Search results for: fiber reinforced polymers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2722

Search results for: fiber reinforced polymers

922 Improving Concrete Properties with Fibers Addition

Authors: E. Mello, C. Ribellato, E. Mohamedelhassan

Abstract:

This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concrete increased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers.

Keywords: concrete, compressive strength, fibers, flexural strength, tensile strength

Procedia PDF Downloads 419
921 Comparison of Physico-Mechanical Properties of Superplasticizer Stabilized Graphene Oxide and Carbon Nanotubes Reinforced Cement Nanocomposites

Authors: Ramanjit Kaur, N. C. Kothiyal

Abstract:

The present study compares the improved mechanical strength of cement mortar nanocomposites (CNCs) using polycarboxylate superplasticizer (PCE-SP) stabilized graphene oxide or functionalized carbon nanotubes (SP-GO and SP-FCNT) as reinforcing agents. So, in the present study, GO, and FCNT have been sterically stabilized via superplasticizer. The obtained results have shown that a dosage of 0.02 wt% of SP-GO and 0.08 wt% of SP-FCNTs showed an improvement in compressive strength by 23.2% and 16.5%, respectively. On the other hand, incorporation of 0.04% SP-GO and SP-FCNT resulted in an enhanced split tensile strength of 38.5% and 35.8%, respectively, as compared to the control sample at 90 days of curing. Mercury Intrusion Porosimetry (MIP) observations presented a decline in the porosity of 0.02% SP-GO-CNCs and 0.08% SP-FCNT-CNCs by 25% and 31% in comparison to the control sample. The improved hydration of CNCs contributing to the enhancement of physicomechanical strength has also been shown by SEM and XRD studies.

Keywords: graphene oxide, functionalized CNTs, steric stabilization, microstructure, crystalline behavior, pore structure refinement

Procedia PDF Downloads 85
920 Effectiveness of Opuntia Ficus Indica Cladodes Extract for Wound-Healing

Authors: Giuffrida Graziella, Pennisi Stefania, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta

Abstract:

Cladode chemical composition may vary according to soil factors, cultivation season, and plant age. The primary metabolites of cladodes are water, carbohydrates, and proteins. The carbohydrates in cladodes are divided into two types: structural and storage. Polysaccharides from Opuntia ficus‐indica (L.) Mill plants build molecular networks with the capacity to retain water, thus they act as mucoprotective agents. Mucilage is the main polysaccharide of cladodes; it contains polymers of β‐d‐galacturonic acid bound in positions (1–4) and traces of R‐linked l‐rhamnose (1-2). Mucilage regulates both the cell water content during prolonged drought and the calcium flux in the plant cells. The in vitro analysis of keratinocytes in monolayer, through the scratch-wound-healing assay, provided promising results. After 48 hours of exposure, the wound scratch was almost completely closed in cells treated with cladode extract. After 72 hours, the treated cells have reached complete confluence, while in the untreated cells, the confluence was reached after 96 hours.

Keywords: cladodes, metabolites, polysaccharide, scratch-wound-healing assay

Procedia PDF Downloads 13
919 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites

Authors: Mohammad M. Khan, Pankaj Agarwal

Abstract:

The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.

Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM

Procedia PDF Downloads 136
918 Thickness Dependence of AC Conductivity in Plasma Poly(Ethylene Oxide) Thin Films

Authors: S. Yakut, D. Deger, K. Ulutas, D. Bozoglu

Abstract:

Plasma poly(ethylene oxide) (pPEO) thin films were deposited between Aluminum (Al) electrodes on glass substrates by plasma assisted physical vapor deposition (PAPVD). The deposition was operated inside Argon plasma under 10⁻³ Torr and the thicknesses of samples were determined as 20, 100, 250, 500 nm. The plasma was produced at 5 W by magnetron connected to RF power supply. The capacitance C and dielectric loss factor tan δ were measured by Novovontrol Alpha-A high frequency empedance analyzer at freqquency and temperature intervals of 0,1 Hz and 1MHz, 193-353K, respectively. AC conductivity was derived from these values. AC conductivity results exhibited three different conductivity regions except for 20 nm. These regions can be classified as low, mid and high frequency regions. Low frequency region is observed at around 10 Hz and 300 K while mid frequency region is observed at around 1 kHz and 300 K. The last one, high frequency region, is observed at around 1 kHz and 200 K. There are some coinciding definitions for conduction regions, because these regions shift depending on temperature. Low frequency region behaves as DC-like conductivity while mid and high frequency regions show conductivities corresponding to mechanisms such as classical hopping, tunneling, etc. which are observed for amorphous materials. Unlike other thicknesses, for 20 nm sample low frequency region can not be detected in the investigated freuency range. It is thought that this is arised because of the presence of dead layer behavior.

Keywords: plasma polymers, dead layer, dielectric spectroscopy, AC conductivity

Procedia PDF Downloads 188
917 Manufacturing of Nano Zeolite by Planetary Ball Mill and Investigation of the Effects on Concrete

Authors: Kourosh Kosari

Abstract:

This study is engineering the properties of concrete containing natural nano zeolite as supplementary cementitious material in the blended Portland-cement based binder in amounts of 5,7 and 10% by mass. Crashing of clinoptilolite zeolite is performed by means of planetary ball mill. Two types of concrete along with water to cementitious material ratio (W/(C + P)) in 0.45 and 0.4 at the ages of 7, 28 and 90 days and were compared with each other. The effect of these additives on mechanical properties (compressive and tensile strength) and durability has been investigated by Electrical Resistivity (ER) and Rapid Chloride Penetration Test (RCPT) at the ages 28 and 90 days. Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) revealed that nanoparticles of natural clinoptilolite could improve quality of concrete. As a result of the tests, decrease in penetration of chloride ion and increase electrical resistivity significantly that are appropriate option for controlling of corrosion in reinforced concrete structures but increase of mechanical characteristics is not considerable.

Keywords: ball mill, durability, mechanical properties, nano zeolite

Procedia PDF Downloads 304
916 A Thermal Analysis Based Approach to Obtain High Carbonaceous Fibers from Chicken Feathers

Authors: Y. Okumuş, A. Tuna, A. T. Seyhan, H. Çelebi

Abstract:

Useful carbon fibers were derived from chicken feathers (PCFs) based on a two-step pyrolysis method. The collected PCFs were cleaned and categorized as black, white and brown. Differential scanning calorimeter (DSC) and thermo-gravimetric analyzer (TGA) were systemically used to design the pyrolysis steps. Depending on colors, feathers exhibit different glass transition (Tg) temperatures. Long-time heat treatment applied to the feathers emerged influential on the surface quality of the resulting carbon fibers. Fourier Transformation Infrared (FTIR) examination revealed that the extent of disulfide bond cleavage is highly associated with the feather melting stability. Scanning electron microscopy (SEM) examinations were employed to evaluate the morphological changes of feathers after pyrolysis. Of all, brown feathers were found to be the most promising to turn into useful carbon fibers without any trace of melting and shape distortion when pyrolysis was carried out at 230°C for 24 hours and at 450°C for 1 hour.

Keywords: poultry chicken feather, keratin protein fiber, pyrolysis, high carbonaceous fibers

Procedia PDF Downloads 313
915 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite

Authors: Anuj Suhag, Rahul Dayal

Abstract:

Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.

Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement

Procedia PDF Downloads 642
914 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions

Authors: M. S. Mrudula, M. R. Gopinathan Nair

Abstract:

In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.

Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes

Procedia PDF Downloads 324
913 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 111
912 Seismic Assessment of Old Existing RC Buildings In Madinah with Masonry Infilled Using Ambient Vibration Measurements

Authors: Tarek M. Alguhane, Ayman H. Khalil, Nour M. Fayed, Ayman M. Ismail

Abstract:

Early, pre-code, reinforced concrete structures present undetermined resistance to earthquakes. This situation is particularly unacceptable in the case of essential structures, such as healthcare structures and pilgrims' houses. Among these, existing old RC building in Madinah is seismically evaluated with and without infill wall and their dynamic characteristics are compared with measured values in the field using ambient vibration measurements (AVM). After, updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (Nonlinear static analysis) was carried out using SAP 2000 software incorporating inelastic material properties for concrete, infill and steel. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: seismic assessment, pushover analysis ambient vibration, modal update

Procedia PDF Downloads 478
911 Surface Sunctionalization Strategies for the Design of Thermoplastic Microfluidic Devices for New Analytical Diagnostics

Authors: Camille Perréard, Yoann Ladner, Fanny D'Orlyé, Stéphanie Descroix, Vélan Taniga, Anne Varenne, Cédric Guyon, Michael. Tatoulian, Frédéric Kanoufi, Cyrine Slim, Sophie Griveau, Fethi Bedioui

Abstract:

The development of micro total analysis systems is of major interest for contaminant and biomarker analysis. As a lab-on-chip integrates all steps of an analysis procedure in a single device, analysis can be performed in an automated format with reduced time and cost, while maintaining performances comparable to those of conventional chromatographic systems. Moreover, these miniaturized systems are either compatible with field work or glovebox manipulations. This work is aimed at developing an analytical microsystem for trace and ultra trace quantitation in complex matrices. The strategy consists in the integration of a sample pretreatment step within the lab-on-chip by a confinement zone where selective ligands are immobilized for target extraction and preconcentration. Aptamers were chosen as selective ligands, because of their high affinity for all types of targets (from small ions to viruses and cells) and their ease of synthesis and functionalization. This integrated target extraction and concentration step will be followed in the microdevice by an electrokinetic separation step and an on-line detection. Polymers consisting of cyclic olefin copolymer (COC) or fluoropolymer (Dyneon THV) were selected as they are easy to mold, transparent in UV-visible and have high resistance towards solvents and extreme pH conditions. However, because of their low chemical reactivity, surface treatments are necessary. For the design of this miniaturized diagnostics, we aimed at modifying the microfluidic system at two scales : (1) on the entire surface of the microsystem to control the surface hydrophobicity (so as to avoid any sample wall adsorption) and the fluid flows during electrokinetic separation, or (2) locally so as to immobilize selective ligands (aptamers) on restricted areas for target extraction and preconcentration. We developed different novel strategies for the surface functionalization of COC and Dyneon, based on plasma, chemical and /or electrochemical approaches. In a first approach, a plasma-induced immobilization of brominated derivatives was performed on the entire surface. Further substitution of the bromine by an azide functional group led to covalent immobilization of ligands through “click” chemistry reaction between azides and terminal alkynes. COC and Dyneon materials were characterized at each step of the surface functionalization procedure by various complementary techniques to evaluate the quality and homogeneity of the functionalization (contact angle, XPS, ATR). With the objective of local (micrometric scale) aptamer immobilization, we developed an original electrochemical strategy on engraved Dyneon THV microchannel. Through local electrochemical carbonization followed by adsorption of azide-bearing diazonium moieties and covalent linkage of alkyne-bearing aptamers through click chemistry reaction, typical dimensions of immobilization zones reached the 50 µm range. Other functionalization strategies, such as sol-gel encapsulation of aptamers, are currently investigated and may also be suitable for the development of the analytical microdevice. The development of these functionalization strategies is the first crucial step in the design of the entire microdevice. These strategies allow the grafting of a large number of molecules for the development of new analytical tools in various domains like environment or healthcare.

Keywords: alkyne-azide click chemistry (CuAAC), electrochemical modification, microsystem, plasma bromination, surface functionalization, thermoplastic polymers

Procedia PDF Downloads 423
910 Modal Analysis for Study of Minor Historical Architecture

Authors: Milorad Pavlovic, Anna Manzato, Antonella Cecchi

Abstract:

Cultural heritage conservation is a challenge for contemporary society. In recent decades, significant resources have been allocated for the conservation and restoration of architectural heritage. Historical buildings were restored, protected and reinforced with the intent to limit the risks of degradation or loss, due to phenomena of structural damage and to external factors such as differential settlements, earthquake effects, etc. The wide diffusion of historic masonry constructions in Italy, Europe and the Mediterranean area requires reliable tools for the evaluation of their structural safety. In this paper is presented a free modal analysis performed on a minor historical architecture located in the village of Bagno Grande, near the city of L’Aquila in Italy. The location is characterized by a complex urban context, seriously damaged by the earthquake of 2009. The aim of this work is to check the structural behavior of a masonry building characterized by several boundary conditions imposed by adjacent buildings and infrastructural facilities.

Keywords: FEM, masonry, minor historical architecture, modal analysis

Procedia PDF Downloads 300
909 Synthesis of Smart Materials Based on Polyaniline Coated Fibers

Authors: Mihaela Beregoi, Horia Iovu, Cristina Busuioc, Alexandru Evanghelidis, Elena Matei, Monica Enculescu, Ionut Enculescu

Abstract:

Nanomaterials field is very attractive for all researchers who are attempting to develop new devices with the same or improved properties than the micro-sized ones, while reducing the reagents and power consumptions. In this way, a wide range of nanomaterials were fabricated and integrated in applications for electronics, optoelectronics, solar cells, tissue reconstruction and drug delivery. Obviously, the most appealing ones are those dedicated to the medical domain. Different types of nano-sized materials, such as particles, fibers, films etc., can be synthesized by using physical, chemical or electrochemical methods. One of these techniques is electrospinning, which enable the production of fibers with nanometric dimensions by pumping a polymeric solution in a high electric field; due to the electrostatic charging and solvent evaporation, the precursor mixture is converted into nonwoven meshes with different fiber densities and mechanical properties. Moreover, polyaniline is a conducting polymer with interesting optical properties, suitable for displays and electrochromic windows. Otherwise, polyaniline is an electroactive polymer that can contract/expand by applying electric stimuli, due to the oxidation/reduction reactions which take place in the polymer chains. These two main properties can be exploited in order to synthesize smart materials that change their dimensions, exhibiting in the same time good electrochromic properties. In the context aforesaid, a poly(methyl metacrylate) solution was spun to get webs composed of fibers with diameter values between 500 nm and 1 µm. Further, the polymer meshes were covered with a gold layer in order to make them conductive and also appropriate as working electrode in an electrochemical cell. The gold shell was deposited by DC sputtering. Such metalized fibers can be transformed into smart materials by covering them with a thin layer of conductive polymer. Thus, the webs were coated with a polyaniline film by the electrochemical route, starting from and aqueous solution of aniline and sulfuric acid, where sulfuric acid acts as oxidant agent. For the polymerization of aniline, a saturated calomel electrode was employed as reference, a platinum plate as counter electrode and the gold covered webs as working electrode. Chronoamperometry was selected as deposition method for polyaniline, by modifying the deposition time. Metalized meshes with different fiber densities were used, the transmission ranging between 70 and 80 %. The morphological investigation showed that polyaniline layer has a granular structure for all deposition experiments. As well, some preliminary optical tests were done by using sulfuric acid as electrolyte, which revealed the modification of polyaniline colour from green to dark blue when applying a voltage. In conclusion, new multilayered materials were obtained by a simple approach: the merge of the electrospinning method benefits with polyaniline chemistry. This synthesis method allows the fabrication of structures with reproducible characteristics, suitable for display or tissue substituents.

Keywords: electrospinning, fibers, smart materials, polyaniline

Procedia PDF Downloads 275
908 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: reinforcement, silicon carbide, fly ash, red mud

Procedia PDF Downloads 144
907 Study of the Behavior of Geogrid Mechanically Stabilized Earth Walls Under Cyclic Loading

Authors: Yongzhe Zhao, Ying Liu, Zhiyong Liu, Hui You

Abstract:

The soil behind retaining wall is normally subjected to cyclic loading, for example traffic loading. Geotextile has been widely used to reinforce the soil for the purpose of reducing the settlement of the soil. A series of physical model tests were performed to investigate the settlement of footing under cyclic loading. The settlement of the footing, ground deformation and the vertical earth pressure in subsoil were presented and discussed under different types of geotextiles. The results indicate that including geotextiles significantly decreases the footing settlement and the stiffer the geotextile, the less the settlement. Under cyclic loading, the soil below the footing shows dilation within certain depths and beyond that it experiences contraction. The location of footing relative to the retaining wall has important effects on the deformation behavior of the soil in the ground, and the closer the footing to the retaining wall, the greater the contraction soil shows. This is because the retaining wall experienced greater lateral displacement.

Keywords: physical model tests, reinforced retaining wall, cyclic loading, footing

Procedia PDF Downloads 140
906 Safety of Built Infrastructure: Single Degree of Freedom Approach to Blast Resistant RC Wall Panels

Authors: Muizz Sanni-Anibire

Abstract:

The 21st century has witnessed growing concerns for the protection of built facilities against natural and man-made disasters. Studies in earthquake resistant buildings, fire, and explosion resistant buildings now dominate the arena. To protect people and facilities from the effects of the explosion, reinforced concrete walls have been designed to be blast resistant. Understanding the performance of these walls is a key step in ensuring the safety of built facilities. Blast walls are mostly designed using simple techniques such as single degree of freedom (SDOF) method, despite the increasing use of multi-degree of freedom techniques such as the finite element method. This study is the first stage of a continuous research into the safety and reliability of blast walls. It presents the SDOF approach applied to the analysis of a concrete wall panel under three representative bomb situations. These are motorcycle 50 kg, car 400kg and also van with the capacity of 1500 kg of TNT explosive.

Keywords: blast wall, safety, protection, explosion

Procedia PDF Downloads 248
905 Mechanical Properties of Organic Polymer and Exfoliated Graphite Reinforced Bacteria Cellulose Paper

Authors: T. Thompson, E. F. Zegeye

Abstract:

Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 °C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 °C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%.

Keywords: bacterial cellulose, exfoliated graphite, kombucha scoby, tensile test

Procedia PDF Downloads 101
904 Assessing Effectiveness of Outrigger and Belt Truss System for Tall Buildings under Wind Loadings

Authors: Nirand Anunthanakul

Abstract:

This paper is to investigate a 54-story reinforced concrete residential tall building structures—238.8 meters high. Shear walls, core walls, and columns are the primary vertical components. Other special lateral components—core-outrigger and belt trusses—are studied and combined with the structural system in order to increase the structural stability during severe lateral load events, particularly, wind loads. The wind tunnel tests are conducted using the force balance technique. The overall wind loads and dynamics response of the building are also measured for 360 degrees of azimuth—basis for 10-degree intervals. The results from numerical analysis indicate that an outrigger and belt truss system clearly engages perimeter columns to efficiently reduce acceleration index and lateral deformations at the top level so that the building structures achieve lateral stability, and meet standard provision values.

Keywords: outrigger, belt truss, tall buildings, wind loadings

Procedia PDF Downloads 551
903 Thermal, Chemical, and Mineralogical Properties of Soil Building Blocks Reinforced with Cement

Authors: Abdelmalek Ammari

Abstract:

This paper represents an experimental study to determine the effect between thermal conductivity of Compressed Earth Block Stabilized (CEBs) by cement and the mineralogical and chemical analyses of soil, all the samples of CEB in the dry state and with different content of cement, the samples made by soil stabilized by Portland Cement. The soil used collected from fez city in Morocco. That determination of the thermal conductivity of CEBs plays an important role when considering its suitability for energy saving insulation. The measurement technique used to determine thermal conductivity is called hot ring method, the thermal conductivity of the tested samples is strongly affected by the quantity of the cement added. The soil of Fez, mainly composed of calcite, quartz, and dolomite, improved the behaviour of the material by the addition of cement. The findings suggest that to manufacture lightweight samples with high thermal insulation properties, it is advisable to use clays that contain quartz. . In addition, quartz has high thermal conductivity.

Keywords: compressed earth blocks, thermal conductivity, mineralogical, chemical, temperature

Procedia PDF Downloads 134
902 Regulation of Transfer of 137cs by Polymeric Sorbents for Grow Ecologically Sound Biomass

Authors: A. H. Tadevosyan, S. K. Mayrapetyan, N. B. Tavakalyan, K. I. Pyuskyulyan, A. H. Hovsepyan, S. N. Sergeeva

Abstract:

Soil contamination with radiocesium has a long-term radiological impact due to its long physical half-life (30.1 years for 137Cs and 2 years for 134Cs) and its high biological availability. 137Cs causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. One of the important aspects of the problem of contaminated soils remediation is understand of protective actions aimed at the reduction of biological migration of radionuclides in soil-plant system. The most effective way to bind radionuclides is the use of selective sorbents. The proposed research mainly aims to achieve control on transfer of 137Cs in a system growing media–plant due to counter ions variation in the polymeric sorbents. As the research object, Japanese basil-Perilla frutescens was chosen. Productivity of plants depending on the presence (control-without presence of polymer) and type of polymer material, as well as content of 137Cs in plant material has been determined. The character of different polymers influences on the 137Cs migration in growing media–plant system as well as accumulation in the plants has been cleared up.

Keywords: radioceaseum, Japanese basil, polymer, soil-plant system

Procedia PDF Downloads 172
901 Preparation and Properties of PP/EPDM Reinforced with Graphene

Authors: M. Haghnegahdar, G. Naderi, M. H. R. Ghoreishy

Abstract:

Polypropylene(PP)/Ethylene Propylene Diene Monomer (EPDM) samples (80/20) containing 0, 0.5, 1, 1.5, 2, 2.5, and 3 (expressed in mass fraction) graphene were prepared using melt compounding method to investigate microstructure, mechanical properties, and thermal stability as well as electrical resistance of samples. X-Ray diffraction data confirmed that graphene platelets are well dispersed in PP/EPDM. Mechanical properties such as tensile strength, impact strength and hardness demonstrated increasing trend by graphene loading which exemplifies substantial reinforcing nature of this kind of nano filler and it's good interaction with polymer chains. At the same time it is found that thermo-oxidative degradation of PP/EPDM nanocomposites is noticeably retarded with the increasing of graphene content. Electrical surface resistivity of the nanocomposite was dramatically changed by forming electrical percolation threshold and leads to change electrical behavior from insulator to semiconductor. Furthermore, these results were confirmed by scanning electron microscopy(SEM), dynamic mechanical thermal analysis (DMTA), and transmission electron microscopy (TEM).

Keywords: nanocomposite, graphene, microstructure, mechanical properties

Procedia PDF Downloads 315
900 Raman Line Mapping on Melt Spun Polycarbonate/MWNT Fiber-Based Nanocomposites

Authors: Poonam Yadav, Dong Bok Lee

Abstract:

Raman spectroscopy was used for characterization of multi-wall carbon nanotube (MWNT) and Polycarbonate/multi-wall carbon nanotube (PC/MWNT) based fibers with 0.55% and 0.75% of MWNT (PC/MWNT55 and PC/MWNT75). PC/MWNT55 and PC/MWNT75 fibers was prepared by melt spinning device using nanocomposites made by two different route, viz., solvent casting and melt extrusion. Fibers prepared from melt extruded nanocomposites showed smooth and uniform morphology as compared to solvent casting based nanocomposites. The Raman mapping confirmed that the melt extruded based nanocomposites had better dispersion of MWNT in Polycarbonate (PC) than solvent casting carbon nanotube.

Keywords: dispersion, melt extrusion, multi-wall carbon nanotube, mapping

Procedia PDF Downloads 334
899 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel

Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid

Abstract:

This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.

Keywords: earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity

Procedia PDF Downloads 169
898 Dielectric Properties of PANI/h-BN Composites

Authors: Seyfullah Madakbas, Emrah Cakmakci

Abstract:

Polyaniline (PANI), the most studied member of the conductive polymers, has a wide range of uses from several electronic devices to various conductive high-technology applications. Boron nitride (BN) is a boron and nitrogen containing compound with superior chemical and thermal resistance and thermal conductivity. Even though several composites of PANI was prepared in literature, the preparation of h-BN/PANI composites is rare. In this work PANI was polymerized in the presence of different amounts of h-BN (1, 3 and 5% with respect to PANI) by using 0.1 M solution of NH4S2O8 in HCl as the oxidizing agent and conductive composites were prepared. Composites were structurally characterized with FTIR spectroscopy and X-Ray Diffraction (XRD). Thermal properties of conductive composites were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric measurements were performed in the frequency range of 106–108 Hz at room temperature. The corresponding bands for the benzenoid and quinoid rings at around 1593 and 1496 cm-1 in the FTIR spectra of the composites proved the formation of polyaniline. Together with the FTIR spectra, XRD analysis also revealed the existence of the interactions between PANI and h-BN. Glass transition temperatures (Tg) of the composites increased with the increasing amount of PANI (from 87 to 101). TGA revealed that the char yield of the composites increased as the amount of h-BN was increased in the composites. Finally the dielectric permittivity of 3 wt.%h-BN-containing composite was measured and found as approximately 17. This work was supported by Marmara University, Commission of Scientific Research Project.

Keywords: dielectric permittivity, h-BN, PANI, thermal analysis

Procedia PDF Downloads 258
897 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: finite element analysis, fused deposition modelling, residual stress, warpage

Procedia PDF Downloads 168
896 Synthesis, Characterization, and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites

Authors: S. H. Rashmi, G. M. Madhu, A. A. Kittur, R. Suresh

Abstract:

Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical, and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro-sized particles used as reinforcing agents scatter light, thus, reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesizing zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.

Keywords: glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide

Procedia PDF Downloads 280
895 Hollowfiber Poly Lactid Co-Glycolic Acid (PLGA)-Collagen Coated by Chitosan as a Candidate of Small Diameter Vascular Graft

Authors: Dita Mayasari, Zahrina Mardina, Riki Siswanto, Agresta Ifada, Ova Oktavina, Prihartini Widiyanti

Abstract:

Heart failure is a serious major health problem with high number of mortality per year. Bypass is one of the solutions that has often been taken. Natural vascular graft (xenograft) as the substitute in bypass is inconvenient due to ethic problems and the risk of infection transmission caused by the usage of another species transgenic vascular. Nowadays, synthetic materials have been fabricated from polymers. The aim of this research is to make a synthetic vascular graft with great physical strength, high biocompatibility, and good affordability. The method of this research was mixing PLGA and collagen by magnetic stirrer. This composite were shaped by spinneret with water as coagulant. Then it was coated by chitosan with 3 variations of weight (1 gram, 2 grams, and 3 grams) to increase hemo and cytocompatibility, proliferation, and cell attachment in order for the vascular graft candidates to be more biocompatible. Mechanical strength for each variation was 5,306 MPa (chitosan 1 gram), 3,433 MPa (chitosan 2 grams) and 3,745 MPa (chitosan 3 grams). All the tensile values were higher than human vascular tensile strength. Toxicity test showed that the living cells in all variations were more than 60% in number, thus the vascular graft is not toxic.

Keywords: chitosan, collagen, PLGA, spinneret

Procedia PDF Downloads 383
894 d-Block Metal Nanoparticles Confined in Triphenylphosphine Oxide Functionalized Core-Crosslinked Micelles for the Application in Biphasic Hydrogenation

Authors: C. Joseph Abou-Fayssal, K. Philippot, R. Poli, E. Manoury, A. Riisager

Abstract:

The use of soluble polymer-supported metal nanoparticles (MNPs) has received significant attention for the ease of catalyst recovery and recycling. Of particular interest are MNPs that are supported on polymers that are either soluble or form stable colloidal dispersion in water, as this allows to combine of the advantages of the aqueous biphasic protocol with the catalytical performances of MNPs. The objective is to achieve good confinement of the catalyst in the nanoreactor cores and, thus, a better catalyst recovery in order to overcome the previously witnessed MNP extraction. Inspired by previous results, we are interested in the design of polymeric nanoreactors functionalized with ligands able to solidly anchor metallic nanoparticles in order to control the activity and selectivity of the developed nanocatalysts. The nanoreactors are core-crosslinked micelles (CCM) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Varying the nature of the core-linked functionalities allows us to get differently stabilized metal nanoparticles and thus compare their performance in the catalyzed aqueous biphasic hydrogenation of model substrates. Particular attention is given to catalyst recyclability.

Keywords: biphasic catalysis, metal nanoparticles, polymeric nanoreactors, catalyst recovery, RAFT polymerization

Procedia PDF Downloads 78
893 Use of Natural Fibers in Landfill Leachate Treatment

Authors: Araujo J. F. Marina, Araujo F. Marcus Vinicius, Mulinari R. Daniella

Abstract:

Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment. In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber. These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale. In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%. The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.

Keywords: lndfill leachate, chemical treatment, natural fibers, advanced oxidation processes

Procedia PDF Downloads 338