Search results for: pressure effect
16000 Transducers for Measuring Displacements of Rotating Blades in Turbomachines
Authors: Pavel Prochazka
Abstract:
The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors
Procedia PDF Downloads 12915999 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials
Authors: Ariadna Manresa, Ines Ferrer
Abstract:
Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.Keywords: biomaterial, biopolymer, micro injection molding, ultrasound
Procedia PDF Downloads 28415998 Advanced Technology for Natural Gas Liquids (NGL) Recovery Using Residue Gas Split
Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel
Abstract:
The competitive scenario of the oil and gas market is a challenge for today’s plant designers to achieve designs that meet client expectations with shrinking budgets, safety requirements, and operating flexibility. Natural Gas Liquids have three main industrial uses. They can be used as fuels, or as petrochemical feedstock or as refinery blends that can be further processed and sold as straight run cuts, such as naphtha, kerosene and gas oil. NGL extraction is not a chemical reaction. It involves the separation of heavier hydrocarbons from the main gas stream through pressure as temperature reduction, which depending upon the degree of NGL extraction may involve cryogenic process. Previous technologies i.e. short cycle dry desiccant absorption, Joule-Thompson or Low temperature refrigeration, lean oil absorption have been giving results of only 40 to 45% ethane recoveries, which were unsatisfying depending upon the current scenario of down turn market. Here new technology has been suggested for boosting up the recoveries of ethane+ up to 95% and up to 99% for propane+ components. Cryogenic plants provide reboiling to demethanizers by using part of inlet feed gas, or inlet feed split. If the two stream temperatures are not similar, there is lost work in the mixing operation unless the designer has access to some proprietary design. The concept introduced in this process consists of reboiling the demethanizer with the residue gas, or residue gas split. The innovation of this process is that it does not use the typical inlet gas feed split type of flow arrangement to reboil the demethanizer or deethanizer column, but instead uses an open heat pump scheme to that effect. The residue gas compressor provides the heat pump effect. The heat pump stream is then further cooled and entered in the top section of the column as a cold reflux. Because of the nature of this design, this process offers the opportunity to operate at full ethane rejection or recovery. The scheme is also very adaptable to revamp existing facilities. This advancement can be proven not only in enhancing the results but also provides operational flexibility, optimize heat exchange, introduces equipment cost reduction, opens a future for the innovative designs while keeping execution costs low.Keywords: deethanizer, demethanizer, residue gas, NGL
Procedia PDF Downloads 26515997 Cyber Violence Behaviors Among Social Media Users in Ghana: An Application of Self-Control Theory and Social Learning Theory
Authors: Aisha Iddrisu
Abstract:
The proliferation of cyberviolence in the wave of increased social media consumption calls for immediate attention both at the local and global levels. With over 4.70 billion social media users worldwide and 8.8 social media users in Ghana, various forms of violence have become the order of the day in most countries and communities. Cyber violence is defined as producing, retrieving, and sharing of hurtful or dangerous online content to cause emotional, psychological, or physical harm. The urgency and severity of cyber violence have led to the enactment of laws in various countries though lots still need to be done, especially in Ghana. In Ghana, studies on cyber violence have not been extensively dealt with. Existing studies concentrate only on one form or the other form of cyber violence, thus cybercrime and cyber bullying. Also, most studies in Africa have not explored cyber violence forms using empirical theories and the few that existed were qualitatively researched, whereas others examine the effect of cyber violence rather than examining why those who involve in it behave the way they behave. It is against this backdrop that this study aims to examine various cyber violence behaviour among social media users in Ghana by applying the theory of Self-control and Social control theory. This study is important for the following reasons. The outcome of this research will help at both national and international level of policymaking by adding to the knowledge of understanding cyberviolence and why people engage in various forms of cyberviolence. It will also help expose other ways by which such behaviours are enforced thereby serving as a guide in the enactment of the rightful rules and laws to curb such behaviours. It will add to literature on consequences of new media. This study seeks to confirm or reject to the following research hypotheses. H1 Social media usage has direct significant effect of cyberviolence behaviours. H2 Ineffective parental management has direct significant positive relation to Low self-control. H3 Low self-control has direct significant positive effect on cyber violence behaviours among social, H4 Differential association has significant positive effect on cyberviolence behaviour among social media users in Ghana. H5 Definitions have a significant positive effect on cyberviolence behaviour among social media users in Ghana. H6 Imitation has a significant positive effect on cyberviolence behaviour among social media users in Ghana. H7 Differential reinforcement has a significant positive effect on cyberviolence behaviour among social media users in Ghana. H8 Differential association has a significant positive effect on definitions. H9 Differential association has a significant positive effect on imitation. H10 Differential association has a significant positive effect on differential reinforcement. H11 Differential association has significant indirect positive effects on cyberviolence through the learning process.Keywords: cyberviolence, social media users, self-control theory, social learning theory
Procedia PDF Downloads 8415996 The Effect of Microgrid on Power System Oscillatory Stability
Authors: Burak Yildirim, Muhsin Tunay Gencoglu
Abstract:
This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability
Procedia PDF Downloads 29115995 Effect of Seasons and Storage Methods on Seed Quality of Slender Leaf (Crotalaria Sp.) in Western Kenya
Authors: Faith Maina
Abstract:
Slender leaf (Crotalaria brevidens and Crotalaria ochroleuca), African indigenous vegetables, are an important source of nutrients, income and traditional medicines in Kenya. However, their production is constrained by poor quality seed, due to lack of standardized agronomic and storage practices. Factors that affect the quality of seed in storage include the duration of storage, seed moisture, temperature, relative humidity, oxygen pressure during storage, diseases, and pests. These factors vary with the type of storage method used. The aim of the study was to investigate the effect of various storage methods on seed quality of slender leaf and recommend the best methods of seed storage to the farmers in Western Kenya. Seeds from various morphotypes of slender leaf that had high germination percentage (90%) were stored in pots, jars, brown paper bags and polythene bags in Kakamega and Siaya. Other seeds were also stored in a freezer at the University of Eldoret. In Kakamega County average room temperature was 23°C and relative humidity was 85% during the storage period of May to July 2006. Between December and February 2006 the average room temperature was 26°C while relative humidity was 80% in the same county. In Siaya County, the average room temperature was 25°C and relative humidity was 80% during storage period of May to July 2006. In the same county, the average temperature was 28°C and relative humidity 65% during the period of December and February 2006. Storage duration was 90 days for each season. Seed viability and vigour, was determined for each storage method. Data obtained from storage experiments was subjected to ANOVA and T-tests using Statistical Analysis Software (SAS). Season of growth and storage methods significantly influenced seed quality in Kakamega and Siaya counties. Seeds from the long rains season had higher seed quality than those grown during the short rains season. Generally, seeds stored in pots, brown paper bags, jars and freezer had higher seed quality than those stored in polythene bags. It was concluded that in order to obtain high-quality seeds farmers should store slender leaf seeds in pots or brown paper bags or plastic jars or freezer.Keywords: Crotalaria sp, seed, quality, storage
Procedia PDF Downloads 20015994 Central Line Stock and Use Audit in Adult Patients: A Quality Improvement Project on Central Venous Catheter Standardisation Across Hospital Departments
Authors: Gregor Moncrieff, Ursula Bahlmann
Abstract:
A number of incident reports were filed from the intensive care unit with regards to adult patients admitted following operations who had a central venous catheter inserted of the incorrect length for the relevant anatomical site and catheters not compatible with pressurised injection inserted whilst in theatre. Incorrect catheter length can lead to a variety of complications and pressurised injection is a requirement for contrast enhanced computerised tomography scans. This led to several patients having a repeat procedure to insert a catheter of the correct length and also compatible with pressurised injection. This project aimed to identify the types of central venous catheters used in theatres and ensure the correct equipment would be stocked and used in future cases in accordance the existing Association of Anaesthetics of Great Britain and Northern Ireland guidelines. A questionnaire was sent out to all of the anaesthetic department in our hospital aiming to determine what types of central venous catheters were preferably used by anaesthetists and why these had been chosen. We also explored any concerns regarding introduction of standardised, pressure injectable central venous catheters to the theatre department which were already in use in other parts of the hospital and in keeping with national guidance. A total of 56 responses were collected. 64% of respondents routinely used a central venous catheter which was significantly shorter than the national recommended guidance with a further 4 different types of central venous catheters used which were different to other areas of the hospital and not pressure injectable. 75% of respondents were in agreement to standardised introduction of the pressure injectable catheters of the recommended length in accordance with national guidance. Reasons why 25% respondents were opposed to introduction of these catheters were explored and discussed. We were successfully able to introduce the standardised central catheters to the theatre department following presentation at the local anaesthetic quality and safety meeting. Reasons against introduction of the catheters were discussed and a compromise was reached that the existing catheters would continue to be stocked but would only be available on request, with a focus on encouraging use of the standardised catheters. Additional changes achieved included removing redundant catheters from the theatre stock. Ongoing data is being collected to analyse positive and negative feedback from use of the introduced catheters.Keywords: central venous catheter, medical equipment, medical safety, quality improvement
Procedia PDF Downloads 11715993 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns
Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally
Abstract:
This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength
Procedia PDF Downloads 51015992 Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour during Closing Manoeuvring Operation of a Butterfly Valve
Authors: M. Ezkurra, J. A. Esnaola, M. Martinez-Agirre, U. Etxeberria, U. Lertxundi, L. Colomo, M. Begiristain, I. Zurutuza
Abstract:
Butterfly valves are widely used industrial piping components as on-off and flow controlling devices. The main challenge in the design process of this type of valves is the correct dimensioning to ensure proper mechanical performance as well as to minimise flow losses that affect the efficiency of the system. Butterfly valves are typically dimensioned in a closed position based on mechanical approaches considering uniform hydrostatic pressure, whereas the flow losses are analysed by means of CFD simulations. The main limitation of these approaches is that they do not consider either the influence of the dynamics of the manoeuvring stage or coupled phenomena. Recent works have included the influence of the flow on the mechanical behaviour for different opening angles by means of one-way FSI approach. However, these works consider steady-state flow for the selected angles, not capturing the effect of the transient flow evolution during the manoeuvring stage. Two-way FSI modelling approach could allow overcoming such limitations providing more accurate results. Nevertheless, the use of this technique is limited due to the increase in the computational cost. In the present work, the applicability of FSI one-way and two-way approaches is evaluated for the analysis of butterfly valves, showing that not considering fluid-structure coupling involves not capturing the most critical situation for the valve disc.Keywords: butterfly valves, fluid-structure interaction, one-way approach, two-way approach
Procedia PDF Downloads 16215991 The Review of Permanent Downhole Monitoring System
Abstract:
With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield
Procedia PDF Downloads 7915990 Wave-Assisted Flapping Foil Propulsion: Flow Physics and Scaling Laws From Fluid-Structure Interaction Simulations
Authors: Rajat Mittal, Harshal Raut, Jung Hee Seo
Abstract:
Wave-assisted propulsion (WAP) systems convert wave energy into thrust using elastically mounted hydrofoils. We employ sharp-interface immersed boundary simulations to examine the effect of two key parameters on the flow physics, the fluid-structure interaction, as well as thrust performance of these systems - the stiffness of the torsional spring and the location of the rotational center. The variation in spring stiffness leads to different amplitude of pitch motion, phase difference with respect to heaving motion and thrust coefficient and we show the utility of ‘maps’ of energy exchange between the flow and the hydrofoil system, as a way to understand and predict this behavior. The Force Partitioning Method (FPM) is used to decompose the pressure forces into individual components and understand the mechanism behind increase in thrust. Next, a scaling law is presented for the thrust coefficient generated by heaving and pitching foil. The parameters within the scaling law are calculated based on direct-numerical simulations based parametric study utilized to generate the energy maps. The predictions of the proposed scaling law are then compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the thrust coefficient.Keywords: propulsion, flapping foils, hydrodynamics, wave power
Procedia PDF Downloads 6115989 Effects of Viscous Dissipation and Concentration Based Internal Heat Source on Convective Instability in A Porous Medium with Throughflow
Authors: N. Deepika, P. A. L. Narayana
Abstract:
Linear stability analysis of double diffusive convection in a horizontal porous layer saturated with fluid is examined by considering the effects of viscous dissipation, concentration based internal heat source and vertical throughflow. The basic steady state solution for Governing equations is computed. Linear stability analysis has been implemented numerically by using Runge-kutta method. Critical thermal Rayleigh number Rac is obtained for various values of solutal Rayleigh number Sa, vertical Peclet number Pe, Gebhart number Ge, Lewis number Le and measure of concentration based internal heat source $\gamma$. It is observed that Ge has destabilizing effect for upward throughflow and stabilizing effect for downward throughflow. For sufficient value of Pe, $\gamma$ has considerable destabilizing effect for upward throughflow, insignificant destabilizing effect for downward throughflow.Keywords: porous medium, concentration based internal heat source, vertical throughflow, viscous dissipation
Procedia PDF Downloads 46015988 Effect of Annealing Temperature on Microstructural Evolution of Nanoindented Cu/Si Thin Films
Authors: Woei-Shyan Lee, Yu-Liang Chuang
Abstract:
The nano-mechanical properties of as-deposited Cu/Si thin films indented to a depth of 2000 nm are investigated using a nanoindentation technique. The nanoindented specimens are annealed at a temperature of either 160 °C or 210°C, respectively. The microstructures of the as-deposited and annealed samples are then examined via transmission electron microscopy (TEM). The results show that both the loading and the unloading regions of the load-displacement curve are smooth and continuous, which suggests that no debonding or cracking occurs during nanoindentation. In addition, the hardness and Young’s modulus of the Cu/Si thin films are found to vary with the nanoindentation depth, and have maximum values of 2.8 GPa and 143 GPa, respectively, at the maximum indentation depth of 2000 nm. The TEM observations show that the region of the Cu/Si film beneath the indenter undergoes a phase transformation during the indentation process. In the case of the as-deposited specimens, the indentation pressure induces a completely amorphous phase within the indentation zone. For the specimens annealed at a temperature of 160°C, the amorphous nature of the microstructure within the indented zone is maintained. However, for the specimens annealed at a higher temperature of 210°C, the indentation affected zone consists of a mixture of amorphous phase and nanocrystalline phase. Copper silicide (η-Cu3Si) precipitates are observed in all of the annealed specimens. The density of the η-Cu3Si precipitates is found to increase with an increasing annealing temperature.Keywords: nanoindentation, Cu/Si thin films, microstructural evolution, annealing temperature
Procedia PDF Downloads 39115987 The Impact of the Enron Scandal on the Reputation of Corporate Social Responsibility Rating Agencies
Authors: Jaballah Jamil
Abstract:
KLD (Peter Kinder, Steve Lydenberg and Amy Domini) research & analytics is an independent intermediary of social performance information that adopts an investor-pay model. KLD rating agency does not have an explicit monitoring on the rated firm which suggests that KLD ratings may not include private informations. Moreover, the incapacity of KLD to predict accurately the extra-financial rating of Enron casts doubt on the reliability of KLD ratings. Therefore, we first investigate whether KLD ratings affect investors' perception by studying the effect of KLD rating changes on firms' financial performances. Second, we study the impact of the Enron scandal on investors' perception of KLD rating changes by comparing the effect of KLD rating changes on firms' financial performances before and after the failure of Enron. We propose an empirical study that relates a number of equally-weighted portfolios returns, excess stock returns and book-to-market ratio to different dimensions of KLD social responsibility ratings. We first find that over the last two decades KLD rating changes influence significantly and negatively stock returns and book-to-market ratio of rated firms. This finding suggests that a raise in corporate social responsibility rating lowers the firm's risk. Second, to assess the Enron scandal's effect on the perception of KLD ratings, we compare the effect of KLD rating changes before and after the Enron scandal. We find that after the Enron scandal this significant effect disappears. This finding supports the view that the Enron scandal annihilates the KLD's effect on Socially Responsible Investors. Therefore, our findings may question results of recent studies that use KLD ratings as a proxy for Corporate Social Responsibility behavior.Keywords: KLD social rating agency, investors' perception, investment decision, financial performance
Procedia PDF Downloads 43915986 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids
Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash
Abstract:
The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.Keywords: ferroconvection, magnetic field dependent viscosity, temperature dependent viscosity, throughflow
Procedia PDF Downloads 26515985 A Sequential Approach for Random-Effects Meta-Analysis
Authors: Samson Henry Dogo, Allan Clark, Elena Kulinskaya
Abstract:
The objective in meta-analysis is to combine results from several independent studies in order to create generalization and provide evidence based for decision making. But recent studies show that the magnitude of effect size estimates reported in many areas of research finding changed with year publication and this can impair the results and conclusions of meta-analysis. A number of sequential methods have been proposed for monitoring the effect size estimates in meta-analysis. However they are based on statistical theory applicable to fixed effect model (FEM). For random-effects model (REM), the analysis incorporates the heterogeneity variance, tau-squared and its estimation create complications. In this paper proposed the use of Gombay and Serbian (2005) truncated CUSUM-type test with asymptotically valid critical values for sequential monitoring of REM. Simulation results show that the test does not control the Type I error well, and is not recommended. Further work required to derive an appropriate test in this important area of application.Keywords: meta-analysis, random-effects model, sequential test, temporal changes in effect sizes
Procedia PDF Downloads 46715984 Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine
Authors: Rizwan Latif, Syed Adnan Qasim, Muzaffar Ali
Abstract:
Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit.Keywords: droplet collision, coalescence, low speed, diesel fuel
Procedia PDF Downloads 23615983 Tribological Response of Self-Mated Zircaloy-4 under Varying Conditions
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are widely used for the core components of a pressurized heavy water reactor (PHWR) or Canada deuterium (CANDU) reactor due to their low neutron absorption cross-section and excellent mechanical properties. The components made of Zirconium alloys are subjected to flow-induced vibrations, resulting in fretting wear at the interface of; pressure tubes and bearing pads, pressure tubes and calandria tubes, and calandria tubes and Liquid injection shutdown system (LISS) nozzles. There is a need to explore the tribological response under such conditions. Present work simulates the contact between calandria tube and LISS nozzle of PHWR/CANDU reactor as cylinder-on-cylinder contact configuration. Reciprocating tribo-tests were conducted on Zircaloy-4 (Zr-4) under the self-mated condition at varying amplitude, frequency, and sliding time. To understand the active wear mechanism, worn surfaces were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The change in amplitude severely affects the wear than other factors. The wear mechanism transits from adhesion to abrasion with increasing test amplitude. The dominant wear mechanisms are micro-cutting and micro-plowing followed by delamination in some areas. However, the coefficient of friction has indifferent behaviors.Keywords: zircaloy-4, tribology, calandria tube, LISS nozzle, PHWR
Procedia PDF Downloads 20915982 Coarse-Grained Molecular Simulations to Estimate Thermophysical Properties of Phase Equilibria
Authors: Hai Hoang, Thanh Xuan Nguyen Thi, Guillaume Galliero
Abstract:
Coarse-Grained (CG) molecular simulations have shown to be an efficient way to estimate thermophysical (static and dynamic) properties of fluids. Several strategies have been developed and reported in the literature for defining CG molecular models. Among them, those based on a top-down strategy (i.e. CG molecular models related to macroscopic observables), despite being heuristic, have increasingly gained attention. This is probably due to its simplicity in implementation and its ability to provide reasonable results for not only simple but also complex systems. Regarding simple Force-Fields associated with these CG molecular models, it has been found that the four parameters Mie chain model is one of the best compromises to describe thermophysical static properties (e.g. phase diagram, saturation pressure). However, parameterization procedures of these Mie-chain GC molecular models given in literature are generally insufficient to simultaneously provide static and dynamic (e.g. viscosity) properties. To deal with such situations, we have extended the corresponding states by using a quantity associated with the liquid viscosity. Results obtained from molecular simulations have shown that our approach is able to yield good estimates for both static and dynamic thermophysical properties for various real non-associating fluids. In addition, we will show that on simple (e.g. phase diagram, saturation pressure) and complex (e.g. thermodynamic response functions, thermodynamic energy potentials) static properties, results of our scheme generally provides improved results compared to existing approaches.Keywords: coarse-grained model, mie potential, molecular simulations, thermophysical properties, phase equilibria
Procedia PDF Downloads 33615981 Atmospheric CO2 Capture via Temperature/Vacuum Swing Adsorption in SIFSIX-3-Ni
Authors: Eleni Tsalaporta, Sebastien Vaesen, James M. D. MacElroy, Wolfgang Schmitt
Abstract:
Carbon dioxide capture has attracted the attention of many governments, industries and scientists over the last few decades, due to the rapid increase in atmospheric CO2 composition, with several studies being conducted in this area over the last few years. In many of these studies, CO2 capture in complex Pressure Swing Adsorption (PSA) cycles has been associated with high energy consumption despite the promising capture performance of such processes. The purpose of this study is the economic capture of atmospheric carbon dioxide for its transformation into a clean type of energy. A single column Temperature /Vacuum Swing Adsorption (TSA/VSA) process is proposed as an alternative option to multi column Pressure Swing Adsorption (PSA) processes. The proposed adsorbent is SIFSIX-3-Ni, a newly developed MOF (Metal Organic Framework), with extended CO2 selectivity and capacity. There are three stages involved in this paper: (i) SIFSIX-3-Ni is synthesized and pelletized and its physical and chemical properties are examined before and after the pelletization process, (ii) experiments are designed and undertaken for the estimation of the diffusion and adsorption parameters and limitations for CO2 undergoing capture from the air; and (iii) the CO2 adsorption capacity and dynamical characteristics of SIFSIX-3-Ni are investigated both experimentally and mathematically by employing a single column TSA/VSA, for the capture of atmospheric CO2. This work is further supported by a technical-economical study for the estimation of the investment cost and the energy consumption of the single column TSA/VSA process. The simulations are performed using gProms.Keywords: carbon dioxide capture, temperature/vacuum swing adsorption, metal organic frameworks, SIFSIX-3-Ni
Procedia PDF Downloads 26315980 Capnography in Hypoxic Pseudo-Pea May Correlate to the Amount of Required Intervention for Resuscitation
Authors: Yiyuan David Hu, Alex Lindqwister, Samuel B. Klein, Karen Moodie, Norman A. Paradis
Abstract:
Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) has been studied in ventricular fibrillation and true PEA but in p-PEA. We utilized an hypoxic porcine model to characterize the performance of ET-CO2 in resuscitation from p-PEA. Hypothesis: Capnography correlates to the number of required interventions for resuscitation from p-PEA. Methods: Female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic aortic (Ao) pressure less than 40 mmHg. Pigs were grouped based on the interventions required to achieve ROSC: 100%O2, 100%O2 + CPR, 100%O2 + CPR + epinephrine. Results: End tidal CO2 reliably predicted O2 therapy vs CPR-based interventions needed for resuscitation (Figure 1). Pigs who would recover with 100%O2 only had a mean ET-CO2 slope of 0.039 ± 0.013 [ R2 = 0.68], those requiring oxygen + CPR had a slope of -0.15 ± 0.016 [R2 = 0.95], and those requiring oxygen + CPR + epinephrine had a slope of -0.12 ± 0.031 [R2 = 0.79]. Conclusions: In a porcine model of hypoxic p-PEA, measured ET-CO2 appears to be strongly correlated with the required interventions needed for ROSC. If confirmed clinically, these results indicate that ET-CO2 may be useful in guiding therapy in patients suffering p-PEA cardiac arrest.Keywords: pseudo-PEA, resuscitation, capnography, hypoxic pseudo-PEA
Procedia PDF Downloads 19415979 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles
Authors: S. Levitsky
Abstract:
Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.Keywords: sound propagation, gas bubbles, temperature effect, polymeric liquid
Procedia PDF Downloads 30415978 An Eulerian Method for Fluid-Structure Interaction Simulation Applied to Wave Damping by Elastic Structures
Authors: Julien Deborde, Thomas Milcent, Stéphane Glockner, Pierre Lubin
Abstract:
A fully Eulerian method is developed to solve the problem of fluid-elastic structure interactions based on a 1-fluid method. The interface between the fluid and the elastic structure is captured by a level set function, advected by the fluid velocity and solved with a WENO 5 scheme. The elastic deformations are computed in an Eulerian framework thanks to the backward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic models and the elastic forces are incorporated as a source term in the incompressible Navier-Stokes equations. The velocity/pressure coupling is solved with a pressure-correction method and the equations are discretized by finite volume schemes on a Cartesian grid. The main difficulty resides in that large deformations in the fluid cause numerical instabilities. In order to avoid these problems, we use a re-initialization process for the level set and linear extrapolation of the backward characteristics. First, we verify and validate our approach on several test cases, including the benchmark of FSI proposed by Turek. Next, we apply this method to study the wave damping phenomenon which is a mean to reduce the waves impact on the coastline. So far, to our knowledge, only simulations with rigid or one dimensional elastic structure has been studied in the literature. We propose to place elastic structures on the seabed and we present results where 50 % of waves energy is absorbed.Keywords: damping wave, Eulerian formulation, finite volume, fluid structure interaction, hyperelastic material
Procedia PDF Downloads 32315977 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural
Authors: Mohammad Heidari
Abstract:
In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network
Procedia PDF Downloads 41615976 Volarization of Sugarcane Bagasse: The Effect of Alkali Concentration, Soaking Time and Temperature on Fibre Yield
Authors: Tamrat Tesfaye, Tilahun Seyoum, K. Shabaridharan
Abstract:
The objective of this paper was to determine the effect of NaOH concentration, soaking time, soaking temperature and their interaction on percentage yield of fibre extract using Response Surface Methodology (RSM). A Box-Behnken design was employed to optimize the extraction process of cellulosic fibre from sugar cane by-product bagasse using low alkaline extraction technique. The quadratic model with the optimal technological conditions resulted in a maximum fibre yield of 56.80% at 0.55N NaOH concentration, 4 h steeping time and 60ᵒC soaking temperature. Among the independent variables concentration was found to be the most significant (P < 0.005) variable and the interaction effect of concentration and soaking time leads to securing the optimized processes.Keywords: sugarcane bagasse, low alkaline, Box-Behnken, fibre
Procedia PDF Downloads 24615975 The Audio-Visual and Syntactic Priming Effect on Specific Language Impairment and Gender in Modern Standard Arabic
Authors: Mohammad Al-Dawoody
Abstract:
This study aims at exploring if priming is affected by gender in Modern Standard Arabic and if it is restricted solely to subjects with no specific language impairment (SLI). The sample in this study consists of 74 subjects, between the ages of 11;1 and 11;10, distributed into (a) 2 SLI experimental groups of 38 subjects divided into two gender groups of 18 females and 20 males and (b) 2 non-SLI control groups of 36 subjects divided into two gender groups of 17 females and 19 males. Employing a mixed research design, the researcher conducted this study within the framework of the relevance theory (RT) whose main assumption is that human beings are endowed with a biological ability to magnify the relevance of the incoming stimuli. Each of the four groups was given two different priming stimuli: audio-visual priming (T1) and syntactic priming (T2). The results showed that the priming effect was sheer distinct among SLI participants especially when retrieving typical responses (TR) in T1 and T2 with slight superiority of males over females. The results also revealed that non-SLI females showed stronger original response (OR) priming in T1 than males and that non-SLI males in T2 excelled in OR priming than females. Furthermore, the results suggested that the audio-visual priming has a stronger effect on SLI females than non-SLI females and that syntactic priming seems to have the same effect on the two groups (non-SLI and SLI females). The conclusion is that the priming effect varies according to gender and is not confined merely to non-SLI subjects.Keywords: specific language impairment, relevance theory, audio-visual priming, syntactic priming, modern standard Arabic
Procedia PDF Downloads 17515974 Failure Mechanisms in Zirconium Alloys during Wear and Corrosion
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. Water flows inside the pressure tube through fuel claddings, which produces vibration of these core components and results in the wear of some components. Some components are subjected to the environment of coolant water containing LiOH which results in the corrosion of these components. The present work simulates some of these conditions to determine the failure mechanisms under these conditions and the effect of various parameters on them. Friction and wear experiments were performed varying the surrounding environment (room temperature, high temperature, and water submerged), duration, frequency, and displacement amplitude. Electrochemical corrosion experiments were performed by varying the concentration of LiOH in water. The worn and corroded surfaces were analyzed using scanning electron microscopy (SEM) to analyze the wear and corrosion mechanism and energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy to analyze the tribo-oxide layer formed during the wear and oxide layer formed during the corrosion. Wear increases with frequency and amplitude, and corrosion increases with LiOH concentration in water.Keywords: zirconium alloys, wear, oxide layer, corrosion, EIS, linear polarization
Procedia PDF Downloads 6815973 Analysis of Vertical Hall Effect Device Using Current-Mode
Authors: Kim Jin Sup
Abstract:
This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology
Procedia PDF Downloads 29215972 The Design of Fire in Tube Boiler
Authors: Yoftahe Nigussie
Abstract:
This report presents a final year project pertaining to the design of Fire tube boiler for the purpose of producing saturated steam. The objective of the project is to produce saturated steam for different purpose with a capacity of 2000kg/h at 12bar design pressure by performing a design of a higher performance fire tube boiler that considered the requirements of cost minimization and parameters improvement. This is mostly done in selection of appropriate material for component parts, construction materials and production methods in different steps of analysis. In the analysis process, most of the design parameters are obtained by iterating with related formulas like selection of diameter of tubes with overall heat transfer coefficient optimization, and the other selections are also as like considered. The number of passes is two because of the size and area of the tubes and shell. As the analysis express by using heavy oil fuel no6 with a higher heating value of 44000kJ/kg and lower heating value of 41300kJ/kg and the amount of fuel consumed 140.37kg/hr. and produce 1610kw of heat with efficiency of 85.25%. The flow of the fluid is a cross flow because of its own advantage and the arrangement of the tube in-side the shell is welded with the tube sheet, and the tube sheet is attached with the shell and the end by using a gasket and weld. The design of the shell, using European Standard code section, is as like pressure vessel by considering the weight, including content and the supplementary accessories such as lifting lugs, openings, ends, man hole and supports with detail and assembly drawing.Keywords: steam generation, external treatment, internal treatment, steam velocity
Procedia PDF Downloads 9715971 Significance of Transient Data and Its Applications in Turbine Generators
Authors: Chandra Gupt Porwal, Preeti C. Porwal
Abstract:
Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points
Procedia PDF Downloads 69