Search results for: magnetic bearing
488 Impact of Zeolite NaY Synthesized from Kaolin on the Properties of Pyrolytic Oil Derived from Used Tire
Authors: Julius Ilawe Osayi, Peter Osifo
Abstract:
Solid waste disposal, such as used tires is a global challenge as well as energy crisis due to rising energy demand amidst price uncertainty and depleting fossil fuel reserves. Therefore, the effectiveness of pyrolysis as a disposal method that can transform used tires into liquid fuel and other end-products has made the process attractive to researchers. Although used tires have been converted to liquid fuel using pyrolysis, there is the need to improve on the liquid fuel properties. Hence, this paper reports the investigation of zeolite NaY synthesized from kaolin, a locally abundant soil material in the Benin metropolis as a suitable catalyst and its effect on the properties of pyrolytic oil produced from used tires. The pyrolysis process was conducted for a range of 1 to 10 wt.% of catalyst concentration to used tire at a temperature of 600 oC, a heating rate of 15oC/min and particle size of 6mm. Although no significant increase in pyrolytic oil yield was observed compared to the previously investigated non-catalytic pyrolysis of a used tire. However, the Fourier transform infrared (FTIR), Nuclear Magnetic Resonance (NMR); and Gas chromatography-mass spectrometry (GC-MS) characterization results revealed the pyrolytic oil to possess an improved physicochemical and fuel properties alongside valuable industrial chemical species. This confirms the possibility of transforming kaolin into a catalyst suitable for improved fuel properties of the liquid fraction obtainable from thermal cracking of hydrocarbon materials.Keywords: catalytic pyrolysis, fossil fuel, kaolin, pyrolytic oil, used tyres, Zeolite NaY
Procedia PDF Downloads 182487 Statistical Process Control in Manufacturing, a Case Study on an Iranian Automobile Company
Authors: M. E. Khiav, D. J. Borah, H. T. S. Santos, V. T. Faria
Abstract:
For automobile companies, it has become very important to ensure sound quality in manufacturing and assembling in order to prevent occurrence of defects and to reduce the amount of parts replacements to be done in the service centers during the warranty period. Statistical Process Control (SPC) is widely used as the tool to analyze the quality of such processes and plays a significant role in the improvement of the processes by identifying the patterns and the location of the defects. In this paper, a case study has been conducted on an Iranian automobile company. This paper performs a quality analysis of a particular component called “Internal Bearing for the Back Wheel” of a particular car model, manufactured by the company, based on the 10 million data received from its service centers located all over the country. By creating control charts including X bar–S charts and EWMA charts, it has been observed after the year 2009, the specific component underwent frequent failures and there has been a sharp dip in the average distance covered by the cars till the specific component requires replacement/maintenance. Correlation analysis was performed to find out the reasons that might have affected the quality of the specific component in all the cars produced by the company after the year 2009. Apart from manufacturing issues, some political and environmental factors have been identified to have a potential impact on the quality of the component. A maiden attempt has been made to analyze the quality issues within an Iranian automobile manufacturer; such issues often get neglected in developing countries. The paper also discusses the possibility of political scenario of Iran and the country’s environmental conditions affecting the quality of the end products, which not only strengthens the extant literature but also provides a new direction for future research.Keywords: capability analysis, car manufacturing, statistical process control, quality control, quality tools
Procedia PDF Downloads 383486 An Investigation on the Need to Provide Environmental Sanitation Facilities to Informal Settlement in Shagari Low-Cost Katsina State for Sustainable Built Environment
Authors: Abdullahi Mannir Rawayau
Abstract:
This paper identifies the problems that have aided the decoy to adequate basic infrastructural amenities, sub-standard housing, over-crowding, poor ventilation in homes and work places, sanitation, and non-compliance with building bye-laws and regulation. The paper also asserts the efficient disposal of solid and liquid waste is one of the challenges in the informal areas due to threats on the environment and public health. Sanitation services in the informal settlements have been found to be much lower compared to the average for unban. Bearing in mind a factor which prevents sustainable sanitation in informal areas which include low incomes, insecure tenure, low education levels, difficulty topography and transitory populations, and this study aim to identify effective strategies for achieving sustainable sanitation with specific reference to the informal settlement. Using the Shanghai Low-Cost as a case study. The primary data collected was through observation and interview method. Similarly, the secondary data used for the study was collected through literature reviews from extent studies with specific reference to informal settlement. A number of strategies towards achieving sustainable sanitation in the study were identified here in classified into three (3):- Advocacy and capacity building, infrastructural provision and institutionalization of systems and processes. The paper concludes with the premise on the need to build alliances between the government and stakeholders concerned with sanitation provision through the creation of sanitation and employ adaptable technology. Provision of sanitation facilities in public areas and to establish a statutory body for timely response to sanitation waste management in Katsina. It is imperative to check and prevent further decay for harmonious living and sustainable development.Keywords: built environment, sanitation, facilities, settlement
Procedia PDF Downloads 229485 Hyaluronic Acid Binding to Link Domain of Stabilin-2 Receptor
Authors: Aleksandra Twarda, Dobrosława Krzemień, Grzegorz Dubin, Tad A. Holak
Abstract:
Stabilin-2 belongs to the group of scavenger receptors and plays a crucial role in clearance of more than 10 ligands from the bloodstream, including hyaluronic acid, products of degradation of extracellular matrix and metabolic products. The Link domain, a defining feature of stabilin-2, has a sequence similar to Link domains in other hyaluronic acid receptors, such as CD44 or TSG-6, and is responsible for most of ligands binding. Present knowledge of signal transduction by stabilin-2, as well as ligands’ recognition and binding mechanism, is limited. Until now, no experimental structures have been solved for any segments of stabilin-2. It has recently been demonstrated that the stabilin-2 knock-out or blocking of the receptor by an antibody effectively opposes cancer metastasis by elevating the level of circulating hyaluronic acid. Moreover, loss of expression of stabilin-2 in a peri-tumourous liver correlates with increased survival. Solving of the crystal structure of stabilin-2 and elucidation of the binding mechanism of hyaluronic acid could enable the precise characterization of the interactions in the binding site. These results may allow for designing specific small-molecule inhibitors of stabilin-2 that could be used in cancer therapy. To carry out screening for crystallization of stabilin-2, we cloned constructs of the Link domain of various lengths with or without surrounding domains. The folding properties of the constructs were checked by nuclear magnetic resonance (NMR). It is planned to show the binding of hyaluronic acid to the Link domain using several biochemical methods, i.a. NMR, isothermal titration calorimetry and fluorescence polarization assay.Keywords: stabilin-2, Link domain, X-ray crystallography, NMR, hyaluronic acid, cancer
Procedia PDF Downloads 407484 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition
Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria
Abstract:
Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses
Procedia PDF Downloads 157483 Spatial Indeterminacy: Destabilization of Dichotomies in Modern and Contemporary Architecture
Authors: Adrian Lo
Abstract:
Since the beginning of modern architecture, ideas of free plan and transparency have proliferated well into current trends of building design, from houses to highrise office buildings. The movement’s notion of a spatially homogeneous, open, and limitless ‘free plan’ stands opposite to the spatially heterogeneous ‘separation of rooms’ defined by load-bearing walls, which in turn triggered new notions of transparency achieved by vast expanses of glazed walls. Similarly, transparency was also dichotomized as something that was physical or optical, as well as something conceptual, akin to spatial organization. As opposed to merely accepting the duality and possible incompatibility of these dichotomies, this paper seeks to ask how can space be both literally and phenomenally transparent, as well as display both homogeneous and heterogeneous qualities? This paper explores this potential destabilization or blurring of spatial phenomena by dissecting the transparent layers and volumes of a series of selected case studies to investigate how different architects have devised strategies of spatial ambivalence, ambiguity, and interpenetration. Projects by Peter Eisenman, Sou Fujimoto, and SANAA will be discussed and analyzed to show how the superimposition of geometries and spaces achieve different conditions of layering, transparency, and interstitiality. Their particular buildings will be explored to reveal various innovative kinds of spatial interpenetration produced through the articulate relations of the elements of architecture, which challenge conventional perceptions of interior and exterior whereby visual homogeneity blurs with spatial heterogeneity. The results show how spatial conceptions such as interpenetration and transparency have the ability to subvert not only inside-outside dialectics but could also produce multiple degrees of interiority within complex and indeterminate spatial dimensions in constant flux as well as present alternative forms of social interaction.Keywords: interpenetration, literal and phenomenal transparency, spatial heterogeneity, visual homogeneity
Procedia PDF Downloads 180482 Peat Resources, Paleo-Environmental Interpretation as well as Their Utilization, Hakaluki Haor, Moulvibazar and Sylhet District, Bangladesh
Authors: Mohammed Masum, Mohammad Omer Faruk Khan, Md. Nazwanul Haque, Anwar Sadat Md. Sayem, Md. Azhar Hossain
Abstract:
The study area is the Hakaluki Haor which is the second largest wet land of Bangladesh. It spans over the districts of Moulvibazar and Sylhet in southeast Bangladesh. The study was focused in the exploration of peat reserve, reconstruction of the paleo-environment as well as the utilization of the peat resources. Peat is found randomly from 0.5 m to 7 m below the surface and 1 m to 11 m thickness at over 40 beels as well as small plain lands of 90 km2 area of Hakaluki Haor. The total reserve of peat is 282 million ton in wet condition and 112 million ton in dry condition. The peat deposits of Hakaluki Haor area is the largest peat reserves of the Bangladesh. Peat bearing Hakaluki Haor is a low-lying wet land which geological term is synclinal depression. It may be a syncline between two anticlines which was filled with sediments as well as various plant materials derived from the hilly region (anticline) on both sides (west and east) of the Haor. The transportation may be triggered by large natural disasters or any tectonic reason. On the other hand vegetation occurred in this depression as aquatic plants which might have been destroyed by large natural disasters or any tectonic reason. As environment dictates the characteristics and the source of sediments, various aspects of the sediment are indicators of the environment. Peat has mainly industrial importance as a fuel for power production, traditionally used for cooking, domestic heating and in brick fields, also used as insulator in many industries, agricultural purposes, retaining moisture in soil, raw material in horticulture and colour industries etc. Power plants of about 100 MW capacities may be established in this region based on peat of Hakaluki Haor which may be continued more than one hundred years.Keywords: peat, pale environment, Hakaluki Haor, beel, syncline, anticline
Procedia PDF Downloads 426481 Development of Mineral Carbonation Process from Ultramafic Tailings, Enhancing the Reactivity of Feedstocks
Authors: Sara Gardideh, Mansoor Barati
Abstract:
The mineral carbonation approach for reducing global warming has garnered interest on a worldwide scale. Due to the benefits of permanent storage and abundant mineral resources, mineral carbonation (MC) is one of the most effective strategies for sequestering CO₂. The combination of mineral processing for primary metal recovery and mineral carbonation for carbon sequestration is an emerging field of study with the potential to minimize capital costs. A detailed study of low-pressures–solid carbonation of ultramafic tailings in a dry environment has been accomplished. In order to track the changing structure of serpentine minerals and their reactivity as a function of temperature (300-900 ᵒC), CO₂ partial pressure (25-90 mol %), and thermal preconditioning, thermogravimetry has been utilized. The incongruent CO₂ van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of serpentine were used to explain the mild carbonation reactivity. Serpentine requires additional thermal-treatment to remove hydroxyl groups, resulting in the chemical transformation to pseudo-forsterite, which is a mineral composed of isolated SiO₄ tetrahedra linked by octahedrally coordinated magnesium ions. The heating treatment above 850 ᵒC is adequate to remove chemically bound water from the lattice. Particles with a diameter < 34 (μm) are desirable, and thermally treated serpentine at 850 ᵒC for 2.30 hours reached 65% CO₂ storage capacity. The decrease in particle size, increase in temperature, and magnetic separation can dramatically enhance carbonation.Keywords: particle size, thermogravimetry, thermal-treatment, serpentine
Procedia PDF Downloads 93480 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging
Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason
Abstract:
Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia
Procedia PDF Downloads 275479 Zimbabwe's Foreign Policy in Southern Africa, 1980-2013
Authors: Dylan Yanano Mangani, Theodore Nkadimeng Mahosi
Abstract:
Soon after independence on 18th April 1980, Zimbabwe’s foreign policy was shaped by the realities on the ground, which saw the country managing a sound relationship with both the Capitalist West and the Communist Eastern blocs. The post-independence foreign policy was therefore premised on security concerns illuminated by the Cold War era. This was one the reasons President Robert Mugabe adopted a policy of reconciliation and this earned his government recognition on the international platform. However, in Southern Africa apartheid South Africa was still the vanguard of capitalism and oppression such that she posed a serious threat to the newly born Zimbabwean nation which necessitated that Zimbabwe position herself both in the region and the continent to counter potential internal stability from within. Irrespective of how the international community viewed the country’s foreign policy Zimbabwe has continued to influence regional, continental and world geo-politics, especially on behalf of the developing nations. This raises a question why as a result of its foreign policy the country is now regarded a pariah state, especially some Western countries which used to applaud its political economic policies immediately after independence. Therefore, this study argues that the political economy of Zimbabwe had a far-reaching bearing on its foreign policy. For this reason, the problem necessitates the investigation of Zimbabwe’s foreign policy perspectives in Southern Africa since the turn of the 1990s. Two main theories which are Realism, Afro-centrism inform the study as an attempt to understand Zimbabwe’s foreign policy paradigm shift and perhaps provide answers to the objectives raised. The research therefore employs a qualitative approach where the conceptual nature of the study into the foreign policy of Zimbabwe is largely desktop research. However, the nature of the study will also require that oral interviews are conducted to substantiate some of the arguments advanced.Keywords: cold war set up, foreign policy, look east policy, pan-africanism, post 2000 period, Southern Africa, Zimbabwe
Procedia PDF Downloads 330478 New Biobased(Furanic-Sulfonated) Poly(esteramide)s
Authors: Souhir Abid
Abstract:
The growing interest in vegetal biomass as an alternative for fossil resources has stimulated the development of numerous classes of monomers. Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons (i) firstly environmental concerns, and (ii) secondly the use of monomers from renewable feedstock is a steadily growing field of interest in order to reduce the amount of petroleum consumed in the chemical industry and to open new high-value-added markets to agriculture. Furanic polymers have been considered as alternative environmentally friendly polymers. In our earlier work, modifying furanic polyesters by incorporation of amide functions along their backbone, lead to a particular class of polymer ‘poly(ester-amide)s’, was investigated to combine the excellent mechanical properties of polyamides and the biodegradability of polyesters. As a continuation of our studies on this family of polymer, a series of furanic poly(ester-amide)s bearing sulfonate groups in the main chain were synthesized from 5,5’-Isopropylidene-bis(ethyl 2-furoate), dimethyl 5-sodiosulfoisophthalate, ethylene glycol and hexamethylene diamine by melt polycondensation using zinc acetate as a catalyst. In view of the complexity of the NMR spectrum analysis of the resulting sulfonated poly(ester-amide)s, we found that it is useful to prepare initially the corresponding homopolymers: sulfonated polyesters and polyamides. Structural data of these polymers will be used as a basic element in 1H NMR characterization. The hydrolytic degradation in acidic aqueous conditions (pH = 4,35 ) at 37 °C over the period of four weeks show that the mechanism of the hydrolysis of poly(ester amide)s was elucidated in relation with the microstructure. The strong intermolecular hydrogen bonding interactions between amide functions and water molecules increases the hydrophilicity of the macromolecular chains and consequently their hydrolytic degradation.Keywords: furan, hydrolytic degradation, polycondensation, poly(ester amide)
Procedia PDF Downloads 297477 Synthesis of Visible-Light-Driven Magnetically Recoverable N-TiO2@SiO2@Fe3O4 Nanophotocatalyst for Enhanced Degradation of Ibuprofen
Authors: Ashutosh Kumar, Irene M. C. Lo
Abstract:
Ever since the discovery of TiO2 for decomposition of cyanide in water, it has been investigated extensively for the photocatalytic degradation of environmental pollutants, and became the most practical and prevalent photocatalyst. The superiority of TiO2 is due to its chemical and biological inertness, nontoxicity, strong oxidizing power and cost-effectiveness. However, during degradation of pollutants in wastewater, it suffers from problems, such as (a) separation after use, and (b) its poor photocatalytic performance under visible light irradiation (~45% of the solar spectrum). In order to bridge the research gaps, N-TiO2@SiO2@Fe3O4 nanophotocatalysts of average size 19 nm and effective surface area 47 m2 gm-1 were synthesized using sol-gel method. The characterization was performed using BET, TEM-EDX, VSM and XRD. The performance was improved by considering different factors involved during the synthesis, such as calcination temperature, amount of Fe3O4 nanoparticles used and amount of urea used for N-doping. The final nanophotocatalyst was calcined at 500 °C which was able to degrade 94% of the ibuprofen within 5 h of irradiation time. Under the influence of ~200 mT electromagnetic field, 95% nanophotocatalysts separation efficiency was achieved within 20-25 min. Moreover, the effect of different visible light source of similar irradiance, such as compact fluorescent lamp (CFL) and light emitting diode (LED), is also investigated in this research. The performance of nanophotocatalysts was found to be comparatively higher under ~310 µW cm-2 irradiance with peak emissive wavelengths of 543 nm emitted by CFL. Therefore, a promising visible-light-driven magnetically separable TiO2-based nanophotocatalysts was synthesized for the efficient degradation of ibuprofen.Keywords: ibuprofen, magnetic N-TiO2, photocatalysis, visible light sources
Procedia PDF Downloads 250476 Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major
Authors: Rohit Singh Dangi, Ravi Kant Pal, Monica Sundd
Abstract:
Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion.Keywords: acyl-coa binding protein (ACBP), acyl-coa esters, crystal structure, isothermal titration, calorimetry, Leishmania
Procedia PDF Downloads 452475 Tumour Radionuclides Therapy: in vitro and in vivo Dose Distribution Study
Authors: Rekaya A. Shabbir, Marco Mingarelli, Glenn Flux, Ananya Choudhury, Tim A. D. Smith
Abstract:
Introduction: Heterogeneity of dose distributions across a tumour is problematic for targeted radiotherapy. Gold nanoparticles (AuNPs) enhance dose-distributions of targeted radionuclides. The aim of this study is to demonstrate if tumour dose-distribution of targeted AuNPs radiolabelled with either of two radioisotopes (¹⁷⁷Lu and ⁹⁰Y) in breast cancer cells produced homogeneous dose distributions. Moreover, in vitro and in vivo studies were conducted to study the importance of receptor level on cytotoxicity of EGFR-targeted AuNPs in breast and colorectal cancer cells. Methods: AuNPs were functionalised with DOTA and OPPS-PEG-SVA to optimise labelling with radionuclide tracers and targeting with Erbitux. Radionuclides were chelated with DOTA, and the uptake of the radiolabelled AuNPs and targeted activity in vitro in both cell lines measured using liquid scintillation counting. Cells with medium (HCT8) and high (MDA-MB-468) EGFR expression were incubated with targeted ¹⁷⁷Lu-AuNPs for 4h, then washed and allowed to form colonies. Nude mice bearing tumours were used to study the biodistribution by injecting ¹⁷⁷Lu-AuNPs or ⁹⁰Y-AuNPs via the tail vein. Heterogeneity of dose-distribution in tumours was determined using autoradiography. Results: Colony formation (% control) was 81 ± 4.7% (HCT8) and 32 ± 9% (MDA-MB-468). High uptake was observed in the liver and spleen, indicating hepatobiliary excretion. Imaging showed heterogeneity in dose-distributions for both radionuclides across the tumours. Conclusion: The cytotoxic effect of EGFR-targeted AuNPs is greater in cells with higher EGFR expression. Dose-distributions for individual radiolabelled nanoparticles were heterogeneous across tumours. Further strategies are required to improve the uniformity of dose distribution prior to clinical trials.Keywords: cancer cells, dose distributions, radionuclide therapy, targeted gold nanoparticles
Procedia PDF Downloads 118474 Investigation of the Material Behaviour of Polymeric Interlayers in Broken Laminated Glass
Authors: Martin Botz, Michael Kraus, Geralt Siebert
Abstract:
The use of laminated glass gains increasing importance in structural engineering. For safety reasons, at least two glass panes are laminated together with a polymeric interlayer. In case of breakage of one or all of the glass panes, the glass fragments are still connected to the interlayer due to adhesion forces and a certain residual load-bearing capacity is left in the system. Polymer interlayers used in the laminated glass show a viscoelastic material behavior, e.g. stresses and strains in the interlayer are dependent on load duration and temperature. In the intact stage only small strains appear in the interlayer, thus the material can be described in a linear way. In the broken stage, large strains can appear and a non-linear viscoelasticity material theory is necessary. Relaxation tests on two different types of polymeric interlayers are performed at different temperatures and strain amplitudes to determine the border to the non-linear material regime. Based on the small-scale specimen results further tests on broken laminated glass panes are conducted. So-called ‘through-crack-bending’ (TCB) tests are performed, in which the laminated glass has a defined crack pattern. The test set-up is realized in a way that one glass layer is still able to transfer compressive stresses but tensile stresses have to be transferred by the interlayer solely. The TCB-tests are also conducted under different temperatures but constant force (creep test). Aims of these experiments are to elaborate if the results of small-scale tests on the interlayer are transferable to a laminated glass system in the broken stage. In this study, limits of the applicability of linear-viscoelasticity are established in the context of two commercially available polymer-interlayers. Furthermore, it is shown that the results of small-scale tests agree to a certain degree to the results of the TCB large-scale experiments. In a future step, the results can be used to develop material models for the post breakage performance of laminated glass.Keywords: glass breakage, laminated glass, relaxation test, viscoelasticity
Procedia PDF Downloads 125473 Cd1−xMnxSe Thin Films Preparation by Cbd: Aspect on Optical and Electrical Properties
Authors: Jaiprakash Dargad
Abstract:
CdMnSe dilute semiconductor or semimagnetic semiconductors have become the focus of intense research due to their interesting combination of magnetic and semiconducting properties, and are employed in a variety of devices including solar cells, gas sensors etc. A series of thin films of this material, Cd1−xMnxSe (0 ≤ x ≤ 0.5), were therefore synthesized onto precleaned amorphous glass substrates using a solution growth technique. The sources of cadmium (Cd2+) and manganese (Mn2+) were aqueous solutions of cadmium sulphate and manganese sulphate, and selenium (Se2−) was extracted from a reflux of sodium selenosulphite. The different deposition parameters such as temperature, time of deposition, speed of mechanical churning, pH of the reaction mixture etc were optimized to yield good quality deposits. The as-grown samples were thin, relatively uniform, smooth and tightly adherent to the substrate support. The colour of the deposits changed from deep red-orange to yellowish-orange as the composition parameter, x, was varied from 0 to 0.5. The terminal layer thickness decreased with increasing value of, x. The optical energy gap decreased from 1.84 eV to 1.34 eV for the change of x from 0 to 0.5. The coefficient of optical absorption is of the order of 10-4 - 10-5 cm−1 and the type of transition (m = 0.5) is of the band-to-band direct type. The dc electrical conductivities were measured at room temperature and in the temperature range 300 K - 500 K. It was observed that the room temperature electrical conductivity increased with the composition parameter x up to 0.1, gradually decreasing thereafter. The thermo power measurements showed n-type conduction in these films.Keywords: dilute semiconductor, reflux, CBD, thin film
Procedia PDF Downloads 235472 Impact of Maternal Nutrition on Newborn Anthropometry and Hemoglobin
Authors: Vinay Mishra, Meena Malkani
Abstract:
Objectives: To study the effect of physical maternal nutritional markers (viz. weight, height, gestational weight gain, BMI) and third-trimester haemoglobin concentration on anthropometry and cord blood haemoglobin of their newborn. Methods: Study area: Post-natal ward of a tertiary care hospital in an urban area. Study population: All post-partum women and their newborns. Sample size: 100. Maternal and neonatal data and anthropometric measurements were recorded in semi-structured case proforma. Data analysis: The data obtained was analysed using SPSS 20 software.The comparison between the groups was done using One-Way Analysis of Variance for two groups. For more than two groups comparisons further posthoc analysis was done using Tukey test. Pearson correlation coefficient was used for correlating the variables. A P value less than 0.05 was considered significant. Results: 1. Out of the 100 studied mothers, 52% were anaemic. 2. Cord blood haemoglobin values decreased significantly with the order of birth. 3. Cord blood haemoglobin of normal-weight newborns is significantly higher as compared to that of LBW newborns. 4. Cord blood haemoglobin has strong statistical significance with maternal anaemia. 5. Pre-pregnancy weight and gestational weight gain significantly influence the neonates anthropometry. Conclusions: 1. Birth order has a prominent inverse effect on the cord blood haemoglobin. 2. Majority of the expectant mothers are anaemic and give birth to LBW babies with reduced anthropometric markers. 3. Pre-pregnancy weight, height and gestational weight gain has a very significant impact on the neonatal anthropometry. 4. Thus, maternal nutrition during gestation and during the crucial periods of growth in the pre-child bearing age group has a very significant impact on foetal development.Keywords: maternal nutrition, anthropometry, cord blood hemoglobin, newborn
Procedia PDF Downloads 394471 Seal Capacity Evaluation by Using Mercury Injection Capillary Pressure Method Integrated with Petrographic Data: A Case Study in Green Dragon Oilfield Offshore Vietnam
Authors: Quoc Ngoc Phan, Hieu Van Nguyen, Minh Hong Nguyen
Abstract:
This study presents an integrated approach using Mercury Injection Capillary Pressure (MICP) and petrographic analysis to assess the seal quality of the inter-bedded shale formations which are considered the intra-formation top seals of hydrocarbon bearing zones in Green Dragon structure. Based on the hydrocarbon column height (HCH) at leak point derived from capillary pressure data, four seal types were identified. Furthermore, the results of scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were interpreted to clarify the influence of clay minerals on seal capacity. The result of the study indicated that the inter-bedded shale formations are the good sealing quality with a majority of analyzed samples ranked type A and B seals in the sample set. Both seal types occurred mainly in mudstones with pore radius estimated less than 0.251 µm. Overall, type A and B seals contained a large amount of authigenic clay minerals such as illite, chlorite which showed the complexity of morphological arrangement in pore space. Conversely, the least common seal type C and D were presented in moderately compacted sandstones with more open pore radius. It is noticeable that there was a reduction of illite and chlorite in clay mineral fraction of these seal type. It is expected that the integrated analysis approach using Mercury Injection Capillary Pressure and petrographic data employed in this study can be applied to assess the sealing quality of future well sites in Green Dragon or other structures.Keywords: seal capacity, hydrocarbon height column, seal type, SEM, XRD
Procedia PDF Downloads 162470 A Kinetic Study of Radical Polymerization of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures
Authors: A. Bouriche, D. Merah, L.Alachaher-Bedjaoui, U. Maschke
Abstract:
Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of monofunctional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiateor, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation
Procedia PDF Downloads 329469 Geosynthetic Tubes in Coastal Structures a Better Substitute for Shorter Planning Horizon: A Case Study
Authors: A. Pietro Rimoldi, B. Anilkumar Gopinath, C. Minimol Korulla
Abstract:
Coastal engineering structure is conventionally designed for a shorter planning horizon usually 20 years. These structures are subjected to different offshore climatic externalities like waves, tides, tsunamis etc. during the design life period. The probability of occurrence of these different offshore climatic externalities varies. The impact frequently caused by these externalities on the structures is of concern because it has a significant bearing on the capital /operating cost of the project. There can also be repeated short time occurrence of these externalities in the assumed planning horizon which can cause heavy damage to the conventional coastal structure which are mainly made of rock. A replacement of the damaged portion to prevent complete collapse is time consuming and expensive when dealing with hard rock structures. But if coastal structures are made of Geo-synthetic containment systems such replacement is quickly possible in the time period between two successive occurrences. In order to have a better knowledge and to enhance the predictive capacity of these occurrences, this study estimates risk of encounter within the design life period of various externalities based on the concept of exponential distribution. This gives an idea of the frequency of occurrences which in turn gives an indication of whether replacement is necessary and if so at what time interval such replacements have to be effected. To validate this theoretical finding, a pilot project has been taken up in the field so that the impact of the externalities can be studied both for a hard rock and a Geosynthetic tube structure. The paper brings out the salient feature of a case study which pertains to a project in which Geosynthetic tubes have been used for reformation of a seawall adjacent to a conventional rock structure in Alappuzha coast, Kerala, India. The effectiveness of the Geosystem in combatting the impact of the short-term externalities has been brought out.Keywords: climatic externalities, exponential distribution, geosystems, planning horizon
Procedia PDF Downloads 232468 Hydrogels Beads of Alginate/Seaweed Powder for Plants Nutrition
Authors: Brenda O. Mazzola, Adriel Larsen, Romina P. Ollier, Leandro N. Ludueña, Vera A. Alvarez, Jimena S. Gonzalez
Abstract:
Seaweed is a natural renewable resource with great potential that is not being used by the domestic industry. Here, it was used a kind of invasive algae U. Pinnatifida that causes serious ecological damage on the Argentinian coasts. Alginate is one of the most widely used materials for encapsulation, and has the advantage that is a natural polysaccharide derived from a marine plant. It can form thermally stable hydrogel in the presence of calcium cation. In addition, the hydrogel can be easily produced into particulate form by using simple and gentle method. The aim of this work was to obtain and to characterize novel compounds (alginate/seaweed powder) for the soil nutrition. Alginate water solutions were prepared by concentrations of 20, 30, 40 and 50 g/L, in those solutions 10g/L of seaweed powder was added. Then the dispersions were transferred from a beaker to the atomizer by a peristaltic pump (with 0.05 to 0.1 L/h flow). A tank was filled with 1 L of calcium chloride solution (4 g/L), and the solution was agitated with a magnetic stirrer. The beads were analyzed by means TGA, FTIR and swelling determinations. In addition, the improvements in the soil were qualitative measured. It was obtained beads with different diameters depend on the initial concentration and the flow used. A better dispersions of seaweed and optimal diameter for the plant nutrition applications were obtained for 40g/L concentration and 0.1 L/h flow. The beads show thermal stability and high swelling degree. It can be successfully obtained alginate beads with seaweed powder with a novelty application as plant nutrient.Keywords: biodegradable, characterization, hydrogel, plant nutrition, seaweed
Procedia PDF Downloads 285467 Traditional Ceramics Value in the Middle East
Authors: Abdelmessih Malak Sadek Labib
Abstract:
The Stability in harsh environments thanks to excellent electrical, mechanical and thermal properties is what ceramics are all about selected materials for many applications despite advent of new materials such as plastics and composites. However, ceramic materials have disadvantages, including brittleness. Fragility is often attributed to pottery strong covalent and ionic bonds in the ceramic body. There is still much to learn about brittle cracks in a attention to detail, hence the fragility of the ceramic and its catastrophic failure of a frequently studied topic, particularly in charging applications. One of the most commonly used ceramics for load-bearing applications such as veneers is porcelain. Porcelain is a type of traditional pottery. Traditional pottery consists mainly of three basic ingredients: clay, which gives plasticity; silica which maintains the shape and stability of the ceramic body over temperature high temperature; and feldspar affecting glazing. In traditional pottery, the inversion of quartz during cooling the process can create microcracks that act as a stress concentration centers. Consequently, subcritical crack growth is caused due to quartz inversion origins unpredictable catastrophic failure of the work of ceramic bodies when reloading. In the case of porcelain, however, this is what the mullite hypothesis says the strength of porcelain can be significantly increased with felt Interlocking of mullite needles in the ceramic body.in this way realistic assessment of the role of quartz and mullite Porcelain with a strength of is needed to grow stronger and smaller fragile porcelain. Currently,the lack of reports on Young's moduli in the literature leads to erroneous conclusions in this regard mechanical behavior of porcelain. Therefore, the current project uses the Young's modulus approach for the investigation the role of quartz and mullite on the mechanical strength of various porcelains, in addition to reducing particle size, flexural strength fractographic forces and techniques.Keywords: materials, technical, ceramics, properties, thermal, stability, advantages
Procedia PDF Downloads 88466 Methodologies for Stability Assessment of Existing and Newly Designed Reinforced Concrete Bridges
Authors: Marija Vitanovа, Igor Gjorgjiev, Viktor Hristovski, Vlado Micov
Abstract:
Evaluation of stability is very important in the process of definition of optimal structural measures for maintenance of bridge structures and their strengthening. To define optimal measures for their repair and strengthening, it is necessary to evaluate their static and seismic stability. Presented in this paper are methodologies for evaluation of the seismic stability of existing reinforced concrete bridges designed without consideration of seismic effects and checking of structural justification of newly designed bridge structures. All bridges are located in the territory of the Republic of North Macedonia. A total of 26 existing bridges of different structural systems have been analyzed. Visual inspection has been carried out for all bridges, along with the definition of three main damage categories according to which structures have been categorized in respect to the need for their repair and strengthening. Investigations involving testing the quality of the built-in materials have been carried out, and dynamic tests pointing to the dynamic characteristics of the structures have been conducted by use of non-destructive methods of ambient vibration measurements. The conclusions drawn from the performed measurements and tests have been used for the development of accurate mathematical models that have been analyzed for static and dynamic loads. Based on the geometrical characteristics of the cross-sections and the physical characteristics of the built-in materials, interaction diagrams have been constructed. These diagrams along with the obtained section quantities under seismic effects, have been used to obtain the bearing capacity of the cross-sections. The results obtained from the conducted analyses point to the need for the repair of certain structural parts of the bridge structures. They indicate that the stability of the superstructure elements is not critical during a seismic effect, unlike the elements of the sub-structure, whose strengthening is necessary.Keywords: existing bridges, newly designed bridges, reinforced concrete bridges, stability assessment
Procedia PDF Downloads 103465 Optimization of Sintering Process with Deteriorating Quality of Iron Ore Fines
Authors: Chandra Shekhar Verma, Umesh Chandra Mishra
Abstract:
Blast Furnace performance mainly depends on the quality of sinter as a major portion of iron-bearing material occupies by it hence its quality w.r.t. Tumbler Index (TI), Reducibility Index (RI) and Reduction Degradation Index (RDI) are the key performance indicators of sinter plant. Now it became very tough to maintain the desired quality with the increasing alumina (Al₂O₃) content in iron fines and study is focused on it. Alumina is a refractory material and required more heat input to fuse thereby affecting the desired sintering temperature, i.e. 1300°C. It goes in between the grain boundaries of the bond and makes it weaker. Sinter strength decreases with increasing alumina content, and weak sinter generates more fines thereby reduces the net sinter production as well as plant productivity. Presence of impurities beyond the acceptable norm: such as LOI, Al₂O₃, MnO, TiO₂, K₂O, Na₂O, Hydrates (Goethite & Limonite), SiO₂, phosphorous and zinc, has led to greater challenges in the thrust areas such as productivity, quality and cost. The ultimate aim of this study is maintaining the sinter strength even with high Al₂O without hampering the plant productivity. This study includes mineralogy test of iron fines to find out the fraction of different phases present in the ore and phase analysis of product sinter to know the distribution of different phases. Corrections were done focusing majorly on varying Al₂O₃/SiO₂ ratio, basicity: B2 (CaO/SiO₂), B3 (CaO+MgO/SiO₂) and B4 (CaO+MgO/SiO₂+Al₂O₃). The concept of Alumina / Silica ratio, B3 & B4 found to be useful. We used to vary MgO, Al₂O₃/SiO₂, B2, B3 and B4 to get the desired sinter strength even at high alumina (4.2 - 4.5%) in sinter. The study concludes with the establishment of B4, and Al₂O₃/SiO₂ ratio in between 1.53-1.60 and 0.63- 0.70 respectively and have achieved tumbler index (Drum Index) 76 plus with the plant productivity of 1.58-1.6 t/m2/hr. at JSPL, Raigarh. Study shows that despite of high alumina in sinter, its physical quality can be controlled by maintaining the above-mentioned parameters.Keywords: Basicity-2, Basicity-3, Basicity-4, Sinter
Procedia PDF Downloads 176464 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study
Authors: Anjana R. Menon, Anjana Bhasi
Abstract:
Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis
Procedia PDF Downloads 77463 Model for Calculating Traffic Mass and Deceleration Delays Based on Traffic Field Theory
Authors: Liu Canqi, Zeng Junsheng
Abstract:
This study identifies two typical bottlenecks that occur when a vehicle cannot change lanes: car following and car stopping. The ideas of traffic field and traffic mass are presented in this work. When there are other vehicles in front of the target vehicle within a particular distance, a force is created that affects the target vehicle's driving speed. The characteristics of the driver and the vehicle collectively determine the traffic mass; the driving speed of the vehicle and external variables have no bearing on this. From a physical level, this study examines the vehicle's bottleneck when following a car, identifies the outside factors that have an impact on how it drives, takes into account that the vehicle will transform kinetic energy into potential energy during deceleration, and builds a calculation model for traffic mass. The energy-time conversion coefficient is created from an economic standpoint utilizing the social average wage level and the average cost of motor fuel. Vissim simulation program measures the vehicle's deceleration distance and delays under the Wiedemann car-following model. The difference between the measured value of deceleration delay acquired by simulation and the theoretical value calculated by the model is compared using the conversion calculation model of traffic mass and deceleration delay. The experimental data demonstrate that the model is reliable since the error rate between the theoretical calculation value of the deceleration delay obtained by the model and the measured value of simulation results is less than 10%. The article's conclusion is that the traffic field has an impact on moving cars on the road and that physical and socioeconomic factors should be taken into account while studying vehicle-following behavior. The deceleration delay value of a vehicle's driving and traffic mass have a socioeconomic relationship that can be utilized to calculate the energy-time conversion coefficient when dealing with the bottleneck of cars stopping and starting.Keywords: traffic field, social economics, traffic mass, bottleneck, deceleration delay
Procedia PDF Downloads 69462 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery
Authors: Mohammed Abdulhameed, Sagir M. Abdullahi
Abstract:
In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.Keywords: nanoparticles, blood flow, stenosed artery, mathematical models
Procedia PDF Downloads 269461 Evaluation of DNA Oxidation and Chemical DNA Damage Using Electrochemiluminescent Enzyme/DNA Microfluidic Array
Authors: Itti Bist, Snehasis Bhakta, Di Jiang, Tia E. Keyes, Aaron Martin, Robert J. Forster, James F. Rusling
Abstract:
DNA damage from metabolites of lipophilic drugs and pollutants, generated by enzymes, represents a major toxicity pathway in humans. These metabolites can react with DNA to form either 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is the oxidative product of DNA or covalent DNA adducts, both of which are genotoxic and hence considered important biomarkers to detect cancer in humans. Therefore, detecting reactions of metabolites with DNA is an effective approach for the safety assessment of new chemicals and drugs. Here we describe a novel electrochemiluminescent (ECL) sensor array which can detect DNA oxidation and chemical DNA damage in a single array, facilitating a more accurate diagnostic tool for genotoxicity screening. Layer-by-layer assembly of DNA and enzyme are assembled on the pyrolytic graphite array which is housed in a microfluidic device for sequential detection of two type of the DNA damages. Multiple enzyme reactions are run on test compounds using the array, generating toxic metabolites in situ. These metabolites react with DNA in the films to cause DNA oxidation and chemical DNA damage which are detected by ECL generating osmium compound and ruthenium polymer, respectively. The method is further validated by the formation of 8-oxodG and DNA adduct using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by liquid chromatography-mass spectrometry (LC-MS). Hence, this combined DNA/enzyme array/LC-MS approach can efficiently explore metabolic genotoxic pathways for drugs and environmental chemicals.Keywords: biosensor, electrochemiluminescence, DNA damage, microfluidic array
Procedia PDF Downloads 370460 Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects
Authors: S. AliReza Mirghasemi, Zameer Hussain, Mohammad Saleh Sadeghi, Narges Rahimi Gabaran, Mohamadreza Baghaban Eslaminejad
Abstract:
Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes.Keywords: structural bone allograft, partial demineralization, laser perforation, mesenchymal stem cell
Procedia PDF Downloads 418459 Pregnant Women with Dental Amalgam Fillings Limiting Their Exposure to Electromagnetic Fields to Prevent the Toxic Effects of Mercury in Their Fetuses
Authors: Ghazal Mortazavi, S. M. J. Mortazavi
Abstract:
Although seems to be ultra-conservative, it has recently been suggested that whenever it is possible, pregnant women should postpone dental amalgam restorations to avoid the toxic effect of mercury on the foetus. Dental amalgam fillings cause significant exposure to elemental mercury vapour in the general population. Over the past several years, our lab has focused on the health effects of exposure of laboratory animals and humans to different sources of electromagnetic fields such as mobile phones and their base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and MRI. Today, substantial evidence indicates that mercury even at low doses may lead to toxicity. Increased release of mercury from dental amalgam fillings after exposure to MRI or microwave radiation emitted by mobile phones has been previously shown by our team. Moreover, our recent studies on the effects of stronger magnetic fields entirely confirmed our previous findings. From the other point of view, we have also shown that papers which reported no increased release of mercury after MRI, may have some methodological flaws. As a strong positive correlation between maternal and cord blood mercury levels has been found in some studies, our findings regarding the effect of exposure to electromagnetic fields on the release of mercury from dental amalgam fillings lead us to this conclusion that pregnant women with dental amalgam fillings should limit their exposure to electromagnetic fields to prevent toxic effects of mercury in their foetuses.Keywords: pregnancy, foetus, mercury release, dental amalgam, electromagnetic fields, MRI, mobile phones
Procedia PDF Downloads 278