Search results for: simulated driving
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2599

Search results for: simulated driving

799 Apatite-Forming Ability of Doped-Ceria Coatings for Orthopedic Implants

Authors: Ayda Khosravanihaghighi, Pramod Koshy, Bill Walsh, Vedran Lovric, Charles Christopher Sorrell

Abstract:

There is an increasing demand for orthopedic implants owing to the increasing numbers of the aging population. Titanium alloy (Ti6Al4V) is a common material used for orthopedic implants owing to its advantageous properties in terms of good corrosion resistance, minimal elastic modulus mismatch with bone, bio-inertness, and high mechanical strength. However, it is important to improve the bioactivity and osseointegration of the titanium alloy and this can be achieved by coating the implant surface with suitable ceramic materials. In the present work, pure and doped-ceria (CeO₂) coatings were deposited by spin coating on the titanium alloy surface in order to enhance the biological interactions between the surface of the implant and the surrounding tissue. In order to examine the bone-binding ability of an implant, simulated body fluid (SBF) tests were conducted in order to assess the capability of apatite layer formation on the surface and thus predict in vivo bone bioactivity. Characterization was done using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses to determine the extent of apatite formation. Preliminary tests showed that the CeO₂ coatings were biocompatible and that the extent of apatite formation and its characteristics can be enhanced by doping with suitable metal ions.

Keywords: apatite layer, biocompatibility, ceria, orthopaedic implant, SBF, spin coater, Ti-implant

Procedia PDF Downloads 138
798 Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle

Authors: Mohd Imtiaz S, Saurabh Jain, Pothiraj K.

Abstract:

In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements.

Keywords: axial thrust, b10 life, deep-groove ball bearing, taper roller bearing, semi-floating layout.

Procedia PDF Downloads 57
797 Development of a Few-View Computed Tomographic Reconstruction Algorithm Using Multi-Directional Total Variation

Authors: Chia Jui Hsieh, Jyh Cheng Chen, Chih Wei Kuo, Ruei Teng Wang, Woei Chyn Chu

Abstract:

Compressed sensing (CS) based computed tomographic (CT) reconstruction algorithm utilizes total variation (TV) to transform CT image into sparse domain and minimizes L1-norm of sparse image for reconstruction. Different from the traditional CS based reconstruction which only calculates x-coordinate and y-coordinate TV to transform CT images into sparse domain, we propose a multi-directional TV to transform tomographic image into sparse domain for low-dose reconstruction. Our method considers all possible directions of TV calculations around a pixel, so the sparse transform for CS based reconstruction is more accurate. In 2D CT reconstruction, we use eight-directional TV to transform CT image into sparse domain. Furthermore, we also use 26-directional TV for 3D reconstruction. This multi-directional sparse transform method makes CS based reconstruction algorithm more powerful to reduce noise and increase image quality. To validate and evaluate the performance of this multi-directional sparse transform method, we use both Shepp-Logan phantom and a head phantom as the targets for reconstruction with the corresponding simulated sparse projection data (angular sampling interval is 5 deg and 6 deg, respectively). From the results, the multi-directional TV method can reconstruct images with relatively less artifacts compared with traditional CS based reconstruction algorithm which only calculates x-coordinate and y-coordinate TV. We also choose RMSE, PSNR, UQI to be the parameters for quantitative analysis. From the results of quantitative analysis, no matter which parameter is calculated, the multi-directional TV method, which we proposed, is better.

Keywords: compressed sensing (CS), low-dose CT reconstruction, total variation (TV), multi-directional gradient operator

Procedia PDF Downloads 242
796 Research on the Impact of Spatial Layout Design on College Students’ Learning and Mental Health: Analysis Based on a Smart Classroom Renovation Project in Shanghai, China

Authors: Zhang Dongqing

Abstract:

Concern for students' mental health and the application of intelligent advanced technologies are driving changes in teaching models. The traditional teacher-centered classroom is beginning to transform into a student-centered smart interactive learning environment. Nowadays, smart classrooms are compatible with constructivist learning. This theory emphasizes the role of teachers in the teaching process as helpers and facilitators of knowledge construction, and students learn by interacting with them. The spatial design of classrooms is closely related to the teaching model and should also be developed in the direction of smart classroom design. The goal is to explore the impact of smart classroom layout on student-centered teaching environment and teacher-student interaction under the guidance of constructivist learning theory, by combining the design process and feedback analysis of the smart transformation project on the campus of Tongji University in Shanghai. During the research process, the theoretical basis of constructivist learning was consolidated through literature research and case analysis. The integration and visual field analysis of the traditional and transformed indoor floor plans were conducted using space syntax tools. Finally, questionnaire surveys and interviews were used to collect data. The main conclusions are as followed: flexible spatial layouts can promote students' learning effects and mental health; the interactivity of smart classroom layouts is different and needs to be combined with different teaching models; the public areas of teaching buildings can also improve the interactive learning atmosphere by adding discussion space. This article provides a data-based research basis for improving students' learning effects and mental health, and provides a reference for future smart classroom design.

Keywords: spatial layout, smart classroom, space syntax, renovation, educational environment

Procedia PDF Downloads 54
795 Hot Deformation Behavior and Recrystallization of Inconel 718 Superalloy under Double Cone Compression

Authors: Wang Jianguo, Ding Xiao, Liu Dong, Wang Haiping, Yang Yanhui, Hu Yang

Abstract:

The hot deformation behavior of Inconel 718 alloy was studied by uniaxial compression tests under the deformation temperature of 940~1040℃ and strain rate of 0.001-10s⁻¹. The double cone compression (DCC) tests develop strains range from 30% to the 79% strain including all intermediate values of stains at different temperature (960~1040℃). DCC tests were simulated by finite element software which shown the strain and strain rates distribution. The result shows that the peak stress level of the alloy decreased with increasing deformation temperature and decreasing strain rate, which could be characterized by a Zener-Hollomon parameter in the hyperbolic-sine equation. The characterization method of hot processing window containing recrystallization volume fraction and average grain size was proposed for double cone compression test of uniform coarse grain, mixed crystal and uniform fine grain double conical specimen in hydraulic press and screw press. The results show that uniform microstructures can be obtained by low temperature with high deformation followed by high temperature with small deformation on the hydraulic press and low temperature, medium deformation, multi-pass on the screw press. The two methods were applied in industrial forgings process, and the forgings with uniform microstructure were obtained successfully.

Keywords: inconel 718 superalloy, hot processing windows, double cone compression, uniform microstructure

Procedia PDF Downloads 204
794 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: cold-start learning, expectation propagation, multi-armed bandits, Thompson Sampling, variational inference

Procedia PDF Downloads 97
793 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium

Authors: T. Yu, L. Audibert, J. F. Chaix, D. Komatitsch, V. Garnier, J. M. Henault

Abstract:

Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation.

Keywords: attenuation, multiple-scattering medium, numerical modeling, phase velocity, ultrasonic measurements

Procedia PDF Downloads 256
792 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling

Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis

Abstract:

Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.

Keywords: green entrepreneurship, barriers, fuzzy Delphi method, interpretive structural modeling

Procedia PDF Downloads 142
791 Elderly Health Care Process by Community Participation: A Sub-District in the Lower Northern Region of Thailand

Authors: Amaraporn Puraya, Roongtiva Boonpracom, Somsak Thojampa, Sirikanok Klankhajhon, Kittisak Kumpeera

Abstract:

The objective of this qualitative research was to study the elderly health care process by community participation. Data were collected by quality research methods, including secondary data study, observation, in-depth interviews, and focus group discussions and analyzed by content analysis, reflection and review of information. The research results pointed out that the important elderly health care process by community participation consisted of 2 parts, namely the community participation development process in elderly health care and the outcomes from the participation development process. The community participation development process consisted of 4 steps as follows: 1) Building the leadership team, an important social capital of the community, which started from searching for both formal and informal leaders by giving the opportunity for public participation and creating clear agreements defining roles, duties and responsibilities; 2) investigating the problems and the needs of the community, 3) designing the elderly health care activities under the concept of self-care potential development of the elderly through participation in community forums and meetings to exchange knowledge with common goals, plans and operation and 4) the development process of sustainable health care agreement at the local level, starting from opening communication channels to create awareness and participation in various activities at both individual and group levels as well as pushing activities/projects into the community development plan consistent with the local administration policy. The outcomes from the participation development process were as follows. 1) There was the integration of the elderly for doing the elderly health care activities/projects in the community managed by the elderly themselves. 2) The service system was changed from the passive to the proactive one, focusing on health promotion rather than treating diseases or illnesses. 3) The registered nurses / the public health officers can provide care for the elderly with chronic illnesses through the implementation of activities/projects of elderly health care so that the elderly can access the services more. 4) The local government organization became the main mechanism in driving the elderly health care process by community participation.

Keywords: elderly health care process, community participation, elderly, Thailand

Procedia PDF Downloads 194
790 Flood Risk Assessment in the Niger River Basin in Support of the Conception of a Flood Risk Management Plan: Case Study of the District of Malanville, Benin

Authors: Freddy Houndekindo

Abstract:

A study was carried out to evaluate the flood risk in the district of Malanville located along the Niger River. The knowledge produce by this study is useful in the implementation of adaptation and/or mitigation measures to alleviate the impact of the flooding on the populations, the economy and the environment. Over the course of the study, the lack of data in the area of interest has been one of the main challenges encountered. Therefore, in the analysis of the flood hazard different sources of remotely sensed data were used. Moreover, the flood hazard was analysed by applying a 1D hydraulic model: HEC-RAS. After setting up the model for the study area, the different flood scenarios considered were simulated and mapped using ArcGIS and the HEC-GEORAS extension. The result of the simulation gave information about the inundated areas and the water depths at each location. From the analysis of the flood hazard, it was found that between 47% and 50% of the total area of the district of Malanville would be flooded in the different flood scenarios considered, and the water depth varies between 1 and 7 m. The townships of Malanville most at risk of flooding are Momkassa and Galiel, located in a high-risk and very high-risk zone, respectively. Furthermore, the assessment of the flood risk showed that the most vulnerable sector to the inundations is the agricultural sector. Indeed, the cultivated floodplains were the most affected areas by the floodwater in every flood scenarios. Knowing that a high proportion of the population of the district relies on their farmlands in these floodplains for their livelihood, the floods pose a challenge not only to the food security in the area but also to its development.

Keywords: flood risk management, Niger, remote sensing, vulnerability

Procedia PDF Downloads 134
789 Characterization of the Ignitability and Flame Regression Behaviour of Flame Retarded Natural Fibre Composite Panel

Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari

Abstract:

Natural fibre composites (NFC) are becoming very attractive especially for automotive interior and non-structural building applications because they are biodegradable, low cost, lightweight and environmentally friendly. NFC are known to release high combustible products during exposure to heat atmosphere and this behaviour has raised concerns to end users. To improve on their fire response, flame retardants (FR) such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) are incorporated during processing to delay the start and spread of fire. In this paper, APP was modified with Gum Arabic powder (GAP) and synergized with carbon black (CB) to form new FR species. Four FR species at 0, 12, 15 and 18% loading ratio were added to oil palm fibre polyester composite (OPFC) panels as follows; OPFC12%APP-GAP, OPFC15%APP-GAP/CB, OPFC18%ATH/APP-GAP and OPFC18%ATH/APPGAP/CB. The panels were produced using hand lay-up compression moulding and cured at room temperature. Specimens were cut from the panels and these were tested for ignition time (Tig), peak heat released rate (HRRp), average heat release rate (HRRavg), peak mass loss rate (MLRp), residual mass (Rm) and average smoke production rate (SPRavg) using cone calorimeter apparatus as well as the available flame energy (ɸ) in driving the flame using radiant panel flame spread apparatus. From the ignitability data obtained at 50 kW/m2 heat flux (HF), it shows that the hybrid FR modified with APP that is OPFC18%ATH/APP-GAP exhibited superior flame retardancy and the improvement was based on comparison with those without FR which stood at Tig = 20 s, HRRp = 86.6 kW/m2, HRRavg = 55.8 kW/m2, MLRp =0.131 g/s, Rm = 54.6% and SPRavg = 0.05 m2/s representing respectively 17.6%, 67.4%, 62.8%, 50.9%, 565% and 62.5% improvements less than those without FR (OPFC0%). In terms of flame spread, the least flame energy (ɸ) of 0.49 kW2/s3 for OPFC18%ATH/APP-GAP caused early flame regression. This was less than 39.6 kW2/s3 compared to those without FR (OPFC0%). It can be concluded that hybrid FR modified with APP could be useful in the automotive and building industries to delay the start and spread of fire.

Keywords: flame retardant, flame regression, oil palm fibre, composite panel

Procedia PDF Downloads 118
788 Influence of Driving Speed on Bearing Capacity Measurement of Intra-Urban Roads with the Traffic Speed Deflectometer(Tsd)

Authors: Pahirangan Sivapatham, Barbara Esser, Andreas Grimmel

Abstract:

In times of limited public funds and, in particular, an increased social, environmental awareness, as well as the limited availability of construction materials, sustainable and resource-saving pavement management system, is becoming more and more important. Therefore, the knowledge about the condition of the structural substances, particularly bearing capacity and its consideration while planning the maintenance measures of the subordinate network, i.e., state and municipal roads unavoidable. According to the experience, the recommended ride speed of the Traffic Speed Deflectometer (TSD) shall be higher than 40 km/h. Holding of this speed on the intra-urban roads is nearly not possible because of intersections and traffic lights as well as the speed limit. A sufficient background of experience for the evaluation of bearing capacity measurements with TSD in the range of lower speeds is not available yet. The aim of this study is to determine the possible lowest ride speed of the TSD while the bearing capacity measurement on the intra-urban roads. The manufacturer of the TSD used in this study states that the measurements can be conducted at a ride speed of higher than 5 km/h. It is well known that with decreasing ride speed, the viscous fractions in the response of the asphalt pavement increase. This must be taken into account when evaluating the bearing capacity data. In the scope of this study, several measurements were carried out at different speeds between 10 km/h and 60 km/h on the selected intra-urban roads with Pavement-Scanner of the University of Wuppertal, which is equipped with TSD. Pavement-Scanner is able to continuously determine the deflections of asphalt roads in flowing traffic at speeds of up to 80 km/h. The raw data is then aggregated to 10 m mean values so that, as a rule, a bearing capacity characteristic value can be determined for each 10 m road section. By means of analysing of obtained test results, the quality and validity of the determined data rate subject to the riding speed of TSD have been determined. Moreover, the data and pictures of the additional measuring systems of Pavement-Scanners such as High-Speed Road Monitor, Ground Penetration Radar and front cameras can be used to determine and eliminate irregularities in the pavement, which could influence the bearing capacity.

Keywords: bearing capacity measurement, traffic speed deflectometer, inter-urban roads, Pavement-Scanner, structural substance

Procedia PDF Downloads 215
787 Noise and Thermal Analyses of Memristor-Based Phase Locked Loop Integrated Circuit

Authors: Naheem Olakunle Adesina

Abstract:

The memristor is considered as one of the promising candidates for mamoelectronic engineering and applications. Owing to its high compatibility with CMOS, nanoscale size, and low power consumption, memristor has been employed in the design of commonly used circuits such as phase-locked loop (PLL). In this paper, we designed a memristor-based loop filter (LF) together with other components of PLL. Following this, we evaluated the noise-rejection feature of loop filter by comparing the noise levels of input and output signals of the filter. Our SPICE simulation results showed that memristor behaves like a linear resistor at high frequencies. The result also showed that loop filter blocks the high-frequency components from phase frequency detector so as to provide a stable control voltage to the voltage controlled oscillator (VCO). In addition, we examined the effects of temperature on the performance of the designed phase locked loop circuit. A critical temperature, where there is frequency drift of VCO as a result of variations in control voltage, is identified. In conclusion, the memristor is a suitable choice for nanoelectronic systems owing to a small area, low power consumption, dense nature, high switching speed, and endurance. The proposed memristor-based loop filter, together with other components of the phase locked loop, can be designed using memristive emulator and EDA tools in current CMOS technology and simulated.

Keywords: Fast Fourier Transform, hysteresis curve, loop filter, memristor, noise, phase locked loop, voltage controlled oscillator

Procedia PDF Downloads 164
786 Ear Protectors and Their Action in Protecting Hearing System of Workers against Occupational Noise

Authors: F. Forouharmajd, S. Pourabdian, N. Ziayi Ghahnavieh

Abstract:

For many years, the ear protectors have been used to preventing the audio and non-audio effects of received noise from occupation environments. Despite performing hearing protection programs, there are many people which still suffer from noise-induced hearing loss. This study was conducted with the aim of determination of human hearing system response to received noise and the effectiveness of ear protectors on preventing of noise-induced hearing loss. Sound pressure microphones were placed in a simulated ear canal. The severity of noise measured inside and outside of ear canal. The noise reduction values due to installing ear protectors were calculated in the octave band frequencies and LabVIEW programmer. The results of noise measurement inside and outside of ear canal showed a different in received sound levels by ear canal. The effectiveness of ear protectors has been considerably reduced for the low frequency limits. A change in resonance frequency also was observed after using ear protectors. The study indicated the ear canal structure may affect the received noise and it may lead a difference between the received sound from the measured sound by a sound level meter, and hearing system. It means the human hearing system may probably respond different from a sound level meter. Hearing protectors’ efficiency declines by increasing the noise levels, and thus, they are not suitable to protect workers against industrial noise particularly low frequency noise. Hearing protectors may be solely a reason to damaging of hearing system in a special frequency via changing of human hearing system acoustical structure. We need developing the subjective method of hearing protectors testing, because their evaluation is not designed based on industrial noise or in the field.

Keywords: ear protector, hearing system, occupational noise, workers

Procedia PDF Downloads 156
785 Highly Glazed Office Spaces: Simulated Visual Comfort vs Real User Experiences

Authors: Zahra Hamedani, Ebrahim Solgi, Henry Skates, Gillian Isoardi

Abstract:

Daylighting plays a pivotal role in promoting productivity and user satisfaction in office spaces. There is an ongoing trend in designing office buildings with a high proportion of glazing which relatively increases the risk of high visual discomfort. Providing a more realistic lighting analysis can be of high value at the early stages of building design when necessary changes can be made at a very low cost. This holistic approach can be achieved by incorporating subjective evaluation and user behaviour in computer simulation and provide a comprehensive lighting analysis. In this research, a detailed computer simulation model has been made using Radiance and Daysim. Afterwards, this model was validated by measurements and user feedback. The case study building is the school of science at Griffith University, Gold Coast, Queensland, which features highly glazed office spaces. In this paper, the visual comfort predicted by the model is compared with a preliminary survey of the building users to evaluate how user behaviour such as desk position, orientation selection, and user movement caused by daylight changes and other visual variations can inform perceptions of visual comfort. This work supports preliminary design analysis of visual comfort incorporating the effects of gaze shift patterns and views with the goal of designing effective layout for office spaces.

Keywords: lighting simulation, office buildings, user behaviour, validation, visual comfort

Procedia PDF Downloads 192
784 River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand

Authors: S. Chuenchooklin

Abstract:

This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013.

Keywords: HEC-RAS, HMS, pumping stations, cascade weirs

Procedia PDF Downloads 373
783 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece

Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos

Abstract:

The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.

Keywords: earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening

Procedia PDF Downloads 282
782 Teachers' Beliefs About the Environment: The Case of Azerbaijan

Authors: Aysel Mehdiyeva

Abstract:

As a driving force of society, the role of teachers is important in inspiring, motivating, and encouraging the younger generation to protect the environment. In light of these, the study aims to explore teachers’ beliefs to understand teachers’ engagement with teaching about the environment. Though teachers’ beliefs about the environment have been explored by a number of researchers, the influence of these beliefs in their professional lives and in shaping their classroom instructions has not been widely investigated in Azerbaijan. To this end, this study aims to reveal the beliefs of secondary school geography teachers about the environment and find out the ways teachers’ beliefs of the environment are enacted in their classroom practice in Azerbaijan. Different frameworks have been suggested for measuring environmental beliefs stemming from well-known anthropocentric and biocentric worldviews. The study addresses New Ecological Paradigm (NEP) by Dunlap to formulate the interview questions as discussion with teachers around these questions aligns with the research aims serving to well-capture the beliefs of teachers about the environment. Despite the extensive applicability of the NEP scale, it has not been used to explore in-service teachers’ beliefs about the environment. Besides, it has been used as a tool for quantitative measurement; however, the study addresses the scale within the framework of the qualitative study. The research population for semi-structured interviews and observations was recruited via purposeful sampling. Teachers’ being a unit of analysis is related to the gap in the literature as to how teachers’ beliefs are related to their classroom instructions within the environmental context, as well as teachers’ beliefs about the environment in Azerbaijan have not been well researched. 6 geography teachers from 4 different schools were involved in the research process. The schools are located in one of the most polluted parts of the capital city Baku where the first oil well in the world was drilled in 1848 and is called “Black City” due to the black smoke and smell that covered that part of the city. Semi-structured interviews were conducted with the teachers to reveal their stated beliefs. Later, teachers were observed during geography classes to understand the overlap between teachers’ ideas presented during the interview and their teaching practice. Research findings aim to indicate teachers’ ecological beliefs and practice, as well as elaborate on possible causes of compatibility/incompatibility between teachers’ stated and observed beliefs.

Keywords: environmental education, anthropocentric beliefs, biocentric beliefs, new ecological paradigm

Procedia PDF Downloads 87
781 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification

Procedia PDF Downloads 252
780 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors

Authors: Zeenat Parveen, Ashiq Hussain

Abstract:

This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.

Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements

Procedia PDF Downloads 370
779 Work in the Industry of the Future-Investigations of Human-Machine Interactions

Authors: S. Schröder, P. Ennen, T. Langer, S. Müller, M. Shehadeh, M. Haberstroh, F. Hees

Abstract:

Since a bit over a year ago, Festo AG and Co. KG, Festo Didactic SE, robomotion GmbH, the researchers of the Cybernetics-Lab IMA/ZLW and IfU, as well as the Human-Computer Interaction Center at the RWTH Aachen University, have been working together in the focal point of assembly competences to realize different scenarios in the field of human-machine interaction (HMI). In the framework of project ARIZ, questions concerning the future of production within the fourth industrial revolution are dealt with. There are many perspectives of human-robot collaboration that consist Industry 4.0 on an individual, organization and enterprise level, and these will be addressed in ARIZ. The aim of the ARIZ projects is to link AI-Approaches to assembly problems and to implement them as prototypes in demonstrators. To do so, island and flow based production scenarios will be simulated and realized as prototypes. These prototypes will serve as applications of flexible robotics as well as AI-based planning and control of production process. Using the demonstrators, human interaction strategies will be examined with an information system on one hand, and a robotic system on the other. During the tests, prototypes of workspaces that illustrate prospective production work forms will be represented. The human being will remain a central element in future productions and will increasingly be in charge of managerial tasks. Questions thus arise within the overall perspective, primarily concerning the role of humans within these technological revolutions, as well as their ability to act and design respectively to the acceptance of such systems. Roles, such as the 'Trainer' of intelligent systems may become a possibility in such assembly scenarios.

Keywords: human-machine interaction, information technology, island based production, assembly competences

Procedia PDF Downloads 188
778 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure

Authors: Zekun Lin, Xun Li

Abstract:

Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.

Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling

Procedia PDF Downloads 136
777 “Chasing Hope”: Parents’ Perspectives on Complementary and Alternative Interventions for Autism Spectrum Disorder Children in Kazakhstan

Authors: Sofiya An, Akbota Kanderzhanova, Assel Akhmetova, Faye Foster, Chee K. Chan

Abstract:

Healthcare, education and social support for children with autism in Kazakhstan has been evolving and transforming over the last three decades. There is still limited knowledge of the use of complementary and alternative medicine by families caring for autistic children in this post-Soviet region. An exploratory qualitative focus group study of Kazakhstani families was carried out to capture and understand their experiences of using complementary and alternative (CAM) medicine. A total of six focus groups were conducted in five cities across the country including Nur-Sultan, Almaty, Kyzylorda, Karaganda and Taraz. The perceived factors driving the availability, choice, and use of complementary and alternative medicine by families of autistic children in the country were distilled and evaluated. The data collected was analyzed using a framework analysis and themes and subthemes were developed. Two major themes stood out. The first was the “unmet needs”, which relates to the predisposing factors that motivate parents to CAM uptake, and the second was the “chasing hope”, which relates to the enabling factors that facilitate parents’ uptake of CAM. Fear of missing out (FOMO) is a latent underlying motivation underscoring these two themes as well. Parents of autism spectrum disorder (ASD) children in Kazakhstan have to deal with many challenges when seeking treatment for their children with ASD. They are prepared and resort to try out whatever CAM interventions available. The motivation and rationale of choice of use is driven by the lack of options and the hope of any potential positive outcome rather than from rational decisions based on efficacy or the evidence-based data of CAM. Parents get desperate and are willing to try CAM regardless of and independent of their cultural and belief systems and they do not want to miss out just in case it might work. This study also gives an international and cross-cultural perspective on the motives, choice and practice of parents with ASD children using CAM in Kazakhstan, a Central Asian country.

Keywords: autism spectrum disorder, Central Asia, complementary and alternative medicine, cross-cultural perspective, qualitative research

Procedia PDF Downloads 128
776 Genetics, Law and Society: Regulating New Genetic Technologies

Authors: Aisling De Paor

Abstract:

Scientific and technological developments are driving genetics and genetic technologies into the public sphere. Scientists are making genetic discoveries as to the make up of the human body and the cause and effect of disease, diversity and disability amongst individuals. Technological innovation in the field of genetics is also advancing, with the development of genetic testing, and other emerging genetic technologies, including gene editing (which offers the potential for genetic modification). In addition to the benefits for medicine, health care and humanity, these genetic advances raise a range of ethical, legal and societal concerns. From an ethical perspective, such advances may, for example, change the concept of humans and what it means to be human. Science may take over in conceptualising human beings, which may push the boundaries of existing human rights. New genetic technologies, particularly gene editing techniques create the potential to stigmatise disability, by highlighting disability or genetic difference as something that should be eliminated or anticipated. From a disability perspective, use (and misuse) of genetic technologies raise concerns about discrimination and violations to the dignity and integrity of the individual. With an acknowledgement of the likely future orientation of genetic science, and in consideration of the intersection of genetics and disability, this paper highlights the main concerns raised as genetic science and technology advances (particularly with gene editing developments), and the consequences for disability and human rights. Through the use of traditional doctrinal legal methodologies, it investigates the use (and potential misuse) of gene editing as creating the potential for a unique form of discrimination and stigmatization to develop, as well as a potential gateway to a form of new, subtle eugenics. This article highlights the need to maintain caution as to the use, application and the consequences of genetic technologies. With a focus on the law and policy position in Europe, it examines the need to control and regulate these new technologies, particularly gene editing. In addition to considering the need for regulation, this paper highlights non-normative approaches to address this area, including awareness raising and education, public discussion and engagement with key stakeholders in the field and the development of a multifaceted genetics advisory network.

Keywords: disability, gene-editing, genetics, law, regulation

Procedia PDF Downloads 343
775 A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow

Authors: Ruquan You, Haiwang Li, Zhi Tao

Abstract:

A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed.

Keywords: rotating facility, PIV, boundary layer flow, spatial and temporal resolution

Procedia PDF Downloads 165
774 Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer Through Porous Media by Means of Pore-Scale Approach: Effect of Obstacles Size and Arrangement on Tortuosity and Heat Transfer for a Porosity Degree

Authors: Annunziata D’Orazio, Arash Karimipour, Iman Moradi

Abstract:

The size and arrangement of the obstacles in the porous media has an influential effect on the fluid flow and heat transfer, even in the same porosity. Regarding to this, in the present study, several different amounts of obstacles, in both regular and stagger arrangements, in the analogous porosity have been simulated through a channel. In order to compare the effect of stagger and regular arrangements, as well as different quantity of obstacles in the same porosity, on fluid flow and heat transfer. In the present study, the Single Relaxation Time Lattice Boltzmann Method, with Bhatnagar-Gross-Ktook (BGK) approximation and D2Q9 model, is implemented for the numerical simulation. Also, the temperature field is modeled through a Double Distribution Function (DDF) approach. Results are presented in terms of velocity and temperature fields, streamlines, percentage of pressure drop and Nusselt number of the obstacles walls. Also, the correlation between tortuosity and Nusselt number of the obstacles walls, for both regular and staggered arrangements, has been proposed. On the other hand, the results illustrated that by increasing the amount of obstacles, as well as changing their arrangement from regular to staggered, in the same porosity, the rate of tortuosity and Nusselt number of the obstacles walls increased.

Keywords: lattice boltzmann method, heat transfer, porous media, pore-scale, porosity, tortuosity

Procedia PDF Downloads 69
773 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland

Authors: Alireza Ansariyar, Safieh Laaly

Abstract:

Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.

Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models

Procedia PDF Downloads 426
772 Spectral Linewidth Measurement of Linear Frequency Modulated Continuous Wave Laser with Short Delay within the Coherence Length

Authors: Jongpil La, Jieun Choi

Abstract:

Optical frequency modulation technology for FMCW LiDAR based on Optical Phase Locked Loop(OPLL) configuration is addressed in this paper. The spectral linewidth measurement method of the linear frequency-modulated laser is also described. The single-frequency laser with narrow spectral linewidth is generated using an external cavity diode laser and the excitation frequency of the laser is adjusted by controlling the injection current of the laser. If the injection current of the laser is increased, the lasing frequency is decreased because of the slight increase in the refractive index of the laser gain chip. Dynamic optical frequency change rate is measured by using a Mach-Zehnder interferometer and compared with a proper reference signal. The phase difference between the reference signal and the measured signal using the Mach-Zehnder interferometer is obtained by mixing those two signals. The phase error is used to detect the frequency deviation error from the target value, which is then fed back to the driving current of the laser to compensate for it. The frequency sweep error from the ideal linear frequency waveform will degrade the spectral linewidth of the target spectrum and will degrade the maximum range performance of FMCW LiDAR. Therefore, the spectral linewidth measurement of frequency modulated laser is very important to evaluate the performance of the LiDAR system. However, it is impossible to apply the conventional self-homodyne or self-heterodyne method with a long delay line to evaluate the spectral linewidth of the frequency-modulated laser because the beat frequency generated by the long delay line is too high to measure with a high bandwidth frequency modulated laser. In this article, the spectral linewidth of the frequency-modulated laser is measured by using the newly proposed self-heterodyne method with a short delay line. The theoretical derivation for the proposed linewidth measurement method is provided in this article. The laser's spectral modulation bandwidth and linewidth are measured as 2.91GHz and 287kHz, respectively. LiDAR.

Keywords: FMCW, LiDAR, spectral linewidth, self-heterodyne

Procedia PDF Downloads 23
771 Visualization of PM₂.₅ Time Series and Correlation Analysis of Cities in Bangladesh

Authors: Asif Zaman, Moinul Islam Zaber, Amin Ahsan Ali

Abstract:

In recent years of industrialization, the South Asian countries are being affected by air pollution due to a severe increase in fine particulate matter 2.5 (PM₂.₅). Among them, Bangladesh is one of the most polluting countries. In this paper, statistical analyses were conducted on the time series of PM₂.₅ from various districts in Bangladesh, mostly around Dhaka city. Research has been conducted on the dynamic interactions and relationships between PM₂.₅ concentrations in different zones. The study is conducted toward understanding the characteristics of PM₂.₅, such as spatial-temporal characterization, correlation of other contributors behind air pollution such as human activities, driving factors and environmental casualties. Clustering on the data gave an insight on the districts groups based on their AQI frequency as representative districts. Seasonality analysis on hourly and monthly frequency found higher concentration of fine particles in nighttime and winter season, respectively. Cross correlation analysis discovered a phenomenon of correlations among cities based on time-lagged series of air particle readings and visualization framework is developed for observing interaction in PM₂.₅ concentrations between cities. Significant time-lagged correlations were discovered between the PM₂.₅ time series in different city groups throughout the country by cross correlation analysis. Additionally, seasonal heatmaps depict that the pooled series correlations are less significant in warmer months, and among cities of greater geographic distance as well as time lag magnitude and direction of the best shifted correlated particulate matter time series among districts change seasonally. The geographic map visualization demonstrates spatial behaviour of air pollution among districts around Dhaka city and the significant effect of wind direction as the vital actor on correlated shifted time series. The visualization framework has multipurpose usage from gathering insight of general and seasonal air quality of Bangladesh to determining the pathway of regional transportation of air pollution.

Keywords: air quality, particles, cross correlation, seasonality

Procedia PDF Downloads 97
770 Assessment of Soil Erosion Risk Using Soil and Water Assessment Tools Model: Case of Siliana Watershed, Northwest Tunisia

Authors: Sana Dridi, Jalel Aouissi, Rafla Attia, Taoufik Hermassi, Thouraya Sahli

Abstract:

Soil erosion is an increasing issue in Mediterranean countries. In Tunisia, the capacity of dam reservoirs continues to decrease as a consequence of soil erosion. This study aims to predict sediment yield to enrich soil management practices using Soil and Water Assessment Tools model (SWAT) in the Siliana watershed (1041.6 km²), located in the northwest of Tunisia. A database was constructed using remote sensing and Geographical Information System. Climatic and flow data were collected from water resources directorates in Tunisia. The SWAT model was built to simulate hydrological processes and sediment transport. A sensitivity analysis, calibration, and validation were performed using SWAT-CUP software. The model calibration of stream flow simulations shows a good performance with NSE and R² values of 0.77 and 0.79, respectively. The model validation shows a very good performance with values of NSE and R² for 0.8 and 0.88, respectively. After calibration and validation of stream flow simulation, the model was used to simulate the soil erosion and sediment load transport. The spatial distributions of soil loss rate for determining the critical sediment source areas show that 63 % of the study area has a low soil loss rate less than 7 t ha⁻¹y⁻¹. The annual average soil loss rate simulated with the SWAT model in the Siliana watershed is 4.62 t ha⁻¹y⁻¹.

Keywords: water erosion, SWAT model, streamflow, SWATCUP, sediment yield

Procedia PDF Downloads 87