater (drinking water) samples. The concentration of cobalt, manganese, cadmium, nickel, lead, zinc and iron was also determined in the ground water, surface water, agriculture soil, and vegetables samples from the affected area.

Keywords: heavy metals, soil, groundwater, tannery effluents, food chain

Procedia PDF Downloads 347
4869 Divergent Weathering on Two Sides of Plastic Fragments from Coastal Environments Around the Globe

Authors: Bo Hu, Mui-Choo Jong, João Frias, Irina Chubarenko, Gabriel Enrique De-la-Torre, Prabhu Kolandhasamy, Md. Jaker Hossain, Elena Esiukova, Lei Su, Hua Deng, Huahong Shi

Abstract:

Plastic debris in coastal environments undergoes a series of aging processes due to the diverse environmental conditions they are exposed to. Existing research to date lacks a thorough understanding of how these processes affect exposed and non-exposed sides of plastic fragments, leading to potentially biased conclusions on how degradation occurs. This study addresses this knowledge gap by examining surface aging characteristics on both sides (e.g., cracks, delaminations, pits, wrinkles and color residues) of 1573 plastic fragments collected from 15 coastal sites worldwide and conducting outdoor aging simulations. A clear contrast was observed between the two sides of the plastic fragments, where one of the sides often displayed more pronounced aging features. Three key indicators were introduced to quantify the aging characteristics of plastic fragments, with values ranging from 0.00 to 58.00 mm/mm2 (line density), 0.00 to 92.12% (surface loss) and 0.00 to 1.51 (texture index), respectively. Outdoor simulations revealed that sun-exposed sides of plastic sheets developed more cracks, pores, and bubbles, while the shaded sides remained smoother. The annual average solar radiation intensity of 4.47 kWh in the experimental area exacerbated the degradation of the sun-exposed side, as confirmed by a significant increase in carbonyl index, with PE rising from 0.50 to 1.70, PP from 0.18 to 1.10, and PVC from 0.45 to 1.57, indicating photoaging. These results highlight the uneven weathering patterns of plastic fragments on shorelines due to varying environmental stresses. In particular, the side facing the sun exhibited more pronounced signs of aging. Outdoor experiments confirmed that the fragments’ sun-exposed sides experienced significantly higher degrees of weathering compared to the shaded sides. This study demonstrated that the divergent weathering patterns on the two sides of beach plastic fragments were primarily driven by differences in light exposure, duration, and mechanical stress.

Keywords: plastic fragments, coastal environment, surface aging features, two-sided differences

Procedia PDF Downloads 25
4868 Use Process Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker from Coconut Husk Fibers-Filled Polylactide-Based Nanocomposites

Authors: Imam Wierawansyah Eltara, Iftitah, Agus Ismail

Abstract:

In the present work, cellulose nanowhiskers (CNW) extracted from coconut husk fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of L-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. In theory, evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.

Keywords: cellulose nanowhiskers, nanocomposites, coconut husk fiber, ring opening polymerization

Procedia PDF Downloads 319
4867 Occurrence of Broiler Chicken Breast White Striping Meat in Brazilian Commercial Plant

Authors: Talita Kato, Moises Grespan, Elza I. Ida, Massami Shimokomaki, Adriana L. Soares

Abstract:

White Striping (WS) is becoming a concern for the poultry industry, as it affects the look of breast broiler chicken meat leading it to rejection by the consumers. It is characterized by the appearance of varying degrees of white striations on the Pectoralis major muscle surface following the direction of the muscle fiber. The etiology of this myopathy is still unknown, however it is suggested to be associated with increased weight gain rate and age of the bird, attributing the phenomenon to the genetically bird’s selection for efficiently higher meat production. The aim of this study was to evaluate the occurrence of Pectoralis major WS in a commercial plant in southern Brazil and its chemical characterization. The breast meat samples (n=660) from birds of 47 days of age, were classified as: Normal NG (no apparent white striations), Moderate MG (when the fillets present thin lines <1 mm) and Severe SG (white striations present ˃1 mm thick covering a large part of the fillet surface). Thirty samples (n = 10 for each level of severity) were analyzed for pH, color (L*, a*, b*), proximate chemical composition (moisture, protein, ash and lipids contents) and hydroxyproline in order to determine the collagen content. The results revealed the occurrence for NG group was 16.97%, 51.67% for MG group and 31.36% for SG group. Although the total protein content did not differ significantly, the collagen index was 42% higher in favor to SG in relation to NG. Also the lipid fraction was 27% higher for SG group. The NG presented the lowest values of the parameters L* and a* (P ≤ 0.05), as there was no white striations on its surface and highest b* value in SG, because of the maximum lipid contents. These results indicate there was a contribution of the SG muscle cells to oversynthesize connective tissue components on the muscle fascia. In conclusion, this study revealed a high incidence of White Striping on broiler commercial line in Brazil thus, there is a need to identify the causes of this abnormality in order to diminish or to eliminate it.

Keywords: collagen content, commercial line, pectoralis major muscle, proximate composition

Procedia PDF Downloads 252
4866 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Control Release of Doxorubicin

Authors: Parisa Shirzadeh

Abstract:

Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, and natural compared to carbon nanotubes; its price is lower than carbon nanotubes and is cost-effective for industrialization. On the other hand, the presence of highly effective surfaces and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer 1 method. In comparison with the initial graphene, the resulting graphene oxide is heavier and has carboxyl, hydroxyl, and epoxy groups. Therefore, graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. On the other hand, because the hydroxyl, carboxyl, and epoxy groups created on the surface are highly reactive, they have the ability to work with other functional groups such as amines, esters, polymers, etc. Connect and bring new features to the surface of graphene. In fact, it can be concluded that the creation of hydroxyl groups, Carboxyl, and epoxy and in fact graphene oxidation is the first step and step in creating other functional groups on the surface of graphene. Chitosan is a natural polymer and does not cause toxicity in the body. Due to its chemical structure and having OH and NH groups, it is suitable for binding to graphene oxide and increasing its solubility in aqueous solutions. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of chitosan, the amino reaction was performed to form amide transplantation, and the doxorubicin was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX characterized by FT-IR, RAMAN, TGA, and SEM. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.

Keywords: graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin

Procedia PDF Downloads 122
4865 Extracellular Production of the Oncolytic Enzyme, Glutaminase Free L-Asparaginase, from Newly Isolated Streptomyces Olivaceus NEAE-119: Optimization of Culture Conditions Using Response Surface Methodology

Authors: Noura El-Ahmady El-Naggar

Abstract:

Among the antitumour drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product(1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett–Burman experimental design and response surface methodology was carried out. Fifteen nutritional variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4.7H2O, NaCl and FeSO4. 7H2O) were screened using Plackett–Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age and agitation speed) were further optimized by the central composite face-centered design -response surface methodology. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase in the culture filtrate of Streptomyces olivaceus NEAE-119: Dextrose 3g, starch 20g, L-asparagine 10g, KNO3 1g, K2HPO4 1g, MgSO4.7H2O 0.1g, NaCl 0.1g, pH 7, temperature 37°C, agitation speed 200 rpm/min, inoculum size 4%, v/v, inoculum age 72 h and fermentation period 5 days.

Keywords: Streptomyces olivaceus NEAE-119, glutaminase free L-asparaginase, production, Plackett-Burman design, central composite face-centered design, 16S rRNA, scanning electron microscope

Procedia PDF Downloads 365
4864 Application of Low Frequency Ac Magnetic Field for Controlled Delivery of Drugs by Magnetic Nanoparticles

Authors: K. Yu Vlasova, M. A. Abakumov, H. Wishwarsao, M. Sokolsky, N. V. Nukolova, A. G. Majouga, Y. I. Golovin, N. L. Klyachko, A. V. Kabanov

Abstract:

Introduction:Nowadays pharmaceutical medicine is aimed to create systems for combined therapy, diagnostic, drug delivery and controlled release of active molecules to target cells. Magnetic nanoparticles (MNPs) are used to achieve this aim. MNPs can be applied in molecular diagnostics, magnetic resonance imaging (T1/T2 contrast agents), drug delivery, hyperthermia and could improve therapeutic effect of drugs. The most common drug containers, containing MNPs, are liposomes, micelles and polymeric molecules bonded to the MNPs surface. Usually superparamagnetic nanoparticles are used (the general diameter is about 5-6 nm) and all effects of high frequency magnetic field (MF) application are based on Neel relaxation resulting in heating of surrounded media. In this work we try to develop a new method to improve drug release from MNPs under super low frequency MF. We suppose that under low frequency MF exposures the Brown’s relaxation dominates and MNPs rotation could occur leading to conformation changes and release of bioactive molecules immobilized on MNPs surface.The aim of this work was to synthesize different systems with active drug (biopolymers coated MNPs nanoclusters with immobilized enzymes and doxorubicin (Dox) loaded magnetic liposomes/micelles) and investigate the effect of super low frequency MF on these drug containers. Methods: We have synthesized MNPs of magnetite with magnetic core diameter 7-12 nm . The MNPs were coated with block-copolymer of polylysine and polyethylene glycol. Superoxide dismutase 1 (SOD1) was electrostatically adsorbed on the surface of the clusters. Liposomes were prepared as follow: MNPs, phosphatidylcholine and cholesterol were dispersed in chloroform, dried to get film and then dispersed in distillated water, sonicated. Dox was added to the solution, pH was adjusted to 7.4 and excess of drug was removed by centrifugation through 3 kDa filters. Results: Polylysine coated MNPs formed nanosized clusters (as observed by TEM) with intensity average diameter of 112±5 nm and zeta potential 12±3 mV. After low frequency AC MF exposure we observed change of immobilized enzyme activity and hydrodynamic size of clusters. We suppose that the biomolecules (enzymes) are released from the MNPs surface followed with additional aggregation of complexes at the MF in medium. Centrifugation of the nanosuspension after AC MF exposures resulted in increase of positive charge of clusters and change in enzyme concentration in comparison with control sample without MF, thus confirming desorption of negatively charged enzyme from the positively charged surface of MNPs. Dox loaded magnetic liposomes had average diameter of 160±8 nm and polydispersity index (PDI) 0.25±0.07. Liposomes were stable in DW and PBS at pH=7.4 at 370C during a week. After MF application (10 min of exposure, 50 Hz, 230 mT) diameter of liposomes raised to 190±10 nm and PDI was 0.38±0.05. We explain this by destroying and/or reorganization of lipid bilayer, that leads to changes in release of drug in comparison with control without MF exposure. Conclusion: A new application of low frequency AC MF for drug delivery and controlled drug release was shown. Investigation was supported by RSF-14-13-00731 grant, K1-2014-022 grant.

Keywords: magnetic nanoparticles, low frequency magnetic field, drug delivery, controlled drug release

Procedia PDF Downloads 483
4863 Structural and Histochemical Alterations in the Development of the Stigma in Vibirnum tinus

Authors: Aslihan Cetinbas Genc, Meral Unal

Abstract:

This study presents the structural and cytochemical alterations of stigma at the stages of pre-anthesis, anthesis and post-anthesis in Vibirnum tinus. Capitate stigma continues with a closed style. The receptive surface of stigma is composed of unicellular papillae which are short and flattened at pre-anthesis stage. The papillae in this stage have dense cytoplasm with small vacuoles and a centrally located nucleus. With the start of anthesis, the stigma widens, papillae lengthen and become cylindrical. At anthesis stage, vacuoles enlarge, and nucleus moves to the base of the cell. At post-anthesis stage, the boundaries of the papillae become less noticeable. As proved by Periodic Acid Schiff procedure, the cytoplasm of papillae is rich in insoluble polysaccharides at all stages of development but it becomes remarkable at post-anthesis, particularly at the sub-papillar area. Although there is no significant difference in the content of protein in all stages of the development, it is more abundant at post-anthesis stage, as in Coomassie Brillant Blue stained sections. The surface of papillae is covered by a cuticle which becomes thicker at post-anthesis, and it gives positive reaction with Sudan Black B and Auramine O. The cuticle is covered by a pellicle stained by Coomassie Brillant Blue, indicating dry type of stigma.

Keywords: develeopmental features, histochemistry, stigma, Vibirnum tinus

Procedia PDF Downloads 248
4862 Optimal Formation of Metallic Nuggets during the Reduction of Coal-Composite Briquette

Authors: Chol Min Yu, Sok Chol Ri

Abstract:

The optimization of formation and growth of metallic nuggets during self-reduction of coal composite briquette (CCB here) is essential to increase the yield of valuable metals. The formation of metallic nuggets was investigated theoretically and experimentally during the reduction of coal composite briquette made from stainless steel dust and coal. The formation of metallic nuggets is influenced by slag viscosity and interfacial tension between the liquid metal and the slag in the reduced product. Surface tensions of liquid metal and slag are rather strong, respectively, due to the high basicity of its slag. Strong surface tensions of them lead to increase of interfacial tension between the liquid metal and the slag to be favorable to the growth of metallic nuggets. The viscosity of slag and interfacial tension between the liquid metal and the slag depends on the temperature and composition of the slag. The formation and the growth of metallic nuggets depend on carbon to oxygen ratio FC/O and temperature.

Keywords: stainless steel dust, coal-composite briquette, temperature, high basicity, interfacial tension

Procedia PDF Downloads 83
4861 Nutrient Foramina of the Lunate Bone of the Hand – an Anatomical Study

Authors: P.J. Jiji, B.V. Murlimanju, Latha V. Prabhu, Mangala M. Pai

Abstract:

Background: The lunate bone dislocation can lead to the compression of the median nerve and subsequent carpal tunnel syndrome. The dislocation can interrupt the vasculature and would cause avascular necrosis. The objective of the present study was to study the morphology and number of the nutrient foramina in the cadaveric dried lunate bones of the Indian population. Methods: The present study included 28 lunate bones (13 right sided and 15 left sided) which were obtained from the gross anatomy laboratory of our institution. The bones were macroscopically observed for the nutrient foramina and the data was collected with respect to their number. The tabulation of the data and analysis were done. Results: All of our specimens (100%) exhibited the nutrient foramina over the non-articular surfaces. The foramina were observed only over the palmar and dorsal surfaces of the lunate bones. The foramen ranged between 2 and 10. The foramina were more in number over the dorsal surface (average number 3.3) in comparison to the palmar surface (average number 2.4). Conclusion: We believe that the present study has provided important data about the nutrient foramina of the lunate bones. The data is enlightening to the orthopedic surgeon and would help in the hand surgeries. The morphological knowledge of the vasculature, their foramina of entry and their number is required to understand the concepts in the lunatomalacia and Kienbock’s disease.

Keywords: avascular necrosis, foramen, lunate, nutrient

Procedia PDF Downloads 246
4860 Viability of Sub-Surface Drip Irrigation in Agronomic and Vegetable Crops Production

Authors: Ali Montazar

Abstract:

This study aims to assess the viability of sub-surface drip irrigation (SDI) using several ongoing and conducted researches in the low desert region of California. The experiments were carried out in the University of California Desert Research and Extension Center (UC DREC) and ten commercial fields at alfalfa, sugar beets, dehydrated onions, and spinach crops. The results demonstrated greater yields, actual crop water consumption, and water productivity of SDI as compared with conventional irrigation practices (border, furrow, and sprinkler irrigation) with an average increase of 21%, 7%, and 15%, respectively. The severity of plant disease, particularly root rot in sugar beet, and downy mildew in onions and spinach, were significantly lower in SDI than furrow and sprinkler irrigation (an average of 3-5 times). While utilizing this irrigation technology may have ability to achieve higher yields, conserve water, improve the efficiency of water and nutrient use, and manage food safety risks and plant disease, further work is required to better understand the impact of management practices and strategies on the viability of SDI application, and maintain its profitability in various agricultural production systems as water, labor costs, and environmental concerns increase.

Keywords: alfalfa, onions, spinach, sugar beets, subsurface drip irrigation

Procedia PDF Downloads 128
4859 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 353
4858 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 146