Search results for: adipose tissue-derived stem cell injections
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4338

Search results for: adipose tissue-derived stem cell injections

2538 Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application

Authors: Ali Mirtaghavi, Andy Baldwin, Rajendarn Muthuraj, Jack Luo

Abstract:

Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application.

Keywords: 3D scaffolds, aerogels, Biocomposites , tissue engineering

Procedia PDF Downloads 129
2537 Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In-Vitro and In-Vivo Study

Authors: Mrinal Gupta, Mohammad Rumman, Babita Singh Abbas Ali Mahdi, Shivani Pandey

Abstract:

Introduction: Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities, including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds, including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric, can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have fewer side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. Methods: HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and the effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed to evaluate the development of the diabetic model. An echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis were analyzed. Results: In vitro BBR had no impact on cell viability up to a concentration of 50μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice, as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. Conclusion: BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.

Keywords: glucocorticoid, hyperglycemia, berberine, HepG2 cells, insulin resistance, glucose

Procedia PDF Downloads 64
2536 Visualizing Matrix Metalloproteinase-2 Activity Using Extracellular Matrix-Immobilized Fluorescence Resonance Energy Transfer Bioprobe in Cancer Cells

Authors: Hawon Lee, Young-Pil Kim

Abstract:

Visualizing matrix metalloproteinases (MMPs) activity is necessary for understanding cancer metastasis because they are implicated in cell migration and invasion by degrading the extracellular matrix (ECM). While much effort has been made to sense the MMP activity, but extracellularly long-term monitoring of MMP activity still remains challenging. Here, we report a collagen-bound fluorescent bioprobe for the detection of MMP-2 activity in the extracellular environment. This bioprobe consists of ECM-immobilized part (including collagen-bound protein) and MMP-sensing part (including peptide substrate linked with fluorescence resonance energy transfer (FRET) coupler between donor green fluorescent protein (GFP) and acceptor TAMRA dye), which was constructed through intein-mediated self-splicing conjugation. Upon being immobilized on the collagen-coated surface, this bioprobe enabled efficient long-lasting observation of MMP-2 activity in the cultured cells without affecting cell growth and viability. As a result, the FRET ratio (acceptor/donor) decreased as the MMP2 activity increased in cultured cancer cells. Furthermore, unlike wild-type MMP-2, mutated MMP-2 expression (Y580A in the hemopexin region) gave rise to lowering the secretion of MMP-2 in HeLa. Conclusively, our method is anticipated to find applications for tracing and visualizing enzyme activity.

Keywords: collagen, ECM, FRET, MMP

Procedia PDF Downloads 202
2535 The Effects of Dual-Enrollment Programs on Students’ Post-Secondary Academic Performance

Authors: Cody Kirby, Kaustav Misra, Arundhati Bagchi Misra, Sharon P. Cox

Abstract:

This paper focuses on the relationship that dual-enrollment programs have on academic performance and retention. Both performance and retention are significant issues in higher education. The first, performance, is a goal of higher education, having an impact on students’ lives. The second, retention, is key to the viability of any college or university. This paper uses survey research methodology to examine factors that lead to positive student academic performance, which leads to retention, specifically in dual-enrollment programs. The data show several characteristics that lead to a positive impact on GPA. These include the following; age, Caucasian race, full-time status, students in STEM programs, and finally dual enrollment participation.

Keywords: dual enrollment, early college, retention, undergraduate education

Procedia PDF Downloads 150
2534 Significance of Molecular Autophagic Pathway in Gaucher Disease Pathology

Authors: Ozlem Oral, Emre Taskin, Aysel Yuce, Serap Dokmeci, Devrim Gozuacik

Abstract:

Autophagy is an evolutionary conserved lysosome-dependent catabolic pathway, responsible for the degradation of long-lived proteins, abnormal aggregates and damaged organelles which cannot be degraded by the ubiquitin-proteasome system. Lysosomes degrade the substrates through the activity of lysosomal hydrolases and lysosomal membrane-bound proteins. Mutations in the coding region of these proteins cause malfunctional lysosomes, which contributes to the pathogenesis of lysosomal storage diseases. Gaucher disease is a lysosomal storage disease resulting from the mutation of a lysosomal membrane-associated glycoprotein called glucocerebrosidase and its cofactor saposin C. The disease leads to intracellular accumulation of glucosylceramide and other glycolipids. Because of the essential role of lysosomes in autophagic degradation, Gaucher disease may directly be linked to this pathway. In this study, we investigated the expression of autophagy and/or lysosome-related genes and proteins in fibroblast cells isolated from patients with different mutations. We carried out confocal microscopy analysis and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. We also evaluated lysosomal pH by active lysosome staining and lysosomal enzyme activity. Beside lysosomes, we also performed proteasomal activity and cell death analysis in patient samples. Our data showed significant attenuation in the expression of key autophagy-related genes and accumulation of their proteins in mutant cells. We found decreased the ability of autophagosomes to fuse with lysosomes, associated with elevated lysosomal pH and reduced lysosomal enzyme activity. Proteasomal degradation and cell death analysis showed reduced proteolytic activity of the proteasome, which consequently leads to increased susceptibility to cell death. Our data indicate that the major degradation pathways are affected by multifunctional lysosomes in mutant patient cells and may underlie in the mechanism of clinical severity of Gaucher patients. (This project is supported by TUBITAK-3501-National Young Researchers Career Development Program, Project No: 112T130).

Keywords: autophagy, Gaucher's disease, glucocerebrosidase, mutant fibroblasts

Procedia PDF Downloads 324
2533 The Involvement of the Homing Receptors CCR7 and CD62L in the Pathogenesis of Graft-Versus-Host Disease

Authors: Federico Herrera, Valle Gomez García de Soria, Itxaso Portero Sainz, Carlos Fernández Arandojo, Mercedes Royg, Ana Marcos Jimenez, Anna Kreutzman, Cecilia MuñozCalleja

Abstract:

Introduction: Graft-versus-host disease (GVHD) still remains the major complication associated with allogeneic stem cell transplantation (SCT). The pathogenesis involves migration of donor naïve T-cells into recipient secondary lymphoid organs. Two molecules are important in this process: CD62L and CCR7, which are characteristically expressed in naïve/central memory T-cells. With this background, we aimed to study the influence of CCR7 and CD62L on donor lymphocytes in the development and severity of GVHD. Material and methods: This single center study included 98 donor-recipient pairs. Samples were collected prospectively from the apheresis product and phenotyped by flow cytometry. CCR7 and CD62L expression in CD4+ and CD8+ T-cells were compared between patients who developed acute (n=40) or chronic GVHD (n=33) and those who did not (n=38). Results: The patients who developed acute GVHD were transplanted with a higher percentage of CCR7+CD4+ T-cells (p = 0.05) compared to the no GVHD group. These results were confirmed when these patients were divided in degrees according to the severity of the disease; the more severe disease, the higher percentage of CCR7+CD4+ T-cells. Conversely, chronic GVHD patients received a higher percentage of CCR7+CD8+ T-cells (p=0.02) in comparison to those who did not develop the complication. These data were also confirmed when patients were subdivided in degrees of the disease severity. A multivariable analysis confirmed that percentage of CCR7+CD4+ T-cells is a predictive factor of acute GVHD whereas the percentage of CCR7+CD8+ T-cells is a predictive factor of chronic GVHD. In vitro functional assays (migration and activation assays) supported the idea of CCR7+ T-cells were involved in the development of GVHD. As low levels of CD62L expression were detected in all apheresis products, we tested the hypothesis that CD62L was shed during apheresis procedure. Comparing CD62L surface levels in T-cells from the same donor immediately before collecting the apheresis product, and the final apheresis product we found that this process down-regulated CD62L in both CD4+ and CD8+ T cells (p=0.008). Interestingly, when CD62L levels were analysed in days 30 or 60 after engraftment, they recovered to baseline (p=0.008). However, to investigate the relation between CD62L expression and the development of GVHD in the recipient samples after the engraftment, no differences were observed comparing patients with GVHD to those who did not develop the disease. Discussion: Our prospective study indicates that the CCR7+ T-cells from the donor, which include naïve and central memory T-cells, contain the alloreactive cells with a high ability to mediate GVHD (in the case of both migration and activation). Therefore we suggest that the proportion and functional properties of CCR7+CD4+ and CCR7+CD8+ T-cells in the apheresis could act as a predictive biomarker to both acute and chronic GVHD respectively. Importantly, our study precludes that CD62L is lost in the apheresis and therefore it is not a reliable biomarker for the development of GVHD.

Keywords: CCR7, CD62L, GVHD, SCT

Procedia PDF Downloads 288
2532 The Glycitin and 38 Combination Inhibit the UV-Induced Wrinkle Fomation in Human Primary Fibroblast

Authors: Manh Tin Ho, Phorl Sophors, Ga Young Seo, Young Mee Kim, Youngho Lim, Moonjae Cho

Abstract:

UV radiation in sunlight is one of the most potential factor induced skin ageing and photocarcinogenesis. UV may induce the melanin production and wrinkle formation. Recently, the natural secondary compounds have been reported that had the beneficial protective effects from UV light. In this study, we investigated the effects of two different compounds, glycitin and 38, on human dermal fibroblast. We first only treated the 38 on melanocyte cell to test the proliferation inhibition of 38 on this cell line. Then, we induced the combination of glycitin and 38 on human dermal fibroblast in 48h and investigate the proliferation, collagen production and the metalloproteinase family expression. The 38 alone could inhibit the proliferation of melanocyte which indicated the reduction of melanin production. The combination of glycitin and 38 truly increased the fibroblast proliferation and even they could recover the UV-induced and H2O2-induced damaged fibroblast proliferation. The co-treatment also promoted the collagen IV expression significantly and accelerated the total collagen secretion. In addition, metalloproteinase (MMPs) family such as MMP1, MMP2, MMP7 was down-regulated in transcriptional level. In conclusion, the combination of glycitin and 38 has induced the fibroblast proliferation even when it was damaged by UV exposure and H2O2, whereas augmented collagen production and inhibited the MMPs caused the wrinkle formation and decreased the melanocyte proliferation, suggested an potential UV-protective therapy.

Keywords: UV radiation, wrinkle, ageing, glycitin, dermal fibroblast

Procedia PDF Downloads 237
2531 Factors Associated to Down Syndrome Causes in Patients of Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran in 2014─2015

Authors: Bremmy Laksono, Nurul Qomarilla, Riksa Parikrama, Dyan K. Nugrahaeni, Willyanti Soewondo, Dadang S. H. Effendi, Eriska Rianti, Arlette S. Setiawan, Ine Sasmita, Risti S. Primanti, Erna Kurnikasari, Yunia Sribudiani

Abstract:

Down syndrome is a chromosomal abnormality of chromosome 21 which can appear in man or woman. Maternal age and paternal age, history of radiation are the common risk factors. This study was conducted to observe risk factors which related as causes of Down syndrome. In this case control study using purposive sampling technique, 84 respondents were chosen from Cell Culture and Cytogenetics Laboratory patients in Faculty of Medicine, Universitas Padjadjaran, Indonesia. They were used as study samples and divided into 42 Down syndrome cases and 42 control respondents. This study used univariate and bivariate analysis (chi-square). Samples population were West Java residents, the biggest province in Indonesia in number of population. The results showed maternal age, paternal age, history of radiation exposure and family history were not significantly related to Down syndrome baby. Moreover, all of those factors also did not contribute to the risk of having a child with Down syndrome in patients at Cell Culture and Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran. Therefore, we should investigate other risk factors of Down syndrome in West Java population.

Keywords: down syndrome, family history, maternal age, paternal age, risk factor

Procedia PDF Downloads 405
2530 A Cross-Sectional Study on the Nutritional Status of School Going Children From Urban and Rural Populations of Pakistan

Authors: Aftab Ahmed, Farhan Saeed, Muhammad Afzaal, Shinawar Waseem Ali, Ali Imran, Sadaf Munir

Abstract:

Malnutrition is a globally increasing public health concern among children; it affects number of school children influencing their growth, development and academic performance. The tenet of the current cross sectional study was to assess the nutritional biomarkers of school going children of age 12-15 years resulting in stunting, underweight, overweight, bone deformities and other health disparities in nutritionally deprived urban and rural populations of Pakistan. A sample size comprising of 180 school going children was stipulated from the targeted urban and rural populations. The fallouts of investigation unveiled that both rural and urban populations were experiencing nutritional challenges however; on account of awareness paucity the rustic population was nutritionally more compromised. Hematological tests elucidated 16.7% and 7.8% cases for high glucose level, 35.6% and 27.8% cases for low hemoglobin levels, 14.4% and 15.6% cases for low calcium indices, 12.2% and 4.4% high white blood cell count (WBC), 20% and 14.4% low red blood cell count, 76.7% and 74.4% low hematocrit (HCT) values, among the rural and urban populations respectively. The above mentioned outcomes can serve as a way forward for policy and law maker institutions to curb the possible barricades in the way of healthy nutritional status in these areas

Keywords: malnutrition, hematological study, child nutrition, bone mineral density, calcium, RBC

Procedia PDF Downloads 86
2529 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives

Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović

Abstract:

In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).

Keywords: benzimidazoles, QSAR, ADME, in silico

Procedia PDF Downloads 375
2528 Assessing the Recycling Potential of Cupriavidus Necator for Space Travel: Production of Single Cell Proteins and Polyhydroxyalkanoates From Organic Waste

Authors: P. Joris, E. Lombard, X. Cameleyre, G. Navarro, A. Paillet, N. Gorret, S. E. Guillouet

Abstract:

Today, on the international space station, multiple supplies are needed per year to supply food and spare parts and to take out waste. But as it is planned to go longer and further into space these supplies will no longer be possible. The astronaut life support system must be able of continuously transform waste into valuable compounds. Two types of production were identified as critical and could be be supplemented by microorganisms. On the one hand, since microgravity causes rapid muscle loss, single cell proteins (SCPs) could be used as protein rich feed or food. On the other hand, having enough building materials to build an advanced habitat will not be possible only by transporting space goods from earth to mars for example. The bacterium Cupriavidus. necator is well known for its ability to produce a large amount of proteins or of polyhydroxyalkanoate biopolymers (PHAs) depending on its implementation. By coupling the life support system to a 3D-printer, astronauts could be supplied with an unlimited amount of building materials. Additionally, based on the design of the life support system, waste streams have been identified: urea from the crew urine and volatile fatty acids (VFAs) from a first stage of organic waste (excrement and food waste) treatment through anaerobic digestion. Thus, the objective of this, within the Spaceship.Fr project, was to demonstrate the feasibility of producing SCPs and PHAs from VFAs and urea in bioreactor. Because life support systems operate continuously as loops, continuous culture experiments were chosen and the effect of the bioreactor dilution rate on biomass composition was investigated. Total transformation of the carbon source into biomass with high SCP or PHA content was achieved in all cases. We will present the transformation performances of VFAs and urea by the bacteria in bioreactor in terms of titers, yields and productivities but also in terms of the quality of SCP and PHA produced, nucleic acid content. We will further discuss the envisioned integration of our process within life support systems.

Keywords: life support system, space travel, waste treatment, single cell proteins, polyhydroxyalkanoates, bioreactor

Procedia PDF Downloads 121
2527 VHL, PBRM1, and SETD2 Genes in Kidney Cancer: A Molecular Investigation

Authors: Rozhgar A. Khailany, Mehri Igci, Emine Bayraktar, Sakip Erturhan, Metin Karakok, Ahmet Arslan

Abstract:

Kidney cancer is the most lethal urological cancer accounting for 3% of adult malignancies. VHL, a tumor-suppressor gene, is best known to be associated with renal cell carcinoma (RCC). The VHL functions as negative regulator of hypoxia inducible factors. Recent sequencing efforts have identified several novel frequent mutations of histone modifying and chromatin remodeling genes in ccRCC (clear cell RCC) including PBRM1 and SETD2. The PBRM1 gene encodes the BAF180 protein, which involved in transcriptional activation and repression of selected genes. SETD2 encodes a histone methyltransferase, which may play a role in suppressing tumor development. In this study, RNAs of 30 paired tumor and normal samples that were grouped according to the types of kidney cancer and clinical characteristics of patients, including gender and average age were examined by RT-PCR, SSCP and sequencing techniques. VHL, PBRM1 and SETD2 expressions were relatively down-regulated. However, statistically no significance was found (Wilcoxon signed rank test, p > 0.05). Interestingly, no mutation was observed on the contrary of previous studies. Understanding the molecular mechanisms involved in the pathogenesis of RCC has aided the development of molecular-targeted drugs for kidney cancer. Further analysis is required to identify the responsible genes rather than VHL, PBRM1 and SETD2 in kidney cancer.

Keywords: kidney cancer, molecular biomarker, expression analysis, mutation screening

Procedia PDF Downloads 459
2526 Development and Evaluation of a Gut-Brain Axis Chip Based on 3D Printing Interconnecting Microchannel Scaffolds

Authors: Zhuohan Li, Jing Yang, Yaoyuan Cui

Abstract:

The gut-brain axis (GBA), a communication network between gut microbiota and the brain, benefits for investigation of brain diseases. Currently, organ chips are considered one of the potential tools for GBA research. However, most of the available GBA chips have limitations in replicating the three-dimensional (3D) growth environment of cells and lack the required cell types for barrier function. In the present study, a microfluidic chip was developed for GBA interaction. Blood-brain barrier (BBB) module was prepared with HBMEC, HBVP, U87 cells and decellularized matrix (dECM). Intestinal epithelial barrier (IEB) was prepared with Caco-2 and vascular endothelial cells and dECM. GBA microfluidic device was integrated with IEB and BBB modules using 3D printing interconnecting microchannel scaffolds. BBB and IEB interaction on this GBA chip were evaluated with lipopolysaccharide (LPS) exposure. The present GBA chip achieved multicellular three-dimensional cultivation. Compared with the co-culture cell model in the transwell, fluorescein was absorbed more slowly by 5.16-fold (IEB module) and 4.69-fold (BBB module) on the GBA chip. Accumulation of Rhodamine 123 and Hoechst33342 was dramatically decreased. The efflux function of transporters on IEB and BBB was significantly increased on the GBA chip. After lipopolysaccharide (LPS) disrupted the IEB, and then BBB dysfunction was further observed, which confirmed the interaction between IEB and BBB modules. These results demonstrated that this GBA chip may offer a promising tool for gut-brain interaction study.

Keywords: decellularized matrix, gut-brain axis, organ-on-chip, three-dimensional printing.

Procedia PDF Downloads 36
2525 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 122
2524 Evaluation of ROS Mediated Apoptosis Induced by Tuber Extract of Dioscorea Bulbifera on Human Breast Adenocarcinoma

Authors: Debasmita Dubey, Rajesh Kumar Meher, Smruti Pragya Samal, Pradeep Kumar Naik

Abstract:

Background: To determine antioxidant properties and anticancer activity by ROS and mitochondrial transmembrane potential mediated apoptosis against MCF7, MDA-MB-231, cell line. Methods: Leaf sample was extracted using methanol by microwave digestion technique. The antioxidant properties of the methanolic extract were determined by a DPPH scavenging assay. In vitro anticancer activity, mitochondrial transmembrane potential, apoptosis activity and DNA fragmentation study, as well as intracellular ROS activity of most potential leaf extract, were also determined by using the MDA-MB-231cell line. In vivo animal toxicity study was carried out using mice model. Results: Methanolic leaf extract has shown the highest antioxidant, as well as anticancer activity, is based on the assay conducted. For the identification of active phytochemicals from methanolic extract, High-resolution mass spectroscopy-LCMS was used. In vitro cytotoxicity study against MCF-7 and MDA-MB-231 cell line and IC 50 value was found to be 37.5µg/ml. From histopathological studies, no toxicity in liver and kidney tissue was identified. Conclusion: This plant tuber can be used as a regular diet to reduce the chance of breast cancer. Further, more studies should be conducted to isolate and identify the responsible compound.

Keywords: human breast adenocarcinoma, ROS, mitochondrial transmembrane, apoptosis

Procedia PDF Downloads 117
2523 Protein Stabilized Foam Structures as Protective Carrier Systems during Microwave Drying of Probiotics

Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik

Abstract:

Due to the increasing popularity of healthy products, probiotics are still of rising importance in food manufacturing. With the aim to amplify the field of probiotic application to non-chilled products, the cultures have to be preserved by drying. Microwave drying has proved to be a suitable technique to achieve relatively high survival rates, resulting from drying at gentle temperatures, among others. However, diffusion limitation due to compaction of cell suspension during drying can prolong drying times as well as deteriorate product properties (grindability, rehydration performance). Therefore, we aimed to embed probiotics in an aerated matrix of whey proteins (surfactants) and di-/polysaccharides (foam stabilization, probiotic protection) during drying. As a result of the manifold increased inner surface of the cell suspension, drying performance was enhanced significantly as compared to non-foamed suspensions. This work comprises investigations on suitable foam matrices, being stable under vacuum (variation of protein concentration, type and concentration of di-/polysaccharide) as well as development of an applicable microwave drying process in terms of microwave power, chamber pressure and maximum product temperatures. Performed analyses included foam characteristics (overrun, drainage, firmness, bubble sizes), and properties of the dried cultures (survival, activity). In addition, efficiency of the drying process was evaluated.

Keywords: foam structure, microwave drying, polysaccharides, probiotics

Procedia PDF Downloads 262
2522 Caffeic Acid Methyl and Ethyl Esters Exhibit Beneficial Effect on Glucose and Lipid Metabolism in Cultured Murine Insulin-Sensitive Cells

Authors: Hoda M. Eid, Abir Nachar, Farah Thong, Gary Sweeney, Pierre S. Haddad

Abstract:

Caffeic acid methyl ester (CAME) and caffeic ethyl esters (CAEE) were previously reported to potently stimulate glucose uptake in cultured C2C12 skeletal muscle cells via insulin-independent mechanisms involving the activation of adenosine monophosphate-activated protein kinase (AMPK). In the present study, we investigated the effect of the two compounds on the translocation of glucose transporter GLUT4 in L6 skeletal muscle cells. The cells were treated with the optimum non-toxic concentration (50 µM) of either CAME or CAEE for 18 h. Levels of GLUT4myc at the cell surface were measured by O-phenylenediamine dihydrochloride (OPD) assay. The effects of CAME and CAEE on GLUT1 and GLUT4 protein content were also measured by western immunoblot. Our results show that CAME and CAEE significantly increased glucose uptake, GLUT4 translocation and GLUT4 protein content. Furthermore, the effect of the two CA esters on two insulin-sensitive cell lines: H4IIE rat hepatoma and 3T3-L1 adipocytes were investigated. CAME and CAEE reduced the enzymatic activity of the key hepatic gluconeogenic enzyme glucose-6-phosphatase in a concentration-dependent manner. In addition, they exerted a concentration-dependent antiadipogenic effect on 3T3-L1 cells. Mitotic clonal expansion (MCE), a prerequisite for adipocytes differentiation was also concentration-dependently inhibited. The two compounds abrogated lipid droplet accumulation, blocked MCE and maintained cells in fibroblast-like state when applied at the maximum non-toxic concentration (100 µM). In addition, the expression of the early key adipogenic transcription factors CCAAT enhancer-binding protein beta (C/EBP-β) and the master regulator of adipogenesis peroxisome-proliferator-activated receptor gamma (PPAR-γ) were inhibited. We, therefore, conclude that CAME and CAEE exert pleiotropic benefits in several insulin-sensitive cell lines through insulin-independent mechanisms involving AMPK, hence they may treat obesity, diabetes and other metabolic diseases.

Keywords: type 2 diabetes mellitus, insulin resistance, GLUT4, Akt, AMPK.

Procedia PDF Downloads 309
2521 Ascidian Styela rustica Proteins’ Structural Domains Predicted to Participate in the Tunic Formation

Authors: M. I. Tyletc, O. I. Podgornya, T. G. Shaposhnikova, S. V. Shabelnikov, A. G. Mittenberg, M. A. Daugavet

Abstract:

Ascidiacea is the most numerous class of the Tunicata subtype. These chordates' distinctive feature of the anatomical structure is a tunic consisting of cellulose fibrils, protein molecules, and single cells. The mechanisms of the tunic formation are not known in detail; tunic formation could be used as the model system for studying the interaction of cells with the extracellular matrix. Our model species is the ascidian Styela rustica, which is prevalent in benthic communities of the White Sea. As previously shown, the tunic formation involves morula blood cells, which contain the major 48 kDa protein p48. P48 participation in the tunic formation was proved using antibodies against the protein. The nature of the protein and its function remains unknown. The current research aims to determine the amino acid sequence of p48, as well as to clarify its role in the tunic formation. The peptides that make up the p48 amino acid sequence were determined by mass spectrometry. A search for peptides in protein sequence databases identified sequences homologous to p48 in Styela clava, Styela plicata, and Styela canopus. Based on sequence alignment, their level of similarity was determined as 81-87%. The correspondent sequence of ascidian Styela canopus was used for further analysis. The Styela rustica p48 sequence begins with a signal peptide, which could indicate that the protein is secretory. This is consistent with experimentally obtained data: the contents of morula cells secreted in the tunic matrix. The isoelectric point of p48 is 9.77, which is consistent with the experimental results of acid electrophoresis of morula cell proteins. However, the molecular weight of the amino acid sequence of ascidian Styela canopus is 103 kDa, so p48 of Styela rustica is a shorter homolog. The search for conservative functional domains revealed the presence of two Ca-binding EGF-like domains, thrombospondin (TSP1) and tyrosinase domains. The p48 peptides determined by mass spectrometry fall into the region of the sequence corresponding to the last two domains and have amino acid substitutions as compared to Styela canopus homolog. The tyrosinase domain (pfam00264) is known to be part of the phenoloxidase enzyme, which participates in melanization processes and the immune response. The thrombospondin domain (smart00209) interacts with a wide range of proteins, and is involved in several biological processes, including coagulation, cell adhesion, modulation of intercellular and cell-matrix interactions, angiogenesis, wound healing and tissue remodeling. It can be assumed that the tyrosinase domain in p48 plays the role of the phenoloxidase enzyme, and TSP1 provides a link between the extracellular matrix and cell surface receptors, and may also be responsible for the repair of the tunic. The results obtained are consistent with experimental data on p48. The domain organization of protein suggests that p48 is an enzyme involved in the tunic tunning and is an important regulator of the organization of the extracellular matrix.

Keywords: ascidian, p48, thrombospondin, tyrosinase, tunic, tunning

Procedia PDF Downloads 115
2520 Suppression of Immunostimulatory Function of Dendritic Cells and Prolongation of Skin Allograft Survival by Dryocrassin

Authors: Hsin-Lien Lin, Ju-Hui Fu

Abstract:

Dendritic cells (DCs) are the major professional antigen-presenting cells for the development of optimal T-cell immunity. DCs can be used as pharmacological targets to screen novel biological modifiers for the treatment of harmful immune responses, such as transplantation rejection. Dryopteris crassirhizoma Nakai (Aspiadaceae) is used for traditional herbal medicine in the region of East Asia. The root of this fern plant has been listed for treating inflammatory diseases. Dryocrassin is the tetrameric phlorophenone component derived from Dryopteris. Here, we tested the immunomodulatory potential of dryocrassin on lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs in vitro and in skin allograft transplantation in vivo. Results demonstrated that dryocrassin reduced the secretion of tumor necrosis factor-α, interleukin-6, and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility complex class II, CD40, and CD86 on DCs was also blocked by dryocrassin. Moreover, LPS-stimulated DC-elicited allogeneic T-cell proliferation was lessened by dryocrassin. In addition, dryocrassin inhibited LPS-induced activation of IϰB kinase, JNK/p38 mitogen-activated protein kinase, as well as the translocation of NF-ϰB. Treatment with dryocrassin obviously diminished 2,4-dinitro-1-fluorobenzene- induced delayed-type hypersensitivity and prolonged skin allograft survival. Dryocrassin may be one of the potent immunosuppressive agents for transplant rejection through the destruction of DC maturation and function.

Keywords: dryocrassin, dendritic cells, immunosuppression, skin allograft

Procedia PDF Downloads 386
2519 Molecular Alterations Shed Light on Alteration of Methionine Metabolism in Gastric Intestinal Metaplesia; Insight for Treatment Approach

Authors: Nigatu Tadesse, Ying Liu, Juan Li, Hong Ming Liu

Abstract:

Gastric carcinogenesis is a lengthy process of histopathological transition from normal to atrophic gastritis (AG) to intestinal metaplasia (GIM), dysplasia toward gastric cancer (GC). The stage of GIM identified as precancerous lesions with resistance to H-pylori eradication and recurrence after endoscopic surgical resection therapies. GIM divided in to two morphologically distinct phenotypes such as complete GIM bearing intestinal type morphology whereas the incomplete type has colonic type morphology. The incomplete type GIM considered to be the greatest risk factor for the development of GC. Studies indicated the expression of the caudal type homeobox 2 (CDX2) gene is responsible for the development of complete GIM but its progressive downregulation from incomplete metaplasia toward advanced GC identified as the risk for IM progression and neoplastic transformation. The downregulation of CDX2 gene have promoted cell growth and proliferation in gastric and colon cancers and ascribed in chemo-treatment inefficacies. CDX2 downregulated through promoter region hypermethylation in which the methylation frequency positively correlated with the dietary history of the patients, suggesting the role of diet as methyl carbon donor sources such as methionine. However, the metabolism of exogenous methionine is yet unclear. Targeting exogenous methionine metabolism has become a promising approach to limits tumor cell growth, proliferation and progression and increase treatment outcome. This review article discusses molecular alterations that could shed light on the potential of exogenous methionine metabolisms, such as gut microbiota alteration as sources of methionine to host cells, metabolic pathway signaling via PI3K/AKt/mTORC1-c-MYC to rewire exogenous methionine and signature of increased gene methylation index, cell growth and proliferation in GIM, with insights to new treatment avenue via targeting methionine metabolism, and the need for future integrated studies on molecular alterations and metabolomics to uncover altered methionine metabolism and characterization of CDX2 methylation in gastric intestinal metaplasia for potential therapeutic exploitation.

Keywords: altered methionine metabolism, Intestinal metaplesia, CDX2 gene, gastric cancer

Procedia PDF Downloads 86
2518 Synthesis of a Library of Substituted Isoquinolines Based on a Triazolization Strategy, and Their Anti-HIV and C-X-C Chemokine Receptor Type 4 Antagonist Activity

Authors: Mastaneh Safarnejad Shad, Wim Dehaen, Steven De Jonghe

Abstract:

Since CXCR4 is the main coreceptor of HIV-1 and plays an important role in human immunodeficiency virus (HIV) entry, numerous efforts were directed towards the discovery of new classes of small molecules that act as CXCR4 antagonists. In addition, CXCR4 antagonists are potentially useful in the treatment of several other disorders, such as cancer cell metastasis, leukemia cell proliferation, rheumatoid arthritis, and pulmonary fibrosis. Since AMD3100 (plerixafor) is the only CXCR4 antagonist which obtained approval by the Food and Drug Administration (FDA), we were motivated to investigate a new category of molecules as CXCR4 antagonists. Most of the scaffolds which have been studied so far as CXCR4 antagonists are based on the tetrahydroquinoline (THQ) moiety in which AMD11070 (mavorixafor), GSK-812394, and TIQ15 displayed the most potent CXCR4 antagonism. Due to the high potency of these scaffolds, two different series of compounds were prepared in this work. In the first set, the THQ moiety is coupled to an amine chain and various isoquinoline derivatives (prepared by an in-house developed triazolization strategy), of which the upper part of molecules is identical to AMD11070 and TIQ15. In the second category of compounds, the THQ moiety was simplified by the synthesis of a substituted pyridine moiety. In order to investigate if CXCR4 antagonism requires the presence of an isoquinoline moiety, the corresponding pyridine analogues were also prepared. In both series of compounds, potent CXCR4 antagonism was noticed.

Keywords: CXCR4 coreceptor, CXCR4 antagonists, HIV inhibitor, tetrahydroquinoline

Procedia PDF Downloads 193
2517 Psychological Stress and Accelerated Aging in SCI Patients - A Longitudinal Pilot Feasibility Study

Authors: Simona Capossela, Ramona Schaniel, Singer Franziska, Aquino Fournier Catharine, Daniel Stekhoven, Jivko Stoyanov

Abstract:

A spinal cord injury (SCI) is a traumatic life event that often results in ageing associated health conditions such as muscle mass decline, adipose tissue increase, decline in immune function, frailty, systemic chronic inflammation, and psychological distress and depression. Psychological, oxidative, and metabolic stressors may facilitate accelerated ageing in the SCI population with reduced life expectancy. Research designs using biomarkers of aging and stress are needed to elucidate the role of psychological distress in accelerated aging. The aim of this project is a feasibility pilot study to observe changes in stress biomarkers and correlate them with aging markers in SCI patients during their first rehabilitation (longitudinal cohort study). Biological samples were collected in the SwiSCI (Swiss Spinal Cord Injury Cohort Study) Biobank in Nottwil at 4 weeks±12 days after the injury (T1) and at the end of the first rehabilitation (discharge, T4). The "distress thermometer" is used as a selfassessment tool for psychological distress. Stress biomarkers, as cortisol and protein carbonyl content (PCC), and markers of cellular aging, such as telomere lengths, will be measured. 2 Preliminary results showed that SCI patients (N= 129) are still generally distressed at end of rehabilitation, however we found a statistically significant (p< 0.001) median decrease in distress from 6 (T1) to 5 (T4) during the rehabilitation. In addition, an explorative transcriptomics will be conducted on N=50 SCI patients to compare groups of persons with SCI who have different trajectories of selfreported distress at the beginning and end of the first rehabilitation after the trauma. We identified 4 groups: very high chronic stress (stress thermometer values above 7 at T1 and T4; n=14); transient stress (high to low; n=14), low stress (values below 5 at T1 and T4; n=14), increasing stress (low to high; n=8). The study will attempt to identify and address issues that may occur in relation to the design and conceptualization of future study on stress and aging in the SCI population.

Keywords: stress, aging, spinal cord injury, biomarkers

Procedia PDF Downloads 106
2516 The Keys to Innovation: Defining and Evaluating Attributes that Measure Innovation Capabilities

Authors: Mohammad Samarah, Benjamin Stark, Jennifer Kindle, Langley Payton

Abstract:

Innovation is a key driver for companies, society, and economic growth. However, assessing and measuring innovation for individuals as well as organizations remains difficult. Our i5-Score presented in this study will help to overcome this difficulty and facilitate measuring the innovation potential. The score is based on a framework we call the 5Gs of innovation which defines specific innovation attributes. Those are 1) the drive for long-term goals 2) the audacity to generate new ideas, 3) the openness to share ideas with others, 4) the ability to grow, and 5) the ability to maintain high levels of optimism. To validate the i5-Score, we conducted a study at Florida Polytechnic University. The results show that the i5-Score is a good measure reflecting the innovative mindset of an individual or a group. Thus, the score can be utilized for evaluating, refining and enhancing innovation capabilities.

Keywords: Change Management, Innovation Attributes, Organizational Development, STEM and Venture Creation

Procedia PDF Downloads 169
2515 Estimating Big Five Personality Expressions with a Tiered Information Framework

Authors: Laura Kahn, Paul Rodrigues, Onur Savas, Shannon Hahn

Abstract:

An empirical understanding of an individual's personality expression can have a profound impact on organizations seeking to strengthen team performance and improve employee retention. A team's personality composition can impact overall performance. Creating a tiered information framework that leverages proxies for a user's social context and lexical and linguistic content provides insight into location-specific personality expression. We leverage the layered framework to examine domain-specific, psychological, and lexical cues within social media posts. We apply DistilBERT natural language transfer learning models with real world data to examine the relationship between Big Five personality expressions of people in Science, Technology, Engineering and Math (STEM) fields.

Keywords: big five, personality expression, social media analysis, workforce development

Procedia PDF Downloads 139
2514 Stimulation of NCAM1-14.3.3.ζδ-derived Peptide Interaction Fuels Angiogenesis and Osteogenesis in Ageing

Authors: Taha Kadir Yesin, Hanyu Liu, Zhangfan Ding, Amit Singh, Qi Tian, Yuheng Zhang, Biswajyoti Borah, Junyu Chen, Anjali P. Kusumbe

Abstract:

The skeletal structure and bone marrow endothelium collectively form a critical functional unit essential for bone development, health, and aging. At the core of osteogenesis and bone formation lies the dynamic process of angiogenesis. In this study, we reveal a potent endogenous anabolic NCAM1-14.3.3. ζδ-derived- Peptide interaction, which stimulates bone angiogenesis and osteogenesis during homeostasis, aging, and age-related bone diseases. Employing high-resolution imaging and inducible cell-specific mouse genetics, our results elucidate the pivotal role of the NCAM1-14.3.3.ζδ-derived-Peptide interaction in driving the expansion of Clec14a+ angiogenic endothelial cells. Notably, Clec14a+ endothelial cells express key osteogenic factors. The NCAM1-14.3.3.ζδ-derived-Peptide interaction in osteoblasts drives osteoblast differentiation, ultimately contributing to the genesis of bone. Moreover, the NCAM1-14.3.3.ζδ-derived-Peptide interaction leads to a reduction in bone resorption. In age-associated vascular and bone loss diseases, stimulating the NCAM1-14.3.3.ζδ-derived-Peptide interaction not only promotes angiogenesis but also reverses bone loss. Consequently, harnessing the endogenous anabolic potential of the NCAM1-14.3.3.ζδ-derived-Peptide interaction emerges as a promising therapeutic modality for managing age-related bone diseases.

Keywords: endothelial cell, NCAM1, Clec14a, 14.3.3.ζδ

Procedia PDF Downloads 63
2513 Anti-Aging Effects of Two Agricultural Plant Extracts and Their Underlying Mechanism

Authors: Shwu-Ling Peng, Chiung-Man Tsai, Chia-Jui Weng

Abstract:

Chronic micro-inflammation is a hallmark of many aging-related neurodegenerative and metabolic syndrome-driven diseases. In high glucose (HG) environment, reactive oxygen species (ROS) is generated and the ROS induced inflammation, cytokines secretion, DNA damage, and cell cycle arrest to lead to cellular senescence. Water chestnut shell (WCS) is a plant hull which containing polyphenolic compounds and showed antioxidant and anticancer activities. Orchid, which containing a natural polysaccharide compound, possesses many physiological activities including anti-inflammatory and neuroprotective effects. These agricultural plants might be able to reduce oxidative stress and inflammation. This study was used HG-induced human normal dermal fibroblasts (HG-HNDFs) as an in vitro model to disclose the effects of water extract of Phalaenopsis orchid flower (WEPF) and ethanol extract of water chestnut shell (EEWCS) on the anti-aging and their underlying molecular mechanisms. The toxicity of extracts on human normal dermal fibroblasts (HNDFs) was determined by MTT method. The senescence of cells was assayed by β-galactosidase (SA-β-gal) kit. ROS and nitrate production was analyzed by Intracellular ROS contents and ELISA, respectively. Western blotting was used to detect the proteins in cells. The results showed that the exposure of HNDFs to HG (30 mM) for 72 h were caused cellular senescence and arrested cells at G0/G1 phase. Indeed, the treatment of HG-HNDFs with WEPF (200 μg/ml) and EEWCS (10 μg/ml) significantly released cell cycle arrest and promoted cell proliferation. The G1/S phase transition regulatory proteins such as protein retinoblastoma (pRb), p53, and p16ᴵᴺᴷ⁴ᵃ depressed by WEPF and EEWCS were also observed. Additionally, the treatment of WEPF and EEWCS increased the activity of HO-1 through upregulating Nrf2 as well as decreased the ROS and NO of HG-HNDFs. Therefore, the senescence marker protein-30 (SMP30) in cells was diminished. In conclusion, the WEPF and EEWCS might inhibit HG-induced aging of HNDFs by reducing oxidative stress and free radicals.

Keywords: agricultural plant extract, anti-aging, high glucose, Phalaenopsis orchid flower, water chestnut shell

Procedia PDF Downloads 154
2512 A Mathematical Analysis of a Model in Capillary Formation: The Roles of Endothelial, Pericyte and Macrophages in the Initiation of Angiogenesis

Authors: Serdal Pamuk, Irem Cay

Abstract:

Our model is based on the theory of reinforced random walks coupled with Michealis-Menten mechanisms which view endothelial cell receptors as the catalysts for transforming both tumor and macrophage derived tumor angiogenesis factor (TAF) into proteolytic enzyme which in turn degrade the basal lamina. The model consists of two main parts. First part has seven differential equations (DE’s) in one space dimension over the capillary, whereas the second part has the same number of DE’s in two space dimensions in the extra cellular matrix (ECM). We connect these two parts via some boundary conditions to move the cells into the ECM in order to initiate capillary formation. But, when does this movement begin? To address this question we estimate the thresholds that activate the transport equations in the capillary. We do this by using steady-state analysis of TAF equation under some assumptions. Once these equations are activated endothelial, pericyte and macrophage cells begin to move into the ECM for the initiation of angiogenesis. We do believe that our results play an important role for the mechanisms of cell migration which are crucial for tumor angiogenesis. Furthermore, we estimate the long time tendency of these three cells, and find that they tend to the transition probability functions as time evolves. We provide our numerical solutions which are in good agreement with our theoretical results.

Keywords: angiogenesis, capillary formation, mathematical analysis, steady-state, transition probability function

Procedia PDF Downloads 156
2511 Focusing on the Utilization of Information and Communication Technology for Improving Childrens’ Potentials in Science: Challenges for Sustainable Development in Nigeria

Authors: Osagiede Mercy Afe

Abstract:

After the internet explosion in the 90’s, Technology was immediately integrated into the school system. Technology which symbolizes advancement in human knowledge was seen as a setback by many educators many efforts have been made to help stem this erroneous believes and help educators realize the benefits of technology and ways of implementing it in the classrooms especially in the sciences. This advancement created a constantly expanding gap between the pupil’s perception on the use of technology within the learning atmosphere and the teacher’s perception and limitations hence the focus of this paper is on the need to refocus on the potentials of Science and Technology in enhancing children learning at school especially in science for sustainable development in Nigeria. The paper recommended measures for facilitating the sustenance of science and technology in Nigerian schools so as to enhance the potentials of our children in Science and Technology for a better tomorrow.

Keywords: children, information communication technology (ICT), potentials, sustainable development, science education

Procedia PDF Downloads 488
2510 Biosynthesis of a Nanoparticle-Antibody Phthalocyanine Photosensitizer for Use in Targeted Photodynamic Therapy of Cervical Cancer

Authors: Elvin P. Chizenga, Heidi Abrahamse

Abstract:

Cancer cell resistance to therapy is the main cause of treatment failures and the poor prognosis of cancer convalescence. The progression of cervical cancer to other parts of the genitourinary system and the reported recurrence rates are overwhelming. Current treatments, including surgery, chemo and radiation have been inefficient in eradicating the tumor cells. These treatments are also associated with poor prognosis and reduced quality of life, including fertility loss. This has inspired the need for the development of new treatment modalities to eradicate cervical cancer successfully. Photodynamic Therapy (PDT) is a modern treatment modality that induces cell death by photochemical interactions of light and a photosensitizer, which in the presence of molecular oxygen, yields a set of chemical reactions that generate Reactive Oxygen Species (ROS) and other free radical species causing cell damage. Enhancing PDT using modified drug delivery can increase the concentration of the photosensitizer in the tumor cells, and this has the potential to maximize its therapeutic efficacy. In cervical cancer, all infected cells constitutively express genes of the E6 and E7 HPV viral oncoproteins, resulting in high concentrations of E6 and E7 in the cytoplasm. This provides an opportunity for active targeting of cervical cancer cells using immune-mediated drug delivery to maximize therapeutic efficacy. The use of nanoparticles in PDT has also proven effective in enhancing therapeutic efficacy. Gold nanoparticles (AuNps) in particular, are explored for their use in biomedicine due to their biocompatibility, low toxicity, and enhancement of drug uptake by tumor cells. In this present study, a biomolecule comprising of AuNPs, anti-E6 monoclonal antibodies, and Aluminium Phthalocyanine photosensitizer was synthesized for use in targeted PDT of cervical cancer. The AuNp-Anti-E6-Sulfonated Aluminium Phthalocyanine mix (AlPcSmix) photosensitizing biomolecule was synthesized by coupling AuNps and anti-E6 monoclonal antibodies to the AlPcSmix via Polyethylene Glycol (PEG) chemical links. The final product was characterized using Transmission Electron Microscope (TEM), Zeta Potential, Uv-Vis Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD), to confirm its chemical structure and functionality. To observe its therapeutic role in treating cervical cancer, cervical cancer cells, HeLa cells were seeded in 3.4 cm² diameter culture dishes at a concentration of 5x10⁵ cells/ml, in vitro. The cells were treated with varying concentrations of the photosensitizing biomolecule and irradiated using a 673.2 nm wavelength of laser light. Post irradiation cellular responses were performed to observe changes in morphology, viability, proliferation, cytotoxicity, and cell death pathways induced. Dose-Dependent response of the cells to treatment was demonstrated as significant morphologic changes, increased cytotoxicity, and decreased cell viability and proliferation This study presented a synthetic biomolecule for targeted PDT of cervical cancer. The study suggested that PDT using this AuNp- Anti-E6- AlPcSmix photosensitizing biomolecule is a very effective treatment method for the eradication of cervical cancer cells, in vitro. Further studies in vivo need to be conducted to support the use of this biomolecule in treating cervical cancer in clinical settings.

Keywords: anti-E6 monoclonal antibody, cervical cancer, gold nanoparticles, photodynamic therapy

Procedia PDF Downloads 125
2509 The Toxic Effects of Kynurenine Metabolites on SH-SY5Y Neuroblastoma Cells

Authors: Susan Hall, Gary D. Grant, Catherine McDermott, Devinder Arora

Abstract:

Introduction /Aim: The kynurenine pathway is thought to play an important role in the pathophysiology of numerous neurodegenerative diseases including depression, Alzheimer’s disease, and Parkinson’s disease. Numerous neuroactive compounds, including the neurotoxic 3-hydroxyanthranilic acid, 3-hydroxykynurenine and quinolinic acid and the neuroprotective kynurenic acid and picolinic acid, are produced through the metabolism of kynurenine and are thought to be the causative agents responsible for neurodegeneration. The toxicity of 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid has been widely evaluated and demonstrated in primary cell cultures but to date only 3-hydroxykynurenine and 3-hydroxyanthranilic acid have been shown to cause toxicity in immortal tumour cells. The aim of this study was to evaluate the toxicity of kynurenine metabolites, both individually and in combination, on SH-SY5Y neuroblastoma cells after 24 and 72 h exposure in order to explore a cost-effective model to study their neurotoxic effects and potential protective agents. Methods: SH-SY5Y neuroblastoma cells were exposed to various concentrations of the neuroactive kynurenine metabolites, both individually and in combination, for 24 and 72 h, and viability was subsequently evaluated using the Resazurin (Alamar blue) proliferation assay. Furthermore, the effects of these compounds, alone and in combination, on specific death pathways including apoptosis, necrosis and free radical production was evaluated using various assays. Results: Consistent with literature, toxicity was shown with short-term 24-hour treatments at 1000 μM concentrations for both 3-hydroxykynurenine and 3-hydroxyanthranilic acid. Combinations of kynurenine metabolites showed modest toxicity towards SH-SY5Y neuroblastoma cells in a concentration-dependent manner. Specific cell death pathways, including apoptosis, necrosis and free radical production were shown to be increased after both 24 and 72 h exposure of SH-SY5Y neuroblastoma cells to 3-hydroxykynurenine and 3-hydroxyanthranilic acid and various combinations of neurotoxic kynurenine metabolites. Conclusion: It is well documented that neurotoxic kynurenine metabolites show toxicity towards primary human neurons in the nanomolar to low micromolar concentration range. Results show that the concentrations required to show significant cell death are in the range of 1000 µM for 3-hydroxykynurenine and 3-hydroxyanthranilic acid and toxicity of quinolinic acid towards SH-SY5Y was unable to be shown. This differs significantly from toxicities observed in primary human neurons. Combinations of the neurotoxic metabolites were shown to have modest toxicity towards these cells with increased toxicity and activation of cell death pathways observed after 72 h exposure. This study suggests that the 24 h model is unsuitable for use in neurotoxicity studies, however, the 72 h model better represents the observations of the studies using primary human neurons and may provide some benefit in providing a cost-effective model to assess possible protective agents against kynurenine metabolite toxicities.

Keywords: kynurenine metabolites, neurotoxicity, quinolinic acid, SH-SY5Y neuroblastoma

Procedia PDF Downloads 417