Search results for: solid-oxide fuel cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4637

Search results for: solid-oxide fuel cells

2867 ICAM1 Expression is Enhanced by TNFa through Histone Methylation in Human Brain Microvessel Cells

Authors: Ji-Young Choi, Jungjin Kim, Sang-Sun Yun, Sangmee Ahn Jo

Abstract:

Intracellular adhesion molecule1 (ICAM1) is a mediator of inflammation and involved in adhesion and transmigration of leukocytes to endothelial cells, resulting in enhancement of brain inflammation. We hypothesized that increase of ICAM1 expression in endothelial cells is an early step in the pathogenesis of brain diseases such as Alzheimer’s disease. Here, we report that ICAM1 expression is regulated by pro-inflammatory cytokine TNFa in human microvascular endothelial cell (HBMVEC). TNFa significantly increased ICAM1 mRNA and protein levels at the concentrations showing no cell toxicity. This increase was also shown in micro vessels of mouse brain 24 hours after treatment with TNFa (8 mg/kg, i.v). We then investigated the epigenetic mechanism involved in the induction of ICAM1 expression. Chromatin immunoprecipitation assay revealed that TNFa reduced methylation of histone3K9 (H3K9-2me) and histone3K27 (H3K27-3me), well-known modification as gene suppression, with in the ICAM1 promoter region. However, acetylation of H3K9 and H3K14, well-known modification as gene activation, was not changed by TNFa. Treatment of BIX01294, a specific inhibitor of histone methyltransferase G9a responsible for H3K9-2me, dramatically increased in ICAM1 mRNA and protein levels and overexpression of G9a gene suppressed TNFa-induced ICAM1 expression. In contrast, GSK126, an inhibitor of histone methyltransferase EZH2 responsible for H3K27-3me and valproic acid, an inhibitor of histone deacetylase (HDAC) did not affect ICAM1 expression. These results suggested that histone3 methylation is involved in ICAM1 repression. Moreover, TNFa or BIX01294-induced ICAM induction resulted in both enhancements in adhesion and transmigration of leukocyte on endothelial cell. This study demonstrates that TNFa upregulates ICAM1 expression through H3K9-2me and H3K27-3me within the ICAM1 promoter region, in which G9a is likely to play a pivotal role in ICAM1 transcription. Our study provides a novel mechanism for ICAM1 transcription regulation in HBMVEC.

Keywords: ICAM1, TNFa, HBMVEC, H3K9-2me

Procedia PDF Downloads 329
2866 Regulation of PKA-Dependent Calcineurin as a Switch in Cell Secretion

Authors: Hani M. M. Alothaid, Louise Robson, Richmond Muimo

Abstract:

This study will investigate cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) dependent calcineurin (Cn), known as protein phosphatase 2 B (PP2B) as well, regulation of chloride ion (Cl⁻) secretion and the release of pro-inflammatory molecules in immune cells such as cytokines. THP-1-derived monocytes, primary human monocytes and the bronchial epithelial cell line (16HBE14o-) were used in this study. The 16HBE14o- cells were chosen as positive control. Hence, to further confirm the expression of cystic fibrosis transmembrane conductance regulator (CFTR), calcium binding protein (S100A10), annexin A2 (AnxA2) and calcineurin A subunit (CnA) in all three cell types, cell lysate was probed against corresponding primary antibodies by immunoblotting. Western blot analyses show the expression of CFTR, AnxA2, CnA and S100A10 in THP-1-derived monocytes and primary human monocytes. In conclusion, CFTR, S100A10, CnA and AnxA2 are expressed in THP-1-derived monocytes and primary human monocytes and regulate Cl⁻ secretion. Also, they may play a role in the pro-inflammatory molecules release. The ongoing work will confirm interaction between these proteins in the cell lines.

Keywords: annexin A2, calcineurin, CFTR, chloride, monocytes, pro-inflammatory molecules, S100A10

Procedia PDF Downloads 235
2865 Enhancing Vehicle Efficiency Through Vapor Absorption Refrigeration Systems

Authors: Yoftahe Nigussie Worku

Abstract:

This paper explores the utilization of vapor absorption refrigeration systems (VARS) as an alternative to the conventional vapor compression refrigerant systems (VCRS) in vehicle air conditioning (AC) systems. Currently, most vehicles employ VCRS, which relies on engine power to drive the compressor, leading to additional fuel consumption. In contrast, VARS harnesses low-grade heat, specifically from the exhaust of high-power internal combustion engines, reducing the burden on the vehicle's engine. The historical development of vapor absorption technology is outlined, dating back to Michael Faraday's discovery in 1824 and the subsequent creation of the first vapor absorption refrigeration machine by Ferdinand Carre in 1860. The paper delves into the fundamental principles of VARS, emphasizing the replacement of mechanical processes with physicochemical interactions, utilizing heat rather than mechanical work. The study compares the basic concepts of the current vapor compression systems with the proposed vapor absorption systems, highlighting the efficiency gains achieved by eliminating the need for engine-driven compressors. The vapor absorption refrigeration cycle (VARC) is detailed, focusing on the generator's role in separating and vaporizing ammonia, chosen for its low-temperature evaporation characteristics. The project's statement underscores the need for increased efficiency in vehicle AC systems beyond the limitations of VCRS. By introducing VARS, driven by low-grade heat, the paper advocates for a reduction in engine power consumption and, consequently, a decrease in fuel usage. This research contributes to the ongoing efforts to enhance sustainability and efficiency in automotive climate control systems.

Keywords: VCRS, VARS, efficiency, sustainability

Procedia PDF Downloads 74
2864 Occult Haemolacria Paradigm in the Study of Tears

Authors: Yuliya Huseva

Abstract:

To investigate the contents of tears to determine latent blood. Methods: Tear samples from 72 women were studied with the microscopy of tears aspirated with a capillary and stained by Nocht and with a chemical method of test strips with chromogen. Statistical data processing was carried out using statistical packages Statistica 10.0 for Windows, calculation of Pearson's chi-square test, Yule association coefficient, the method of determining sensitivity and specificity. Results:, In 30.6% (22) of tear samples erythrocytes were revealed microscopically. Correlations between the presence of erythrocytes in the tear and the phase of the menstrual cycle has been discovered. In the follicular phase of the cycle, erythrocytes were found in 59.1% (13) people, which is significantly more (x2=4.2, p=0.041) compared to the luteal phase - in 40.9% (9) women. In the first seven days of the follicular phase of the menstrual cycle the erythrocytes were predominanted of in the tears of women examined testifies in favour of the vicarious bleeding from the mucous membranes of extragenital organs in sync with menstruation. Of the other cellular elements in tear samples with latent haemolacria, neutrophils prevailed - in 45.5% (10), while lymphocytes were less common - in 27.3% (6), because neutrophil exudation is accompanied by vasodilatation of the conjunctiva and the release of erythrocytes into the conjunctival cavity. It was found that the prognostic significance of the chemical method was 0.53 of the microscopic method. In contrast to microscopy, which detected blood in tear samples from 30.6% (22) of women, blood was detected chemically in tears of 16.7% (12). An association between latent haemolacria and endometriosis was found (k=0.75, p≤0.05). Microscopically, in the tears of patients with endometriosis, erythrocytes were detected in 70% of cases, while in healthy women without endometriosis - in 25% of cases. The proportion of women with erythrocytes in tears, determined by a chemical method, was 41.7% among patients with endometriosis, which is significantly more (x2=6.5, p=0.011) than 11.7% among women without endometriosis. The data obtained can be explained by the etiopathogenesis of the extragenital endometriosis which is caused by hematogenous spread of endometrial tissue into the orbit. In endometriosis, erythrocytes are found against the background of accumulations of epithelial cells. In the tear samples of 4 women with endometriosis, glandular cuboidal epithelial cells, morphologically similar to endometrial cells, were found, which may indicate a generalization of the disease. Conclusions: Single erythrocytes can normally be found in the tears, their number depends on the phase of the menstrual cycle, increasing in the follicular phase. Erythrocytes found in tears against the background of accumulations of epitheliocytes and their glandular atypia may indicate a manifestation of extragenital endometriosis. Both used methods (microscopic and chemical) are informative in revealing latent haemolacria. The microscopic method is more sensitive, reveals intact erythrocytes, and besides, it provides information about other cells. At the same time, the chemical method is faster and technically simpler, it determines the presence of haemoglobin and its metabolic products, and can be used as a screening.

Keywords: tear, blood, microscopy, epitheliocytes

Procedia PDF Downloads 120
2863 Genotoxic Effect of Tricyclieandidepressant Drug “Clomipramine Hydrochloride’ on Somatic and Germ Cells of Male Mice

Authors: Samia A. El-Fiky, F. A. Abou-Zaid, Ibrahim M. Farag, Naira M. Efiky

Abstract:

Clomipramine hydrochloride is one of the most used tricyclic antidepressant drug in Egypt. This drug contains in its chemical structure on two benzene rings. Benzene is considered to be toxic and clastogenic agent. So, the present study was designed to assess the genotoxic effect of Clomipramine hydrochloride on somatic and germ cells in mice. Three dose levels 0.195 (Low), 0.26 (Medium), and 0.65 (High) mg/kg.b.wt. were used. Seven groups of male mice were utilized in this work. The first group was employed as a control. In the remaining six groups, each of the above doses was orally administrated for two groups, one of them was treated for 5 days and the other group was given the same dose for 30 days. At the end of experiments, the animals were sacrificed for cytogenetic and sperm examination as well as histopathological investigations by using hematoxylin and eosin stains (H and E stains) and electron microscope. Concerning the sperm studies, these studies were confined to 5 days treatment with different dose levels. Moreover, the ultrastructural investigation by electron microscope was restricted to 30 days treatment with drug doses. The results of the dose dependent effect of Clomipramine showed that the treatment with three different doses induced increases of frequencies of chromosome aberrations in bone marrow and spermatocyte cells as compared to control. In addition, mitotic and meiotic activities of somatic and germ cells were declined. The treatments with medium or high doses were more effective for inducing significant increases of chromosome aberrations and significant decreases of cell divisions than treatment with low dose. The effect of high dose was more pronounced for causing such genetic deleterious in respect to effect of medium dose. Moreover, the results of the time dependent effect of Clomipramine observed that the treatment with different dose levels for 30 days led to significant increases of genetic aberrations than treatment for 5 days. Sperm examinations revealed that the treatment with Clomipramine at different dose levels caused significant increase of sperm shape abnormalities and significant decrease in sperm count as compared to control. The adverse effects on sperm shape and count were more obviousness by using the treatments with medium or high doses than those found in treatment with low dose. The group of mice treated with high dose had the highest rate of sperm shape abnormalities and the lowest proportion of sperm count as compared to mice received medium dose. In histopathological investigation, hematoxylin and eosin stains showed that, the using of low dose of Clomipramine for 5 or 30 days caused a little pathological changes in liver tissue. However, using medium and high doses for 5 or 30 days induced severe damages than that observed in mice treated with low dose. The treatment with high dose for 30 days gave the worst results of pathological changes in hepatic cells. Moreover, ultrastructure examination revealed, the mice treated with low dose of Clomipramine had little differences in liver histological architecture as compared to control group. These differences were confined to cytoplasmic inclusions. Whereas, prominent pathological changes in nuclei as well as dilated of rough Endoplasmic Reticulum (rER) were observed in mice treated with medium or high doses of Clomipramine drug. In conclusion, the present study adds evidence that treatments with medium or high doses of Clomipramine have genotoxic effects on somatic and germ cells of mice, as unwanted side effects. However, the using of low dose (especially for short time, 5 days) can be utilized as a therapeutic dose, where it caused relatively similar proportions of genetic, sperm, and histopathological changes as those found in normal control.

Keywords: clomipramine, mice, chromosome aberrations, sperm abnormalities, histopathology

Procedia PDF Downloads 423
2862 Protective Effect of hsa-miR-124 against to Bacillus anthracis Toxins on Human Macrophage Cells

Authors: Ali Oztuna, Meral Sarper, Deniz Torun, Fatma Bayrakdar, Selcuk Kilic, Mehmet Baysallar

Abstract:

Bacillus anthracis is one of the biological agents most likely to be used in case of bioterrorist attack as well as being the cause of anthrax. The bacterium's major virulence factors are the anthrax toxins and an antiphagocytic polyglutamic capsule. TEM8 (ANTXR1) and CMG2 (ANTXR2) are ubiquitously expressed type I transmembrane proteins, and ANTXR2 is the major receptor for anthrax toxins. MicroRNAs are 21-24 bp small noncoding RNAs that regulate gene expression by base pairing with the 3' UTR (untranslated regions) of their target mRNAs resulting in mRNA degradation and/or translational repression. MicroRNAs contribute to regulation of most biological processes and influence numerous pathological states like infectious disease. In this study, post-exposure (toxins) protective effect of the hsa-miR-124-3p against Bacillus anthracis was examined. In this context, i) THP-1 and U937 cells were differentiated to MΦ macrophage, ii) miRNA transfection efficiencies were evaluated by flow cytometry and qPCR, iii) protection against Bacillus anthracis toxins were investigated by XTT, cAMP ELISA and MEK2 cleavage assays. Acknowledgements: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant SBAG-218S467.

Keywords: ANTXR2, hsa-miR-124-3p, MΦ macrophage, THP-1, U937

Procedia PDF Downloads 153
2861 UV-Reactive Electrospinning: Preparation, Characterization and Cell Culture Applications of Nanofiber Scaffolds Containing Keratin

Authors: Duygu Yüksel Deniz, Memet Vezir Kahraman, Serap Erdem Kuruca, Mediha Süleymanoğlu

Abstract:

Our first aim was to synthesize Hydroxy Apatite (HAP) and then modify its surface by adding 4-Vinylbenzene boronic acid (4-VBBA). The characterization was done by FT-IR. By adding Polyvinyl alcohol (PVA) to 4- VBBA-HAP, we obtained a suitable electrospinning solution. PVA solution which was also modified by using alkoxy silanes, in order to prevent the scaffolds from being damaged by aqueous cell medium, was added. Keratin was dissolved and then added into the electrospinning solution. Keratin containing 4-VBBA- HAP/PVA composite was used to fabricate nanofiber scaffolds with the simultaneous UV-reactive electrospinning technique. The structural characterization was done by FT-IR. Thermal gravimetric analysis was also performed by using TGA. The morphological characterization was determined by SEM analyses. Our second aim was to create a scaffold where cells could grow. With this purpose, suitable nanofibers were choosen according to their SEM analysis. Keratin containing nanofibers were seeded with 3T3, ECV and SAOS cells and their cytotoxicity and cell proliferation were investigated by using MTT assay. After cell culturing process morphological characterization was determined by SEM analyses. These scaffolds were designed to be nontoxic biomaterials. Here, a comparision was made between keratin containing 3T3, ECV and SAOS seeded nanofiber scaffolds and the results were presented and discussed.

Keywords: cell culture, keratin, nanofibers, UV-reactive electrospinning

Procedia PDF Downloads 454
2860 iPSC-derived MSC Mediated Immunosuppression during Mouse Airway Transplantation

Authors: Mohammad Afzal Khan, Fatimah Alanazi, Hala Abdalrahman Ahmed, Talal Shamma, Kilian Kelly, Mohammed A. Hammad, Abdullah O. Alawad, Abdullah Mohammed Assiri, Dieter Clemens Broering

Abstract:

Lung transplantation is a life-saving surgical replacement of diseased lungs in patients with end-stage respiratory malfunctions. Despite the remarkable short-term recovery, long-term lung survival continues to face several significant challenges, including chronic rejection and severe toxic side-effects due to global immunosuppression. Stem cell-based immunotherapy has been recognized as a crucial immunoregulatory regimen in various preclinical and clinical studies. Despite initial therapeutic outcomes, conventional stem cells face key limitations. The Cymerus™ manufacturing facilitates the production of a virtually limitless supply of consistent human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells, which could play a key role in selective immunosuppression and graft repair during rejection. Here, we demonstrated the impact of iPSC-derived human MSCs on the development of immune-tolerance and long-term graft survival in mouse orthotopic airway allografts. BALB/c→C57BL/6 allografts were reconstituted with iPSC-derived MSCs (2 million/transplant/ at d0), and allografts were examined for regulatory T cells (Tregs), oxygenation, microvascular blood flow, airway epithelium and collagen deposition during rejection. We demonstrated that iPSC-derived MSC treatment leads to significant increase in tissue expression of hTSG-6 protein, followed by an upregulation of mouse Tregs and IL-5, IL-10, IL-15 cytokines, which augments graft microvascular blood flow and oxygenation, and thereby maintained a healthy airway epithelium and prevented the subepithelial deposition of collagen at d90 post-transplantation. Collectively, these data confirmed that iPSC-derived MSC-mediated immunosuppression has potential to establish immune-tolerance and rescue allograft from sustained hypoxic/ischemic phase and subsequently limits long-term airway epithelial injury and collagen progression, which therapeutically warrant a study of Cymerus iPSC-derived MSCs as a potential management option for immunosuppression in transplant recipients.

Keywords: stem cell therapy, immunotolerance, regulatory T cells, hypoxia and ischemia, microvasculature

Procedia PDF Downloads 158
2859 A Prenylflavanoid, HME5 with Antiproliferative Activity in Human Ovarian Cancer Cells

Authors: Mashitoh Abd Rahman, Najihah Mohd Hashim, Faiqah Ramli, Syam Mohan, Noraziah Nordin, Hamed Karimian, Hapipah Mohd Ali

Abstract:

Ovarian cancer is the most lethal gynecological malignancies. HME5, a prenylflavanoid has been isolated from local medicinal plant. This compound has been reported to possess a broad spectrum of biological activities including anticancer property. However, the potential of HME5 as an antiproliferative and cytotoxic agent on an ovarian cancer cells has not yet been investigated. In this present study, we examined the antiproliferative and cytotoxic effect of HME5 on Caov-3 (Human Ovarian Adenocarcinoma) cell line by using 3-[4,5-dimethylthizol-2-y]-2,5-diphenyltetrazolium bromide (MTT) assay, Acridine orange and propidium Iodide (AOPi) and cell cycle analysis study. HME5 has shown to inhibit Caov-3 in a time-dependent manner with the IC50 values of 5µg/ml, 2µg/ml and 1µg/ml after 24h, 48h and 72h treatment, respectively. Morphological study from AOPi analysis showed that HME5 induced apoptosis after 24 and 48h post-treatment. Nevertheless, HME5 exhibited cell cycle arrest at G1 phase as indicated in flow cytometry cell cycle profiling. In conclusion, HME5 inhibited proliferation of Caov-3 through induction of apoptosis and cell cycle arrest at G1 phase.

Keywords: apoptosis, prenylflavanoid, ovarian cancer, HME5

Procedia PDF Downloads 461
2858 Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment

Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak

Abstract:

Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'.

Keywords: Saccharomyces cerevisiae, inactivation, gas-phase plasma treatment, cellular leakage

Procedia PDF Downloads 202
2857 Investigation on Biomass as an Alternate Source for Power Generation

Authors: Narsimhulu Sanke, D. N. Reddy

Abstract:

The purpose of the paper is to discuss the biomass as a renewable source of energy for power generation. The setup is designed and fabricated in the Centre for Energy Technology (CET) and four different fuels are tested in the laboratory, but here the focus is on wood blocks (fuel) combustion with temperature, gas composition percentage by volume and the heating values.

Keywords: biomass, downdraft gasifier, power generation, renewable energy sources

Procedia PDF Downloads 544
2856 High-Throughput Mechanized Microfluidic Test Groundwork for Precise Microbial Genomics

Authors: Pouya Karimi, Ramin Gasemi Shayan, Parsa Sheykhzade

Abstract:

Ease shotgun DNA sequencing is changing the microbial sciences. Sequencing instruments are compelling to the point that example planning is currently the key constraining element. Here, we present a microfluidic test readiness stage that incorporates the key strides in cells to grouping library test groundwork for up to 96 examples and decreases DNA input prerequisites 100-overlay while keeping up or improving information quality. The universally useful microarchitecture we show bolsters work processes with subjective quantities of response and tidy up or catch steps. By decreasing the example amount necessities, we empowered low-input (∼10,000 cells) entire genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil miniaturized scale settlements with prevalent outcomes. We additionally utilized the upgraded throughput to succession ∼400 clinical Pseudomonas aeruginosa libraries and exhibit magnificent single-nucleotide polymorphism discovery execution that clarified phenotypically watched anti-toxin opposition. Completely coordinated lab-on-chip test arrangement beats specialized boundaries to empower more extensive organization of genomics across numerous fundamental research and translational applications.

Keywords: clinical microbiology, DNA, microbiology, microbial genomics

Procedia PDF Downloads 122
2855 Electrochemical Inactivation of Toxic Cyanobacteria and Degradation of Cyanotoxins

Authors: Belal Bakheet, John Beardall, Xiwang Zhang, David McCarthy

Abstract:

The potential risks associated with toxic cyanobacteria have raised growing environmental and public health concerns leading to an increasing effort into researching ways to bring about their removal from water, together with destruction of their associated cyanotoxins. A variety of toxins are synthesized by cyanobacteria and include hepatotoxins, neurotoxins, and cytotoxins which can cause a range of symptoms in humans from skin irritation to serious liver and nerve damage. Therefore drinking water treatment processes should ensure the consumers’ safety by removing both cyanobacterial cells, and cyanotoxins from the water. Cyanobacterial cells and cyanotoxins presented challenges to the conventional water treatment systems; their accumulation within drinking water treatment plants has been reported leading to plants shut down. Thus, innovative and effective water purification systems to tackle cyanobacterial pollution are required. In recent years there has been increasing attention to the electrochemical oxidation process as a feasible alternative disinfection method which is able to generate in situ a variety of oxidants that would achieve synergistic effects in the water disinfection process and toxin degradation. By utilizing only electric current, the electrochemical process through electrolysis can produce reactive oxygen species such as hydroxyl radicals from the water, or other oxidants such as chlorine from chloride ions present in the water. From extensive physiological and morphological investigation of cyanobacterial cells during electrolysis, our results show that these oxidants have significant impact on cell inactivation, simultaneously with cyanotoxins removal without the need for chemicals addition. Our research aimed to optimize existing electrochemical oxidation systems and develop new systems to treat water containing toxic cyanobacteria and cyanotoxins. The research covers detailed mechanism study on oxidants production and cell inactivation in the treatment under environmental conditions. Overall, our study suggests that the electrochemical treatment process e is an effective method for removal of toxic cyanobacteria and cyanotoxins.

Keywords: toxic cyanobacteria, cyanotoxins, electrochemical process, oxidants

Procedia PDF Downloads 240
2854 Spatial Organization of Organelles in Living Cells: Insights from Mathematical Modelling

Authors: Congping Lin

Abstract:

Intracellular transport in fungi has a number of important roles in, e.g., filamentous fungal growth and cellular metabolism. Two basic mechanisms for intracellular transport are motor-driven trafficking along microtubules (MTs) and diffusion. Mathematical modelling has been actively developed to understand such intracellular transport and provide unique insight into cellular complexity. Based on live-cell imaging data in Ustilago hyphal cells, probabilistic models have been developed to study mechanism underlying spatial organization of molecular motors and organelles. In particular, anther mechanism - stochastic motility of dynein motors along MTs has been found to contribute to half of its accumulation at hyphal tip in order to support early endosome (EE) recycling. The EE trafficking not only facilitates the directed motion of peroxisomes but also enhances their diffusive motion. Considering the importance of spatial organization of early endosomes in supporting peroxisome movement, computational and experimental approaches have been combined to a whole-cell level. Results from this interdisciplinary study promise insights into requirements for other membrane trafficking systems (e.g., in neurons), but also may inform future 'synthetic biology' studies.

Keywords: intracellular transport, stochastic process, molecular motors, spatial organization

Procedia PDF Downloads 133
2853 Effect of Preoxidation on the Effectiveness of Gd₂O₃ Nanoparticles Applied as a Source of Active Element in the Crofer 22 APU Coated with a Protective-conducting Spinel Layer

Authors: Łukasz Mazur, Kamil Domaradzki, Maciej Bik, Tomasz Brylewski, Aleksander Gil

Abstract:

Interconnects used in solid oxide fuel and electrolyzer cells (SOFCₛ/SOECs) serve several important functions, and therefore interconnect materials must exhibit certain properties. Their thermal expansion coefficient needs to match that of the ceramic components of these devices – the electrolyte, anode and cathode. Interconnects also provide structural rigidity to the entire device, which is why interconnect materials must exhibit sufficient mechanical strength at high temperatures. Gas-tightness is also a prerequisite since they separate gas reagents, and they also must provide very good electrical contact between neighboring cells over the entire operating time. High-chromium ferritic steels meets these requirements to a high degree but are affected by the formation of a Cr₂O₃ scale, which leads to increased electrical resistance. The final criterion for interconnect materials is chemical inertness in relation to the remaining cell components. In the case of ferritic steels, this has proved difficult due to the formation of volatile and reactive oxyhydroxides observed when Cr₂O3 is exposed to oxygen and water vapor. This process is particularly harmful on the cathode side in SOFCs and the anode side in SOECs. To mitigate this, protective-conducting ceramic coatings can be deposited on an interconnect's surface. The area-specific resistance (ASR) of a single interconnect cannot exceed 0.1 m-2 at any point of the device's operation. The rate at which the CrO₃ scale grows on ferritic steels can be reduced significantly via the so-called reactive element effect (REE). Research has shown that the deposition of Gd₂O₃ nanoparticles on the surface of the Crofer 22 APU, already modified using a protective-conducting spinel layer, further improves the oxidation resistance of this steel. However, the deposition of the manganese-cobalt spinel layer is a rather complex process and is performed at high temperatures in reducing and oxidizing atmospheres. There was thus reason to believe that this process may reduce the effectiveness of Gd₂O₃ nanoparticles added as an active element source. The objective of the present study was, therefore, to determine any potential impact by introducing a preoxidation stage after the nanoparticle deposition and before the steel is coated with the spinel. This should have allowed the nanoparticles to incorporate into the interior of the scale formed on the steel. Different samples were oxidized for 7000 h in air at 1073 K under quasi-isothermal conditions. The phase composition, chemical composition, and microstructure of the oxidation products formed on the samples were determined using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. A four-point, two-probe DC method was applied to measure ASR. It was found that coating deposition does indeed reduce the beneficial effect of Gd₂O₃ addition, since the smallest mass gain and the lowest ASR value were determined for the sample for which the additional preoxidation stage had been performed. It can be assumed that during this stage, gadolinium incorporates into and segregates at grain boundaries in the thin Cr₂O₃ that is forming. This allows the Gd₂O₃ nanoparticles to be a more effective source of the active element.

Keywords: interconnects, oxide nanoparticles, reactive element effect, SOEC, SOFC

Procedia PDF Downloads 84
2852 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines

Authors: R. T. Aggangan

Abstract:

Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.

Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand

Procedia PDF Downloads 333
2851 Raman Tweezers Spectroscopy Study of Size Dependent Silver Nanoparticles Toxicity on Erythrocytes

Authors: Surekha Barkur, Aseefhali Bankapur, Santhosh Chidangil

Abstract:

Raman Tweezers technique has become prevalent in single cell studies. This technique combines Raman spectroscopy which gives information about molecular vibrations, with optical tweezers which use a tightly focused laser beam for trapping the single cells. Thus Raman Tweezers enabled researchers analyze single cells and explore different applications. The applications of Raman Tweezers include studying blood cells, monitoring blood-related disorders, silver nanoparticle-induced stress, etc. There is increased interest in the toxic effect of nanoparticles with an increase in the various applications of nanoparticles. The interaction of these nanoparticles with the cells may vary with their size. We have studied the effect of silver nanoparticles of sizes 10nm, 40nm, and 100nm on erythrocytes using Raman Tweezers technique. Our aim was to investigate the size dependence of the nanoparticle effect on RBCs. We used 785nm laser (Starbright Diode Laser, Torsana Laser Tech, Denmark) for both trapping and Raman spectroscopic studies. 100 x oil immersion objectives with high numerical aperture (NA 1.3) is used to focus the laser beam into a sample cell. The back-scattered light is collected using the same microscope objective and focused into the spectrometer (Horiba Jobin Vyon iHR320 with 1200grooves/mm grating blazed at 750nm). Liquid nitrogen cooled CCD (Symphony CCD-1024x256-OPEN-1LS) was used for signal detection. Blood was drawn from healthy volunteers in vacutainer tubes and centrifuged to separate the blood components. 1.5 ml of silver nanoparticles was washed twice with distilled water leaving 0.1 ml silver nanoparticles in the bottom of the vial. The concentration of silver nanoparticles is 0.02mg/ml so the 0.03mg of nanoparticles will be present in the 0.1 ml nanoparticles obtained. The 25 ul of RBCs were diluted in 2 ml of PBS solution and then treated with 50 ul (0.015mg) of nanoparticles and incubated in CO2 incubator. Raman spectroscopic measurements were done after 24 hours and 48 hours of incubation. All the spectra were recorded with 10mW laser power (785nm diode laser), 60s of accumulation time and 2 accumulations. Major changes were observed in the peaks 565 cm-1, 1211 cm-1, 1224 cm-1, 1371 cm-1, 1638 cm-1. A decrease in intensity of 565 cm-1, increase in 1211 cm-1 with a reduction in 1224 cm-1, increase in intensity of 1371 cm-1 also peak disappearing at 1635 cm-1 indicates deoxygenation of hemoglobin. Nanoparticles with higher size were showing maximum spectral changes. Lesser changes observed in case of 10nm nanoparticle-treated erythrocyte spectra.

Keywords: erythrocytes, nanoparticle-induced toxicity, Raman tweezers, silver nanoparticles

Procedia PDF Downloads 291
2850 The Effect of Substitution of CaO/MgO and CaO/SrO on in vitro Bioactivity of Sol-Gel Derived Bioactive Glass

Authors: Zeinab Hajifathali, Moghan Amirhosseinian

Abstract:

This study had two main aims: firstly, to determine how the individual substitution of CaO/MgO and CaO/SrO can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG) and secondly to introduce a composition in the 60SiO2–(36-x)CaO–4P2O5–(x)MgO and 60SiO2–(36-x)CaO–4P2O5–(x)SrO quaternary systems (where x= 0, 5, 10 mol.%) with enhanced biocompatibility, alkaline phosphatase (ALP) activity, and more efficient antibacterial activity against MRSA bacteria. Results showed that both magnesium-substituted bioactive glasses (M-BGs) and strontium- substituted bioactive glasses (S-BGs) retarded the Hydroxyapatite (HA) formation. Meanwhile, magnesium had more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and ALP assays revealed that the presence of moderate amount (5 mol%) of Mg and Sr had a stimulating effect on increasing of both proliferation and differentiation of MC3T3-E1 cells. Live dead and Dapi/actin staining revealed both substitution of CaO/MgO and CaO/SrO resulted in more biocompatibility and stimulation potential of the MC3T3 cells compared with control. Taken together, among all of the synthesized magnesium substituted (MBGs) and strontium substituted (SBGs), the sample 58- BG with 5 mol% CaO/MgO substitution (BG-5M) was considered as a multifunctional biomaterial in bone tissue regeneration field with enhanced biocompatibility, ALP activity as well as the highest antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria.

Keywords: apatite, alkaline earth, bioactivity, biomedical applications, Sol-gel

Procedia PDF Downloads 178
2849 Bioinformatic Strategies for the Production of Glycoproteins in Algae

Authors: Fadi Saleh, Çığdem Sezer Zhmurov

Abstract:

Biopharmaceuticals represent one of the wildest developing fields within biotechnology, and the biological macromolecules being produced inside cells have a variety of applications for therapies. In the past, mammalian cells, especially CHO cells, have been employed in the production of biopharmaceuticals. This is because these cells can achieve human-like completion of PTM. These systems, however, carry apparent disadvantages like high production costs, vulnerability to contamination, and limitations in scalability. This research is focused on the utilization of microalgae as a bioreactor system for the synthesis of biopharmaceutical glycoproteins in relation to PTMs, particularly N-glycosylation. The research points to a growing interest in microalgae as a potential substitute for more conventional expression systems. A number of advantages exist in the use of microalgae, including rapid growth rates, the lack of common human pathogens, controlled scalability in bioreactors, and the ability of some PTMs to take place. Thus, the potential of microalgae to produce recombinant proteins with favorable characteristics makes this a promising platform in order to produce biopharmaceuticals. The study focuses on the examination of the N-glycosylation pathways across different species of microalgae. This investigation is important as N-glycosylation—the process by which carbohydrate groups are linked to proteins—profoundly influences the stability, activity, and general performance of glycoproteins. Additionally, bioinformatics methodologies are employed to explain the genetic pathways implicated in N-glycosylation within microalgae, with the intention of modifying these organisms to produce glycoproteins suitable for human consumption. In this way, the present comparative analysis of the N-glycosylation pathway in humans and microalgae can be used to bridge both systems in order to produce biopharmaceuticals with humanized glycosylation profiles within the microalgal organisms. The results of the research underline microalgae's potential to help improve some of the limitations associated with traditional biopharmaceutical production systems. The study may help in the creation of a cost-effective and scale-up means of producing quality biopharmaceuticals by modifying microalgae genetically to produce glycoproteins with N-glycosylation that is compatible with humans. Improvements in effectiveness will benefit biopharmaceutical production and the biopharmaceutical sector with this novel, green, and efficient expression platform. This thesis, therefore, is thorough research into the viability of microalgae as an efficient platform for producing biopharmaceutical glycoproteins. Based on the in-depth bioinformatic analysis of microalgal N-glycosylation pathways, a platform for their engineering to produce human-compatible glycoproteins is set out in this work. The findings obtained in this research will have significant implications for the biopharmaceutical industry by opening up a new way of developing safer, more efficient, and economically more feasible biopharmaceutical manufacturing platforms.

Keywords: microalgae, glycoproteins, post-translational modification, genome

Procedia PDF Downloads 24
2848 Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder

Authors: Jun-Lun Jiang, Bing-Sheng Yu

Abstract:

Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution.

Keywords: glass polishing powder, acid solution, recycling, composite cathodes of solid oxide fuel, cell (SOFC), perovskite, glycine-nitrate combustion(GNP) method

Procedia PDF Downloads 272
2847 Heterodimetallic Ferrocenyl Dithiophosphonate Complexes of Nickel(II), Zinc(II) and Cadmium(II) as High Efficiency Co-Sensitizers in Dye-Sensitized Solar Cells

Authors: Tomilola J. Ajayi, Moses Ollengo, Lukas le Roux, Michael N. Pillay, Richard J. Staples, Shannon M. Biros Werner E. van Zyl

Abstract:

The formation, characterization, and dye-sensitized solar cell application of nickel(II), zinc(II) and cadmium(II) ferrocenyl dithiophosphonate complexes were investigated. The multidentate monoanionic ligand [S₂PFc(OH)]¯ (L1) was synthesized from the reaction between ferrocenyl Lawesson’s reagent, [FcP(=S)μ-S]₂ (FcLR), (Fc = ferrocenyl) and water. Ligand L1 could potentially coordinate to metal centers through the S, S’ and O donor atoms. The reaction between metal salt precursors and L1 produced a Ni(II) complex of the type [Ni{S₂P(Fc)(OH)}₂] (1) (molar ratio 1:2), a tetranickel (II) complex of the type [Ni₂{S₂OP(Fc)}₂]₂ (2) (molar ratio (1:1), as well as a Zn(II) complex [Zn{S₂P(Fc)(OH)}₂]₂ (3), and a Cd(II) complex [Cd{S₂P(Fc)(OH)}₂]₂ (4). Complexes 1-4 were characterized by 1H and 31P NMR and FT-IR, and complexes 1 and 2 were additionally analysed by X-Ray crystallography. After co-sensitization, the DSSCs were characterized using UV-Vis, cyclic voltammetry, electrochemical impedance spectroscopy, and photovoltaic measurements (I-V curves). Overall finding shows that co-sensitization of our compounds with ruthenium dye N719 resulted in a better overall solar conversion efficiency than only pure N719 dye under the same experimental conditions. In conclusion, we report the first examples of dye-sensitized solar cells (DSSCs) co-sensitized with ferrocenyl dithiophosphonate complexes.

Keywords: dithiophosphonate, dye sensitized solar cell, co-sensitization, solar efficiency

Procedia PDF Downloads 150
2846 CRLH and SRR Based Microwave Filter Design Useful for Communication Applications

Authors: Subal Kar, Amitesh Kumar, A. Majumder, S. K. Ghosh, S. Saha, S. S. Sikdar, T. K. Saha

Abstract:

CRLH (composite right/left-handed) based and SRR (split-ring resonator) based filters have been designed at microwave frequency which can provide better performance compared to conventional edge-coupled band-pass filter designed around the same frequency, 2.45 GHz. Both CRLH and SRR are unit cells used in metamaterial design. The primary aim of designing filters with such structures is to realize size reduction and also to realize novel filter performance. The CRLH based filter has been designed in microstrip transmission line, while the SRR based filter is designed with SRR loading in waveguide. The CRLH based filter designed at 2.45 GHz provides an insertion loss of 1.6 dB with harmonic suppression up to 10 GHz with 67 % size reduction when compared with a conventional edge-coupled band-pass filter designed around the same frequency. One dimensional (1-D) SRR matrix loaded in a waveguide shows the possibility of realizing a stop-band with sharp skirts in the pass-band while a stop-band in the pass-band of normal rectangular waveguide with tailoring of the dimensions of SRR unit cells. Such filters are expected to be very useful for communication systems at microwave frequency.

Keywords: BPF, CRLH, harmonic, metamaterial, SRR and waveguide

Procedia PDF Downloads 427
2845 Genotoxic Effect of Tricyclic Antidepressant Drug “Clomipramine Hydrochloride’ on Somatic and Germ Cells of Male Mice

Authors: Samia A. El-Fiky, Fouad A. Abou-Zaid, Ibrahim M. Farag, Naira M. El-Fiky

Abstract:

Clomipramine hydrochloride is one of the most used tricyclic antidepressant drug in Egypt. This drug contains in its chemical structure on two benzene rings. Benzene is considered to be toxic and clastogenic agent. So, the present study was designed to assess the genotoxic effect of Clomipramine hydrochloride on somatic and germ cells in mice. Three dose levels 0.195 (Low), 0.26 (Medium), and 0.65 (High) mg/kg.b.wt. were used. Seven groups of male mice were utilized in this work. The first group was employed as a control. In the remaining six groups, each of the above doses was orally administrated for two groups, one of them was treated for 5 days and the other group was given the same dose for 30 days. At the end of experiments, the animals were sacrificed for cytogenetic and sperm examination as well as histopathological investigations by using hematoxylin and eosin stains (H and E stains) and electron microscope. Concerning the sperm studies, these studies were confined to 5 days treatment with different dose levels. Moreover, the ultrastructural investigation by electron microscope was restricted to 30 days treatment with drug doses. The results of the dose dependent effect of Clomipramine showed that the treatment with three different doses induced increases of frequencies of chromosome aberrations in bone marrow and spermatocyte cells as compared to control. In addition, mitotic and meiotic activities of somatic and germ cells were declined. The treatments with medium or high doses were more effective for inducing significant increases of chromosome aberrations and significant decreases of cell divisions than treatment with low dose. The effect of high dose was more pronounced for causing such genetic deleterious in respect to effect of medium dose. Moreover, the results of the time dependent effect of Clomipramine observed that the treatment with different dose levels for 30 days led to significant increases of genetic aberrations than treatment for 5 days. Sperm examinations revealed that the treatment with Clomipramine at different dose levels caused significant increase of sperm shape abnormalities and significant decrease in sperm count as compared to control. The adverse effects on sperm shape and count were more obviousness by using the treatments with medium or high doses than those found in treatment with low dose. The group of mice treated with high dose had the highest rate of sperm shape abnormalities and the lowest proportion of sperm count as compared to mice received medium dose. In histopathological investigation, hematoxylin and eosin stains showed that, the using of low dose of Clomipramine for 5 or 30 days caused a little pathological changes in liver tissue. However, using medium and high doses for 5 or 30 days induced severe damages than that observed in mice treated with low dose. The treatment with high dose for 30 days gave the worst results of pathological changes in hepatic cells. Moreover, ultrastructure examination revealed, the mice treated with low dose of Clomipramine had little differences in liver histological architecture as compared to control group. These differences were confined to cytoplasmic inclusions. Whereas, prominent pathological changes in nuclei as well as dilated of rough Endoplasmic Reticulum (rER) were observed in mice treated with medium or high doses of Clomipramine drug. In conclusion, the present study adds evidence that treatments with medium or high doses of Clomipramine have genotoxic effects on somatic and germ cells of mice, as unwanted side effects. However, the using of low dose (especially for short time, 5 days) can be utilized as a therapeutic dose, where it caused relatively similar proportions of genetic, sperm, and histopathological changes as those found in normal control.

Keywords: chromosome aberrations, clomipramine, mice, histopathology, sperm abnormalities

Procedia PDF Downloads 521
2844 Cloning and Expression of Human Interleukin 15: A Promising Candidate for Cytokine Immunotherapy

Authors: Sadaf Ilyas

Abstract:

Recombinant cytokines have been employed successfully as potential therapeutic agent. Some cytokine therapies are already used as a part of clinical practice, ranging from early exploratory trials to well established therapies that have already received approval. Interleukin 15 is a pleiotropic cytokine having multiple roles in peripheral innate and adaptive immune cell function. It regulates the activation, proliferation and maturation of NK cells, T-cells, monocytes/macrophages and granulocytes, and the interactions between them thus acting as a bridge between innate and adaptive immune responses. Unraveling the biology of IL-15 has revealed some interesting surprises that may point toward some of the first therapeutic applications for this cytokine. In this study, the human interleukin 15 gene was isolated, amplified and ligated to a TA vector which was then transfected to a bacterial host, E. coli Top10F’. The sequence of cloned gene was confirmed and it showed 100% homology with the reported sequence. The confirmed gene was then subcloned in pET Expression system to study the IPTG induced expression of IL-15 gene. Positive expression was obtained for number of clones that showed 15 kd band of IL-15 in SDS-PAGE analysis, indicating the successful strain development that can be studied further to assess the potential therapeutic intervention of this cytokine in relevance to human diseases.

Keywords: Interleukin 15, pET expression system, immune therapy, protein purification

Procedia PDF Downloads 413
2843 On Board Measurement of Real Exhaust Emission of Light-Duty Vehicles in Algeria

Authors: R. Kerbachi, S. Chikhi, M. Boughedaoui

Abstract:

The study presents an analysis of the Algerian vehicle fleet and resultant emissions. The emission measurement of air pollutants emitted by road transportation (CO, THC, NOX and CO2) was conducted on 17 light duty vehicles in real traffic. This sample is representative of the Algerian light vehicles in terms of fuel quality (gasoline, diesel and liquefied petroleum gas) and the technology quality (injection system and emission control). The experimental measurement methodology of unit emission of vehicles in real traffic situation is based on the use of the mini-Constant Volume Sampler for gas sampling and a set of gas analyzers for CO2, CO, NOx and THC, with an instrumentation to measure kinematics, gas temperature and pressure. The apparatus is also equipped with data logging instrument and data transfer. The results were compared with the database of the European light vehicles (Artemis). It was shown that the technological injection liquefied petroleum gas (LPG) has significant impact on air pollutants emission. Therefore, with the exception of nitrogen oxide compounds, uncatalyzed LPG vehicles are more effective in reducing emissions unit of air pollutants compared to uncatalyzed gasoline vehicles. LPG performance seems to be lower under real driving conditions than expected on chassis dynamometer. On the other hand, the results show that uncatalyzed gasoline vehicles emit high levels of carbon monoxide, and nitrogen oxides. Overall, and in the absence of standards in Algeria, unit emissions are much higher than Euro 3. The enforcement of pollutant emission standard in developing countries is an important step towards introducing cleaner technology and reducing vehicular emissions.

Keywords: on-board measurements of unit emissions of CO, HC, NOx and CO2, light vehicles, mini-CVS, LPG-fuel, artemis, Algeria

Procedia PDF Downloads 275
2842 Single Cell and Spatial Transcriptomics: A Beginners Viewpoint from the Conceptual Pipeline

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Messenger ribooxynucleic acid (mRNA) molecules are compositional, protein-based. These proteins, encoding mRNA molecules (which collectively connote the transcriptome), when analyzed by RNA sequencing (RNAseq), unveils the nature of gene expression in the RNA. The obtained gene expression provides clues of cellular traits and their dynamics in presentations. These can be studied in relation to function and responses. RNAseq is a practical concept in Genomics as it enables detection and quantitative analysis of mRNA molecules. Single cell and spatial transcriptomics both present varying avenues for expositions in genomic characteristics of single cells and pooled cells in disease conditions such as cancer, auto-immune diseases, hematopoietic based diseases, among others, from investigated biological tissue samples. Single cell transcriptomics helps conduct a direct assessment of each building unit of tissues (the cell) during diagnosis and molecular gene expressional studies. A typical technique to achieve this is through the use of a single-cell RNA sequencer (scRNAseq), which helps in conducting high throughput genomic expressional studies. However, this technique generates expressional gene data for several cells which lack presentations on the cells’ positional coordinates within the tissue. As science is developmental, the use of complimentary pre-established tissue reference maps using molecular and bioinformatics techniques has innovatively sprung-forth and is now used to resolve this set back to produce both levels of data in one shot of scRNAseq analysis. This is an emerging conceptual approach in methodology for integrative and progressively dependable transcriptomics analysis. This can support in-situ fashioned analysis for better understanding of tissue functional organization, unveil new biomarkers for early-stage detection of diseases, biomarkers for therapeutic targets in drug development, and exposit nature of cell-to-cell interactions. Also, these are vital genomic signatures and characterizations of clinical applications. Over the past decades, RNAseq has generated a wide array of information that is igniting bespoke breakthroughs and innovations in Biomedicine. On the other side, spatial transcriptomics is tissue level based and utilized to study biological specimens having heterogeneous features. It exposits the gross identity of investigated mammalian tissues, which can then be used to study cell differentiation, track cell line trajectory patterns and behavior, and regulatory homeostasis in disease states. Also, it requires referenced positional analysis to make up of genomic signatures that will be sassed from the single cells in the tissue sample. Given these two presented approaches to RNA transcriptomics study in varying quantities of cell lines, with avenues for appropriate resolutions, both approaches have made the study of gene expression from mRNA molecules interesting, progressive, developmental, and helping to tackle health challenges head-on.

Keywords: transcriptomics, RNA sequencing, single cell, spatial, gene expression.

Procedia PDF Downloads 122
2841 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 164
2840 The Expression of Toll-Like Receptors Gene in Peripheral Blood Mononuclear Cells of Betong (KU Line) Chicken

Authors: Chaiwat Boonkaewwan, Anutian Suklek, Jatuporn Rattanasrisomporn, Autchara Kayan

Abstract:

Toll-like receptors (TLR) are conserved microbial sensing receptors located on cell surface that are able to detect different pathogens. The aim of the present study is to examine the expression of TLR gene in peripheral blood mononuclear cell of Betong (KU line) chicken. Blood samples were collected from healthy 12 Betong (KU line) chicken. PBMCs were isolated and maintained in RPMI1640 with 10% FBS, penicillin and streptomycin. Cell viability was determined by trypan blue dye exclusion test. The expression of TLRs gene was investigated by polymerase chain reaction (PCR) technique. Results showed that PBMCs viability from Betong (KU line) chicken was 95.38 ± 1.06%. From the study of TLRs gene expression, results indicated that there are expressions of TLR1.1 TLR1.2 TLR2.1 TLR2.2 TLR3 TLR4 TLR5 TLR 7 TLR15 and TLR21 in PBMCs of Betong (KU line) chicken. In conclusion, PBMCs isolated from blood of Betong (KU line) chicken had a high cell viability ( > 95%). The expression of TLRs in chicken was all found in PBMCs, which indicated that PBMC isolated from the blood of Betong (KU line) chicken can be used as an in vitro immune responses study.

Keywords: toll-like receptor, Betong (KU line) chicken, peripheral blood mononuclear cells

Procedia PDF Downloads 224
2839 The Importance of including All Data in a Linear Model for the Analysis of RNAseq Data

Authors: Roxane A. Legaie, Kjiana E. Schwab, Caroline E. Gargett

Abstract:

Studies looking at the changes in gene expression from RNAseq data often make use of linear models. It is also common practice to focus on a subset of data for a comparison of interest, leaving aside the samples not involved in this particular comparison. This work shows the importance of including all observations in the modeling process to better estimate variance parameters, even when the samples included are not directly used in the comparison under test. The human endometrium is a dynamic tissue, which undergoes cycles of growth and regression with each menstrual cycle. The mesenchymal stem cells (MSCs) present in the endometrium are likely responsible for this remarkable regenerative capacity. However recent studies suggest that MSCs also plays a role in the pathogenesis of endometriosis, one of the most common medical conditions affecting the lower abdomen in women in which the endometrial tissue grows outside the womb. In this study we compared gene expression profiles between MSCs and non-stem cell counterparts (‘non-MSC’) obtained from women with (‘E’) or without (‘noE’) endometriosis from RNAseq. Raw read counts were used for differential expression analysis using a linear model with the limma-voom R package, including either all samples in the study or only the samples belonging to the subset of interest (e.g. for the comparison ‘E vs noE in MSC cells’, including only MSC samples from E and noE patients but not the non-MSC ones). Using the full dataset we identified about 100 differentially expressed (DE) genes between E and noE samples in MSC samples (adj.p-val < 0.05 and |logFC|>1) while only 9 DE genes were identified when using only the subset of data (MSC samples only). Important genes known to be involved in endometriosis such as KLF9 and RND3 were missed in the latter case. When looking at the MSC vs non-MSC cells comparison, the linear model including all samples identified 260 genes for noE samples (including the stem cell marker SUSD2) while the subset analysis did not identify any DE genes. When looking at E samples, 12 genes were identified with the first approach and only 1 with the subset approach. Although the stem cell marker RGS5 was found in both cases, the subset test missed important genes involved in stem cell differentiation such as NOTCH3 and other potentially related genes to be used for further investigation and pathway analysis.

Keywords: differential expression, endometriosis, linear model, RNAseq

Procedia PDF Downloads 432
2838 Immunomodulatory Role of Heat Killed Mycobacterium indicus pranii against Cervical Cancer

Authors: Priyanka Bhowmik, Subrata Majumdar, Debprasad Chattopadhyay

Abstract:

Background: Cervical cancer is the third major cause of cancer in women and the second most frequent cause of cancer related deaths causing 300,000 deaths annually worldwide. Evasion of immune response by Human Papilloma Virus (HPV), the key contributing factor behind cancer and pre-cancerous lesions of the uterine cervix, makes immunotherapy a necessity to treat this disease. Objective: A Heat killed fraction of Mycobacterium indicus pranii (MIP), a non-pathogenic Mycobacterium has been shown to exhibit cytotoxic effects on different cancer cells, including human cervical carcinoma cell line HeLa. However, the underlying mechanisms remain unknown. The aim of this study is to decipher the mechanism of MIP induced HeLa cell death. Methods: The cytotoxicity of Mycobacterium indicus pranii against HeLa cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and Propidium iodide (PI) staining. The assessment of reactive oxygen species (ROS) generation and cell cycle analysis were measured by flow cytometry. The expression of apoptosis associated genes was analyzed by real time PCR. Result: MIP could inhibit the proliferation of HeLa cell in a time and dose dependent manner but caused minor damage to normal cells. The induction of apoptosis was confirmed by the cell surface presentation of phosphatidyl serine, DNA fragmentation, and mitochondrial damage. MIP caused very early (as early as 30 minutes) transcriptional activation of p53, followed by a higher activation (32 fold) at 24 hours suggesting prime importance of p53 in MIP-induced apoptosis in HeLa cell. The up regulation of p53 dependent pro-apoptotic genes Bax, Bak, PUMA, and Noxa followed a lag phase that was required for the transcriptional p53 program. MIP also caused the transcriptional up regulation of Toll like receptor 2 and 4 after 30 minutes of MIP treatment suggesting recognition of MIP by toll like receptors. Moreover, MIP caused the inhibition of expression of HPV anti apoptotic gene E6, which is known to interfere with p53/PUMA/Bax apoptotic cascade. This inhibition might have played a role in transcriptional up regulation of PUMA and subsequently apoptosis. ROS was generated transiently which was concomitant with the highest transcription activation of p53 suggesting a plausible feedback loop network of p53 and ROS in the apoptosis of HeLa cells. Scavenger of ROS, such as N-acetyl-L-cysteine, decreased apoptosis suggesting ROS is an important effector of MIP induced apoptosis. Conclusion: Taken together, MIP possesses full potential to be a novel therapeutic agent in the clinical treatment of cervical cancer.

Keywords: cancer, mycobacterium, immunity, immunotherapy.

Procedia PDF Downloads 249