Search results for: clinical predictions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4280

Search results for: clinical predictions

2510 Investigating the Essentiality of Oxazolidinones in Resistance-Proof Drug Combinations in Mycobacterium tuberculosis Selected under in vitro Conditions

Authors: Gail Louw, Helena Boshoff, Taeksun Song, Clifton Barry

Abstract:

Drug resistance in Mycobacterium tuberculosis is primarily attributed to mutations in target genes. These mutations incur a fitness cost and result in bacterial generations that are less fit, which subsequently acquire compensatory mutations to restore fitness. We hypothesize that mutations in specific drug target genes influence bacterial metabolism and cellular function, which affects its ability to develop subsequent resistance to additional agents. We aim to determine whether the sequential acquisition of drug resistance and specific mutations in a well-defined clinical M. tuberculosis strain promotes or limits the development of additional resistance. In vitro mutants resistant to pretomanid, linezolid, moxifloxacin, rifampicin and kanamycin were generated from a pan-susceptible clinical strain from the Beijing lineage. The resistant phenotypes to the anti-TB agents were confirmed by the broth microdilution assay and genetic mutations were identified by targeted gene sequencing. Growth of mono-resistant mutants was done in enriched medium for 14 days to assess in vitro fitness. Double resistant mutants were generated against anti-TB drug combinations at concentrations 5x and 10x the minimum inhibitory concentration. Subsequently, mutation frequencies for these anti-TB drugs in the different mono-resistant backgrounds were determined. The initial level of resistance and the mutation frequencies observed for the mono-resistant mutants were comparable to those previously reported. Targeted gene sequencing revealed the presence of known and clinically relevant mutations in the mutants resistant to linezolid, rifampicin, kanamycin and moxifloxacin. Significant growth defects were observed for mutants grown under in vitro conditions compared to the sensitive progenitor. Mutation frequencies determination in the mono-resistant mutants revealed a significant increase in mutation frequency against rifampicin and kanamycin, but a significant decrease in mutation frequency against linezolid and sutezolid. This suggests that these mono-resistant mutants are more prone to develop resistance to rifampicin and kanamycin, but less prone to develop resistance against linezolid and sutezolid. Even though kanamycin and linezolid both inhibit protein synthesis, these compounds target different subunits of the ribosome, thereby leading to different outcomes in terms of fitness in the mutants with impaired cellular function. These observations showed that oxazolidinone treatment is instrumental in limiting the development of multi-drug resistance in M. tuberculosis in vitro.

Keywords: oxazolidinones, mutations, resistance, tuberculosis

Procedia PDF Downloads 162
2509 Communication Skills Training in Continuing Nursing Education: Enabling Nurses to Improve Competency and Performance in Communication

Authors: Marzieh Moattari Mitra Abbasi, Masoud Mousavinasab, Poorahmad

Abstract:

Background: Nurses in their daily practice need to communicate with patients and their families as well as health professional team members. Effective communication contributes to patients’ satisfaction which is a fundamental outcome of nursing practice. There are some evidences in support of patients' dissatisfaction with nurses’ performance in communication process. Therefore improving nurses’ communication skills is a necessity for nursing scholars and nursing administrators. Objective: The aim of the present study was to evaluate the effect of a 2-days workshop on nurses’ competencies and performances in communication in a central hospital located in the sought of Iran. Materials and Method: This is a randomized controlled trial which comprised of a convenient sample of 70 eligible nurses, working in a central hospital. They were randomly divided into 2 experimental and control groups. Nurses’ competencies was measured by an Objective Structured Clinical Examination (OSCE) and their performance was measured by asking eligible patients hospitalized in the nurses work setting during a one month period to evaluate nurses' communication skills before and 2 months after intervention. The experimental group participated in a 2 day workshop on communication skills. Content included in this workshop were: the importance of communication (verbal and non verbal), basic communication skills such as initiating the communication, active listening and questioning technique. Other subjects were patient teaching, problem solving, and decision making, cross cultural communication and breaking bad news. Appropriate teaching strategies such as brief didactic sessions, small group discussion and reflection were applied to enhance participants learning. The data was analyzed using SPSS 16. Result: A significant between group differences was found in nurses’ communication skills competencies and performances in the posttest. The mean scores of the experimental group was higher than that of the control group in the total score of OSCE as well as all stations of OSCE (p<0.003). Overall posttest mean scores of patient satisfaction with nurse's communication skills and all of its four dimensions significantly differed between the two groups of the study (p<0.001). Conclusion: This study shows that the education of nurses in communication skills, improves their competencies and performances. Measurement of Nurses’ communication skills as a central component of efficient nurse patient relationship by valid and reliable methods of evaluation is recommended. Also it is necessary to integrate teaching of communication skills in continuing nursing education programs. Trial Registration Number: IRCT201204042621N11

Keywords: communication skills, simulation, performance, competency, objective structure, clinical evaluation

Procedia PDF Downloads 218
2508 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network

Authors: Vinai K. Singh

Abstract:

In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.

Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans

Procedia PDF Downloads 136
2507 Procedure to Use Quantitative Bone-Specific SPECT/CT in North Karelia Central Hospital

Authors: L. Korpinen, P. Taskinen, P. Rautio

Abstract:

This study aimed to describe procedures that we developed to use in the quantitative, bone-specific SPECT/CT at our hospital. Our procedures included the following questions for choosing imaging protocols, which were based on a clinical doctor's referral: (1) Is she/he a cancer patient or not? (2) Are there any indications of inflammatory rheumatoid arthritis? We performed about 1,106 skeletal scintigraphies over two years. About 394 patients were studied with quantitative bone-specific single-photon emission computed tomography/computerized tomography (SPECT/CT) (i.e., about 36% of all bone scintigraphies). Approximately 64% of the patients were studied using the conventional Anterior-Posterior/Posterior-Anterior imaging. Our procedure has improved efficiency and decreased cycle times.

Keywords: skeletal scintigraphy, SPECT/CT, imaging, procedure

Procedia PDF Downloads 152
2506 Clinical Nursing Experience in Managing a Uterine Cancer Patient with Psychogenic Shock During the Extracorporeal Membrane Oxygenation Weaning Process

Authors: Syue-Wen Lin

Abstract:

Objective: This article discusses the nursing experience of caring for a uterine cancer patient who experienced cardiogenic shock and was weaned off ECMO. The patient was placed on ECMO due to cardiogenic shock and initially struggled with anxiety caused by the physical discomfort from the disease and multiple medical devices, as well as the isolation in the ICU and restrictions on physical activity. Over time, the patient was able to wean off ECMO and perform daily activities and rehabilitation independently. Methods: The nursing period was from January 6 to January 9. Through observation, direct care, interviews, physical assessments, and case reviews, the intensive care team and bypass personnel conducted a comprehensive assessment using Gordon's 11 functional health patterns. The assessment identified three main nursing health problems: pain, anxiety, and decreased cardiac tissue perfusion. Results: The author consulted a psychologist to employ open communication techniques and empathetic care to build a trusting nurse-patient relationship. A patient-centered intensive cancer care plan was developed. Pain was assessed using a pain scale, and pain medications were adjusted in consultation with a pharmacist. Lavender essential oil therapy, light music, and pillows were used to distract and alleviate pain. The patient was encouraged to express feelings and family members were invited to increase visits and provide companionship to reduce the uncertainty caused by cancer and illness. Vital signs were closely monitored, and nursing interventions were provided to maintain adequate myocardial perfusion. Post-ECMO, the patient was encouraged to engage in rehabilitation and cardiopulmonary training. Conclusion: A key takeaway from the care process is the importance of observing not only the patient's vital signs but also their psychological state, especially when dealing with cancer patients on ECMO. The patient's greatest source of comfort was the presence of family, which helped alleviate anxiety. Healthcare providers play multiple critical roles as advocates, coordinators, educators, and counselors, listening to and accepting the patient’s emotional responses. The report aims to provide clinical cancer nurses with a reference to improve the quality of care and alleviate cancer-related discomfort.

Keywords: ECMO, uterine cancer, palliative care, Gordon's 11 functional health patterns

Procedia PDF Downloads 30
2505 Calculational-Experimental Approach of Radiation Damage Parameters on VVER Equipment Evaluation

Authors: Pavel Borodkin, Nikolay Khrennikov, Azamat Gazetdinov

Abstract:

The problem of ensuring of VVER type reactor equipment integrity is now most actual in connection with justification of safety of the NPP Units and extension of their service life to 60 years and more. First of all, it concerns old units with VVER-440 and VVER-1000. The justification of the VVER equipment integrity depends on the reliability of estimation of the degree of the equipment damage. One of the mandatory requirements, providing the reliability of such estimation, and also evaluation of VVER equipment lifetime, is the monitoring of equipment radiation loading parameters. In this connection, there is a problem of justification of such normative parameters, used for an estimation of the pressure vessel metal embrittlement, as the fluence and fluence rate (FR) of fast neutrons above 0.5 MeV. From the point of view of regulatory practice, a comparison of displacement per atom (DPA) and fast neutron fluence (FNF) above 0.5 MeV has a practical concern. In accordance with the Russian regulatory rules, neutron fluence F(E > 0.5 MeV) is a radiation exposure parameter used in steel embrittlement prediction under neutron irradiation. However, the DPA parameter is a more physically legitimate quantity of neutron damage of Fe based materials. If DPA distribution in reactor structures is more conservative as neutron fluence, this case should attract the attention of the regulatory authority. The purpose of this work was to show what radiation load parameters (fluence, DPA) on all VVER equipment should be under control, and give the reasonable estimations of such parameters in the volume of all equipment. The second task is to give the conservative estimation of each parameter including its uncertainty. Results of recently received investigations allow to test the conservatism of calculational predictions, and, as it has been shown in the paper, combination of ex-vessel measured data with calculated ones allows to assess unpredicted uncertainties which are results of specific unique features of individual equipment for VVER reactor. Some results of calculational-experimental investigations are presented in this paper.

Keywords: equipment integrity, fluence, displacement per atom, nuclear power plant, neutron activation measurements, neutron transport calculations

Procedia PDF Downloads 157
2504 A Comparative Study on the Use of Learning Resources in Learning Biochemistry by MBBS Students at Ras Al Khaimah Medical and Health Sciences University, UAE

Authors: B. K. Manjunatha Goud, Aruna Chanu Oinam

Abstract:

The undergraduate medical curriculum is oriented towards training the students to undertake the responsibilities of a physician. During the training period, adequate emphasis is placed on inculcating logical and scientific habits of thought; clarity of expression and independence of judgment; and ability to collect and analyze information and to correlate them. At Ras Al Khaimah Medical and Health Sciences University (RAKMHSU), Biochemistry a basic medical science subject is taught in the 1st year of 5 years medical course with vertical interdisciplinary interaction with all subjects, which needs to be taught and learned adequately by the students to be related to clinical case or clinical problem in medicine and future diagnostics so that they can practice confidently and skillfully in the community. Based on these facts study was done to know the extent of usage of library resources by the students and the impact of study materials on their preparation for examination. It was a comparative cross sectional study included 100 and 80 1st and 2nd-year students who had successfully completed Biochemistry course. The purpose of the study was explained to all students [participants]. Information was collected on a pre-designed, pre-tested and self-administered questionnaire. The questionnaire was validated by the senior faculties and pre tested on students who were not involved in the study. The study results showed that 80.30% and 93.15% of 1st and 2nd year students have the clear idea of course outline given in course handout or study guide. We also found a statistically significant number of students agreed that they were benefited from the practical session and writing notes in the class hour. A high percentage of students [50% and 62.02%] disagreed that that reading only the handouts is enough for their examination as compared to other students. The study also showed that only 35% and 41% of students visited the library on daily basis for the learning process, around 65% of students were using lecture notes and text books as a tool for learning and to understand the subject and 45% and 53% of students used the library resources (recommended text books) compared to online sources before the examinations. The results presented here show that students perceived that e-learning resources like power point presentations along with text book reading using SQ4R technique had made a positive impact on various aspects of their learning in Biochemistry. The use of library by students has overall positive impact on learning process especially in medical field enhances the outcome, and medical students are better equipped to treat the patient. But it’s also true that use of library use has been in decline which will impact the knowledge aspects and outcome. In conclusion, a student has to be taught how to use the library as learning tool apart from lecture handouts.

Keywords: medical education, learning resources, study guide, biochemistry

Procedia PDF Downloads 178
2503 Posttraumatic Stress Disorder and Associated Factors among Patients with Prostate Cancer

Authors: Meral Huri, Sedef Şahin

Abstract:

Post-traumatic stress disorder (PTSD) is characterized by psychiatric symptoms and triggered by a terrifying experience which may immediately effect cognitive, affective, behavioral and social skills of the individual. One of the most common noncutaneous cancer among men is prostate cancer. The incidence of psychological stress is quite common in men with prostate cancer. The aim of the study was to explore the PTSD frequency among prostate cancer and define the relationship between occupational participation, coping skills and level of perceived social support among patients with prostate cancer. Forty patients diagnosed with prostate cancer were included in the study. After dividing the patients into two groups ( study/ control) according to type of tumor, we recorded their characteristics and evaluations differences. We evaluated the demographic information form, Structured Clinical Interview for DSM-IV (SCID- I)- Clinical Version for PTSD, Multidimensional Scale of Perceived Social Support, Styles of Coping Inventory and Canadian Occupational Performance Measure (COPM) before and after 1 month from surgery. The mean age of the study group (n:18) was 65.85.6 years (range: 61-79 years). The mean age of the control group (n: 22) was a little bit higher than the study group with mean age 71.3±6.9 years (range: 60-85 years). There was no statistically significant difference between the groups for age and the other characteristics. According to the results of the study, statistically significant difference was found between the level of PTSD of study and the control group. 22% of study group showed PTSD while 13% of the control group showed PTSD (r: 0.02, p<0.001). The scores of study group and control group showed statistically significant difference in five sub-categories of Styles of Coping Inventory. Patients with prostate cancer showed decreased scores in optimistic, seeking social supports and self-confident approach, while increased scores in helpless and submissive sub-categories than the control group (p<0.001). The scores of Multidimensional Scale of Perceived Social Supports of study group and control group showed statistically significant difference. The total perceived social supports score of the study group was 71.34 ± 0.75 while it was 75.34 ± 0.64 for the control group. Total and the sub-category scores of study group were statistically significant lower than the control group. According to COPM, mean scores of occupational participation of study group for occupational performance were 4.32±2.24 and 7.01±1.52 for the control group, respectively). Mean Satisfaction scores were 3,22±2.31 and 7.45±1.74 for the study and control group, respectively. The patients with prostate cancer and benign prostate hyperplasia (BPH) did not show any statistically difference in activity performance (r:0.87) while patients with prostate cancer showed statistically lower scores than the patients with BPH in activity satisfaction (r:0.02, p<0.001).Psycho-social occupational therapy interventions might help to decrease the prevalence of PTSD by increasing associated factors such as the social support perception, using coping skills and activity participation of patients with prostate cancer.

Keywords: activity performance, occupational therapy, posttraumatic stress disorder, prostate cancer

Procedia PDF Downloads 145
2502 The Psychologist's Role in a Social Assistance Reference Center: A Case of Violence and Child Sexual Abuse in Northeastern Brazil

Authors: G. Melo, J. Felix, S. Maciel, C. Fernandes, W. Rodrigues

Abstract:

In Brazilian public policy, the Centres of Reference for Social Assistance (CRAS in Portuguese) are part of the Unified Social Assistance System (SUAS in Portuguese). SUAS is responsible for addressing spontaneous or currently active cases that are brought forth from other services in the social assistance network. The following case was reviewed by CRAS’s team in Recife, Brazil, after a complaint of child abuse was filed against the mother of a 7-year-old girl by the girl’s aunt. The girl is the daughter of an incestuous relationship between her mother and her older brother. The complaint was registered by service staff and five interventions were subsequently carried out on behalf of the child. These interventions provided a secure place for dialogue with both the child and her family and allowed for an investigation of the abuse to proceed. They took place in the child’s school as well as her aunt’s residence. At school, the child (with her classmates) watched a video and listened to a song about the prevention of child abuse. This was followed up with a second intervention to determine any signs of Post-Traumatic Stress Disorder (PTSD), by having the child play with the mobile app ‘My Angela’. Books on the themes of family and fear were also read to the child on different occasions at her school – after every intervention she was asked to draw something related to fear and her concept of a family. After the interventions and discussing the case as a team, we reached several conclusions: 1) The child did not appear to show any symptoms of PTSD; 2) She normally fantasized about her future and life story; 3) She did not allow herself to be touched by strangers with whom she lacks a close relationship (such as classmates or her teacher); 4) Through her drawings, she reproduced the conversations she had had with the staff; 5) She habitually covered her drawings when asked questions about the abuse. In this particular clinical case, we want to highlight that the role of the Psychologist’s intervention at CRAS is to attempt to resolve the issue promptly (and not to develop a prolonged clinical study based on traditional methods), by making use of the available tools from the social assistance network, and by making referrals to the relevant authorities, such as the Public Ministry, so that final protective actions can be taken and enforced. In this case, the Guardian Council of the Brazilian Public Ministry was asked to transfer the custody of the child to her uncle. The mother of the child was sent to a CAPS (Centre for Psychosocial Care), having been diagnosed with psychopathology. The child would then participate in NGO programs that allow for a gradual reduction of social exposure to her mother before being transferred to her uncle’s custody in Sao Paulo.

Keywords: child abuse, intervention, social psychology, violence

Procedia PDF Downloads 319
2501 Neural Networks with Different Initialization Methods for Depression Detection

Authors: Tianle Yang

Abstract:

As a common mental disorder, depression is a leading cause of various diseases worldwide. Early detection and treatment of depression can dramatically promote remission and prevent relapse. However, conventional ways of depression diagnosis require considerable human effort and cause economic burden, while still being prone to misdiagnosis. On the other hand, recent studies report that physical characteristics are major contributors to the diagnosis of depression, which inspires us to mine the internal relationship by neural networks instead of relying on clinical experiences. In this paper, neural networks are constructed to predict depression from physical characteristics. Two initialization methods are examined - Xaiver and Kaiming initialization. Experimental results show that a 3-layers neural network with Kaiming initialization achieves 83% accuracy.

Keywords: depression, neural network, Xavier initialization, Kaiming initialization

Procedia PDF Downloads 128
2500 Physicians’ Knowledge and Perception of Gene Profiling in Malaysia: A Pilot Study

Authors: Farahnaz Amini, Woo Yun Kin, Lazwani Kolandaiveloo

Abstract:

Availability of different genetic tests after completion of Human Genome Project increases the physicians’ responsibility to keep themselves update on the potential implementation of these genetic tests in their daily practice. However, due to numbers of barriers, still many of physicians are not either aware of these tests or are not willing to offer or refer their patients for genetic tests. This study was conducted an anonymous, cross-sectional, mailed-based survey to develop a primary data of Malaysian physicians’ level of knowledge and perception of gene profiling. Questionnaire had 29 questions. Total scores on selected questions were used to assess the level of knowledge. The highest possible score was 11. Descriptive statistics, one way ANOVA and chi-squared test was used for statistical analysis. Sixty three completed questionnaires was returned by 27 general practitioners (GPs) and 36 medical specialists. Responders’ age range from 24 to 55 years old (mean 30.2 ± 6.4). About 40% of the participants rated themselves as having poor level of knowledge in genetics in general whilst 60% believed that they have fair level of knowledge. However, almost half (46%) of the respondents felt that they were not knowledgeable about available genetic tests. A majority (94%) of the responders were not aware of any lab or company which is offering gene profiling services in Malaysia. Only 4% of participants were aware of using gene profiling for detection of dosage of some drugs. Respondents perceived greater utility of gene profiling for breast cancer (38%) compared to the colorectal familial cancer (3%). The score of knowledge ranged from 2 to 8 (mean 4.38 ± 1.67). Non-significant differences between score of knowledge of GPs and specialists were observed, with score of 4.19 and 4.58 respectively. There was no significant association between any demographic factors and level of knowledge. However, those who graduated between years 2001 to 2005 had higher level of knowledge. Overall, 83% of participants showed relatively high level of perception on value of gene profiling to detect patient’s risk of disease. However, low perception was observed for both statements of using gene profiling for general population in order to alter their lifestyle (25%) as well as having the full sequence of a patient genome for the purpose of determining a patient’s best match for treatment (18%). The lack of clinical guidelines, limited provider knowledge and awareness, lack of time and resources to educate patients, lack of evidence-based clinical information and cost of tests were the most barriers of ordering gene profiling mentioned by physicians. In conclusion Malaysian physicians who participate in this study had mediocre level of knowledge and awareness in gene profiling. The low exposure to the genetic questions and problems might be a key predictor of lack of awareness and knowledge on available genetic tests. Educational and training workshop might be useful in helping Malaysian physicians incorporate genetic profiling into practice for eligible patients.

Keywords: gene profiling, knowledge, Malaysia, physician

Procedia PDF Downloads 326
2499 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 168
2498 A Longitudinal Study of Social Engagement in Classroom in Children with Autism Spectrum Disorder

Authors: Cecile Garry, Katia Rovira, Julie Brisson

Abstract:

Autism Spectrum Disorder (ASD) is defined by a qualitative and quantitative impairment of social interaction. Indeed early intervention programs, such as the Early Start Denver Model (ESDM), aimed at encouraging the development of social skills. In classroom, the children need to be socially engaged to learn. Early intervention programs can thus be implemented in kindergarten schools. In these schools, ASD children have more opportunities to interact with their peers or adults than in elementary schools. However, the preschool children with ASD are less socially engaged than their typically developing peers in the classroom. They initiate, respond and maintain less the social interactions. In addition, they produce more responses than initiations. When they interact, the non verbal communication is more used than verbal or symbolic communication forms and they are more engaged with adults than with peers. Nevertheless, communicative patterns may vary according to the clinical profiles of ASD children. Indeed, the ASD children with better cognitive skills interact more with their peers and use more symbolic communication than the ASD children with a low cognitive level. ASD children with the less severe symptoms use more the verbal communication than ASD children with the more severe symptoms. Small groups and structured activities encourage coordinated joint engagement episodes in ASD children. Our goal is to evaluate ASD children’s social engagement development in class, with their peers or adults, during dyadic or group activities. Participants were 19 preschool children with ASD aged from 3 to 6 years old that benefited of an early intervention in special kindergarten schools. Severity of ASD symptoms was measured with the CARS at the beginning of the follow-up. Classroom situations of interaction were recorded during 10 minutes (5 minutes of dyadic interaction and 5 minutes of a group activity), every 2 months, during 10 months. Social engagement behaviors of children, including initiations, responses and imitation, directed to a peer or an adult, were then coded. The Observer software (Noldus) that allows to annotate behaviors was the coding system used. A double coding was conducted and revealed a good inter judges fidelity. Results show that ASD children were more often and longer socially engaged in dyadic than in groups situations. They were also more engaged with adults than with peers. Children with the less severe symptoms of ASD were more socially engaged in groups situations than children with the more severe symptoms of ASD. Then, ASD children with the less severe symptoms of ASD were more engaged with their peers than ASD children with the more severe symptoms of ASD. However, the engagement frequency increased during the 10 month of follow-up but only for ASD children with the more severe symptoms at the beginning. To conclude, these results highlighted the necessity of individualizing early intervention programs according to the clinical profile of the child.

Keywords: autism spectrum disorder, preschool children, developmental psychology, early interventions, social interactions

Procedia PDF Downloads 159
2497 Predicting Reading Comprehension in Spanish: The Evidence for the Simple View Model

Authors: Gabriela Silva-Maceda, Silvia Romero-Contreras

Abstract:

Spanish is a more transparent language than English given that it has more direct correspondences between sounds and letters. It has become important to understand how decoding and linguistic comprehension contribute to reading comprehension in the framework of the widely known Simple View Model. This study aimed to identify the level of prediction by these two components in a sample of 1st to 4th grade children attending two schools in central Mexico (one public and one private). Within each school, ten children were randomly selected in each grade level, and their parents were asked about reading habits and socioeconomic information. In total, 79 children completed three standardized tests measuring decoding (pseudo-word reading), linguistic comprehension (understanding of paragraphs) and reading comprehension using subtests from the Clinical Evaluation of Language Fundamentals-Spanish, Fourth Edition, and the Test de Lectura y Escritura en Español (LEE). The data were analyzed using hierarchical regression, with decoding as a first step and linguistic comprehension as a second step. Results showed that decoding accounted for 19.2% of the variance in reading comprehension, while linguistic comprehension accounted for an additional 10%, adding up to 29.2% of variance explained: F (2, 75)= 15.45, p <.001. Socioeconomic status derived from parental questionnaires showed a statistically significant association with the type of school attended, X2 (3, N= 79) = 14.33, p =.002. Nonetheless when analyzing the Simple View components, only decoding differences were statistically significant (t = -6.92, df = 76.81, p < .001, two-tailed); reading comprehension differences were also significant (t = -3.44, df = 76, p = .001, two-tailed). When socioeconomic status was included in the model, it predicted a 5.9% unique variance, even when already accounting for Simple View components, adding to a 35.1% total variance explained. This three-predictor model was also significant: F (3, 72)= 12.99, p <.001. In addition, socioeconomic status was significantly correlated with the amount of non-textbook books parents reported to have at home for both adults (rho = .61, p<.001) and children (rho= .47, p<.001). Results converge with a large body of literature finding socioeconomic differences in reading comprehension; in addition this study suggests that these differences were also present in decoding skills. Although linguistic comprehension differences between schools were expected, it is argued that the test used to collect this variable was not sensitive to linguistic differences, since it came from a test to diagnose clinical language disabilities. Even with this caveat, results show that the components of the Simple View Model can predict less than a third of the variance in reading comprehension in Spanish. However, the results also suggest that a fuller model of reading comprehension is obtained when considering the family’s socioeconomic status, given the potential differences shown by the socioeconomic status association with books at home, factors that are particularly important in countries where inequality gaps are relatively large.

Keywords: decoding, linguistic comprehension, reading comprehension, simple view model, socioeconomic status, Spanish

Procedia PDF Downloads 328
2496 Biocompatibilities of Various Calcium Silicate Cements

Authors: Seok Woo Chang, Kee Yeon Kum, Kwang Shik Bae, WooCheol Lee

Abstract:

Aim: The objective of this study was to compare the biocompatibilities and mineralization potential of ProRoot MTA and newly developed calcium phosphate based cement, Capseal. Materials and Methods: The biocompatibilities and mineralization-related gene expressions (Bone sialoprotein (BSP) and osteocalcin (OCN)) of ProRoot MTA and Capseal were also compared by a methylthiazol tetrazolium (MTT) assay and reverse transcription-polymerization chain reaction (RT-PCR) analysis on 1, 3, and 7 days, respectively. Empty rings were used as control group. The results were statistically analyzed by Kruskal-Wallis test with a Bonferroni correction. P-value of < 0.05 was considered significant. Results: The biocompatibilities of ProRoot MTA and Capseal were equally favorable. ProRoot MTA and Capseal affected the messenger RNA expression of osteocalcin and osteonectin. Conclusions: Based on the results, both ProRoot MTA and Capseal could be a useful biomaterial in clinical endodontics.

Keywords: biocompatibility, calcium silicate cement, MTT, RT-PCR

Procedia PDF Downloads 391
2495 Building a Framework for Digital Emergency Response System for Aged, Long Term Care and Chronic Disease Patients in Asia Pacific Region

Authors: Nadeem Yousuf Khan

Abstract:

This paper proposes the formation of a digital emergency response system (dERS) in the aged, long-term care, and chronic disease setups in the post-COVID healthcare ecosystem, focusing on the Asia Pacific market where the aging population is increasing significantly. It focuses on the use of digital technologies such as wearables, a global positioning system (GPS), and mobile applications to build an integrated care system for old folks with co-morbidities and other chronic diseases. The paper presents a conceptual framework of a connected digital health ecosystem that not only provides proactive care to registered patients but also prevents the damages due to sudden conditions such as strokes by alerting and treating the patients in a digitally connected and coordinated manner. A detailed review of existing digital health technologies such as wearables, GPS, and mobile apps was conducted in context with the new post-COVID healthcare paradigm, along with a detailed literature review on the digital health policies and usability. A good amount of research papers is available in the application of digital health, but very few of them discuss the formation of a new framework for a connected digital ecosystem for the aged care population, which is increasing around the globe. A connected digital emergency response system has been proposed by the author whereby all registered patients (chronic disease and aged/long term care) will be connected to the proposed digital emergency response system (dERS). In the proposed ecosystem, patients will be provided with a tracking wrist band and a mobile app through which the control room will be monitoring the mobility and vitals such as atrial fibrillation (AF), blood sugar, blood pressure, and other vital signs. In addition to that, an alert in case if the patient falls down will add value to this system. In case of any variation in the vitals, an alert is sent to the dERS 24/7, and dERS clinical staff immediately trigger that alert which goes to the connected hospital and the adulatory service providers, and the patient is escorted to the nearest connected tertiary care hospital. By the time, the patient reaches the hospital, dERS team is ready to take appropriate clinical action to save the life of the patient. Strokes or myocardial infarction patients can be prevented from disaster if they are accessible to engagement healthcare. This dERS will play an effective role in saving the lives of aged patients or patients with chronic co-morbidities.

Keywords: aged care, atrial fibrillation, digital health, digital emergency response system, digital technology

Procedia PDF Downloads 122
2494 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 75
2493 Understanding the Productivity Effect on Industrial Management: The Portuguese Wood Furniture Industry Case Study

Authors: Jonas A. R. H. Lima, Maria Antonia Carravilla

Abstract:

As productivity concepts are widely related to industrial savings, it is becoming particularly important in a more and more competitive world, to really understand how productivity can be well used in industrial management techniques. Nowadays, consumers are no more willing to pay for mistakes and inefficiencies. Therefore, one way for companies to stay competitive is to control and increase their productivity. This study aims to define clearly the productivity concept, understand how a company can affect productivity, and, if possible, identify the relation between each identified productivity factor. This will help managers, by clarifying the main issues behind productivity concepts and proposing a methodology to measure, control and increase productivity. The main questions to be answered are: what is the importance of productivity for the Portuguese Wood Furniture Industry? Is it possible to control productivity internally, or is it a phenomenon external to companies, hard or even impossible to control? How to understand, control and adjust productivity performance? How to make productivity to become one main asset for maximizing the use of the available resources? This essay will follow a constructive approach mostly based in the research hypothesis mentioned above. For that, a literature review is being done to find the main conceptual frameworks and empirical studies that already exist, and by doing so, highlight eventual knowledge or conflicting research to be addressed in this work. We expect to build theoretical explanations and test theoretical predictions from participants understandings and own experiences, by elaborating field surveys and interviews, to select adjusted productivity indicators and analyze the productivity evolution according the adjustments on other variables. Its intended the conduction of an exploratory work that can simultaneous clarify productivity concepts, objectives, and define frameworks. This investigation intends to migrate from merely academic concepts to a daily basis operational reality of the companies from the Portuguese Wood Furniture Industry highlighting productivity increased importance within modern engineering and industrial management. The ambition is to clarify, systemize and develop a management tool that may not only control but positively influence the way resources are used.

Keywords: industrial management, motivation, productivity, performance indicators, reward management, wood furniture industry

Procedia PDF Downloads 229
2492 Links between Inflammation and Insulin Resistance in Children with Morbid Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is a clinical state associated with low-grade inflammation. It is also a major risk factor for insulin resistance (IR). In its advanced stages, metabolic syndrome (MetS), a much more complicated disease which may lead to life-threatening problems, may develop. Obesity-mediated IR seems to correlate with the inflammation. Human studies performed particularly on pediatric population are scarce. The aim of this study is to detect possible associations between inflammation and IR in terms of some related ratios. 549 children were grouped according to their age- and sex-based body mass index (BMI) percentile tables of WHO. MetS components were determined. Informed consent and approval from the Ethics Committee for Clinical Investigations were obtained. The principles of the Declaration of Helsinki were followed. The exclusion criteria were infection, inflammation, chronic diseases and those under drug treatment. Anthropometric measurements were obtained. Complete blood cell, fasting blood glucose, insulin, and C-reactive protein (CRP) analyses were performed. Homeostasis model assessment of insulin resistance (HOMA-IR), systemic immune inflammation (SII) index, tense index, alanine aminotransferase to aspartate aminotransferase ratio (ALT/AST), neutrophils to lymphocyte (NLR), platelet to lymphocyte, and lymphocyte to monocyte ratios were calculated. Data were evaluated by statistical analyses. The degree for statistical significance was 0.05. Statistically significant differences were found among the BMI values of the groups (p < 0.001). Strong correlations were detected between the BMI and waist circumference (WC) values in all groups. Tense index values were also correlated with both BMI and WC values in all groups except overweight (OW) children. SII index values of children with normal BMI were significantly different from the values obtained in OW, obese, morbid obese and MetS groups. Among all the other lymphocyte ratios, NLR exhibited a similar profile. Both HOMA-IR and ALT/AST values displayed an increasing profile from N towards MetS3 group. BMI and WC values were correlated with HOMA-IR and ALT/AST. Both in morbid obese and MetS groups, significant correlations between CRP versus SII index as well as HOMA-IR versus ALT/AST were found. ALT/AST and HOMA-IR values were correlated with NLR in morbid obese group and with SII index in MetS group, (p < 0.05), respectively. In conclusion, these findings showed that some parameters may exhibit informative differences between the early and late stages of obesity. Important associations among HOMA-IR, ALT/AST, NLR and SII index have come to light in the morbid obese and MetS groups. This study introduced the SII index and NLR as important inflammatory markers for the discrimination of normal and obese children. Interesting links were observed between inflammation and IR in morbid obese children and those with MetS, both being late stages of obesity.

Keywords: children, inflammation, insulin resistance, metabolic syndrome, obesity

Procedia PDF Downloads 137
2491 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 93
2490 The Use of Video Conferencing to Aid the Decision in Whether Vulnerable Patients Should Attend In-Person Appointments during a COVID Pandemic

Authors: Nadia Arikat, Katharine Blain

Abstract:

During the worst of the COVID pandemic, only essential treatment was provided for patients needing urgent care. With the prolonged extent of the pandemic, there has been a return to more routine referrals for paediatric dentistry advice and treatment for specialist conditions. However, some of these patients and/or their carers may have significant medical issues meaning that attending in-person appointments carries additional risks. This poses an ethical dilemma for clinicians. This project looks at how a secure video conferencing platform (“Near Me”) has been used to assess the need and urgency for in-person new patient visits, particularly for patients and families with additional risks. “Near Me” is a secure online video consulting service used by NHS Scotland. In deciding whether to bring a new patient to the hospital for an appointment, the clinical condition of the teeth together with the urgency for treatment need to be assessed. This is not always apparent from the referral letter. In addition, it is important to judge the risks to the patients and carers of such visits, particularly if they have medical issues. The use and effectiveness of “Near Me” consultations to help decide whether vulnerable paediatric patients should have in-person appointments will be illustrated and discussed using two families: one where the child is medically compromised (Alagille syndrome with previous liver transplant), and the other where there is a medically compromised parent (undergoing chemotherapy and a bone marrow transplant). In both cases, it was necessary to take into consideration the risks and moral implications of requesting that they attend the dental hospital during a pandemic. The option of remote consultation allowed further clinical information to be evaluated and the families take part in the decision-making process about whether and when such visits should be scheduled. These cases will demonstrate how medically compromised patients (or patients with vulnerable carers), could have their dental needs assessed in a socially distanced manner by video consultation. Together, the clinician and the patient’s family can weigh up the risks, with regards to COVID-19, of attending for in-person appointments against the benefit of having treatment. This is particularly important for new paediatric patients who have not yet had a formal assessment. The limitations of this technology will also be discussed. It is limited by internet availability, the strength of the connection, the video quality and families owning a device which allows video calls. For those from a lower socio-economic background or living in some rural areas, this may not be possible or limit its usefulness. For the two patients discussed in this project, where the urgency of their dental condition was unclear, video consultation proved beneficial in deciding an appropriate outcome and preventing unnecessary exposure of vulnerable people to a hospital environment during a pandemic, demonstrating the usefulness of such technology when it is used appropriately.

Keywords: COVID-19, paediatrics, triage, video consultations

Procedia PDF Downloads 98
2489 Phenology and Size in the Social Sweat Bee, Halictus ligatus, in an Urban Environment

Authors: Rachel A. Brant, Grace E. Kenny, Paige A. Muñiz, Gerardo R. Camilo

Abstract:

The social sweat bee, Halictus ligatus, has been documented to alter its phenology as a response to changes in temporal dynamics of resources. Furthermore, H. ligatus exhibits polyethism in natural environments as a consequence of the variation in resources. Yet, we do not know if or how H. ligatus responds to these variations in urban environments. As urban environments become much more widespread, and human population is expected to reach nine billion by 2050, it is crucial to distinguish how resources are allocated by bees in cities. We hypothesize that in urban regions, where floral availability varies with human activity, H. ligatus will exhibit polyethism in order to match the extremely localized spatial variability of resources. We predict that in an urban setting, where resources vary both spatially and temporally, the phenology of H. ligatus will alter in response to these fluctuations. This study was conducted in Saint Louis, Missouri, at fifteen sites each varying in size and management type (community garden, urban farm, prairie restoration). Bees were collected by hand netting from 2013-2016. Results suggest that the largest individuals, mostly gynes, occurred in lower income neighborhood community gardens in May and August. We used a model averaging procedure, based on information theoretical methods, to determine a best model for predicting bee size. Our results suggest that month and locality within the city are the best predictors of bee size. Halictus ligatus was observed to comply with the predictions of polyethism from 2013 to 2015. However, in 2016 there was an almost complete absence of the smallest worker castes. This is a significant deviation from what is expected under polyethism. This could be attributed to shifts in planting decisions, shifts in plant-pollinator matches, or local climatic conditions. Further research is needed to determine if this divergence from polyethism is a new strategy for the social sweat bee as climate continues to alter or a response to human dominated landscapes.

Keywords: polyethism, urban environment, phenology, social sweat bee

Procedia PDF Downloads 221
2488 Factors Influencing Family Resilience and Quality of Life in Pediatric Cancer Patients and Their Caregivers: A Cluster Analysis

Authors: Li Wang, Dan Shu, Shiguang Pang, Lixiu Wang, Bing Xiang Yang, Qian Liu

Abstract:

Background: Cancer is one of the most severe diseases in childhood; long-term treatment and its side effects significantly impact the patient's physical, psychological, social functioning and quality of life while also placing substantial physical and psychological burdens on caregivers and families. Family resilience is crucial for children with cancer, helping them cope better with the disease and supporting the family in facing challenges together. As a family-level variable, family resilience requires information from multiple family members. However, to our best knowledge, there is currently no research investigating family resilience from both the perspectives of pediatric cancer patients and their caregivers. Therefore, this study aims to investigate the family resilience and quality of life of pediatric cancer patients from a patient–caregiver dyadic perspective. Methods: A total of 149 dyads of patients diagnosed with pediatric cancer patients and their principal caregivers were recruited from oncology departments of 4 tertiary hospitals in Wuhan and Taiyuan, China. All participants completed questionnaires that identified their demographic and clinical characteristics as well as assessed their family resilience and quality of life for both the patients and their caregivers. K-means cluster analysis was used to identify different clusters of family resilience based on the reports from patients and caregivers. Multivariate logistic regression and linear regression are used to analyze the factors influencing family resilience and quality of life, as well as the relationship between the two. Results: Three clusters of family resilience were identified: a cluster of high family resilience (HR), a cluster of low family resilience (LR), and a cluster of discrepant family resilience (DR). Most (67.1%) families fell into the cluster with low resilience. Characteristics such as the types of caregivers perceived social support of the patient were different among the three clusters. Compared to the LR group, families where the mother is the caregiver and where the patient has high social support are more likely to be assigned to the HR. The quality of life for caregivers was consistently highest in the HR cluster and lowest in the LR cluster. The patient's quality of life is not related to family resilience. In the linear regression analysis of the patient's quality of life, patients who are the first-born have higher quality of life, while those living with their parents have lower quality of life. The participants' characteristics were not associated with the quality of life for caregivers. Conclusions: In most families, family resilience was low. Families with maternal caregivers and patients receiving high levels of social support are more inclined to be higher levels of family resilience. Family resilience was linked to the quality of life of caregivers of pediatric cancer patients. The clinical implications of this findings suggest that healthcare and social support organizations should prioritize and support the participation of mothers in caregiving responsibilities. Furthermore, they should assist families in accessing social support to enhance family resilience. This study also emphasizes the importance of promoting family resilience for enhancing family health and happiness, as well as improving the quality of life for caregivers.

Keywords: pediatric cancer, cluster analysis, family resilience, quality of life

Procedia PDF Downloads 37
2487 Inhibition of Echis ocellatus Venom Metalloprotease by Flavonoid-Rich Ethyl Acetate Sub-fraction of Moringa oleifera Leaves (Lam.): in vitro and in silico Approaches

Authors: Adeyi Akindele Oluwatosin, Mustapha Kaosarat Keji, Ajisebiola Babafemi Siji, Adeyi Olubisi Esther, Damilohun Samuel Metibemu, Raphael Emuebie Okonji

Abstract:

Envenoming by Echis ocellatus is potentially life-threatening due to severe hemorrhage, renal failure, and capillary leakage. These effects are attributed to snake venom metalloproteinases (SVMPs). Due to drawbacks in the use of antivenom, natural inhibitors from plants are of interest in studies of new antivenom treatment. Antagonizing effects of bioactive compounds of Moringa oleifera, a known antisnake plant, are yet to be tested against SVMPs of E. ocellatus (SVMP-EO). Ethanol crude extract of M. oleifera was partitioned using n-hexane and ethyl acetate. Each partition was fractionated using column chromatography and tested against SVMP-EO purified through ion-exchange chromatography with EchiTab-PLUS polyvalent anti-venom as control. Phytoconstituents of ethyl acetate fraction were screened against the catalytic site of crystal of BaP1-SVMP, while drug-likeness and ADMET toxicity of compound were equally determined. The molecular weight of isolated SVMP-EO was 43.28 kDa, with a specific activity of 245 U/ml, a percentage yield of 62.83 %, and a purification fold of 0.920. The Vmax and Km values are 2 mg/ml and 38.095 μmol/ml/min, respectively, while the optimal pH and temperature are 6.0 and 40°C, respectively. Polyvalent anti-venom, crude extract, and ethyl acetate fraction of M. oleifera exhibited a complete inhibitory effect against SVMP-EO activity. The inhibitions of the P-1 and P-II metalloprotease’s enzymes by the ethyl acetate fraction are largely due to methanol, 6, 8, 9-trimethyl-4-(2-phenylethyl)-3-oxabicyclo[3.3.1]non-6-en-1-yl)- and paroxypropione, respectively. Both compounds are potential drug candidates with little or no concern of toxicity, as revealed from the in-silico predictions. The inhibitory effects suggest that this compound might be a therapeutic candidate for further exploration for treatment of Ocellatus’ envenoming.

Keywords: Echis ocellatus, Moringa oleifera, anti-venom, metalloproteases, snakebite, molecular docking

Procedia PDF Downloads 149
2486 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 105
2485 Prediction Model of Body Mass Index of Young Adult Students of Public Health Faculty of University of Indonesia

Authors: Yuwaratu Syafira, Wahyu K. Y. Putra, Kusharisupeni Djokosujono

Abstract:

Background/Objective: Body Mass Index (BMI) serves various purposes, including measuring the prevalence of obesity in a population, and also in formulating a patient’s diet at a hospital, and can be calculated with the equation = body weight (kg)/body height (m)². However, the BMI of an individual with difficulties in carrying their weight or standing up straight can not necessarily be measured. The aim of this study was to form a prediction model for the BMI of young adult students of Public Health Faculty of University of Indonesia. Subject/Method: This study used a cross sectional design, with a total sample of 132 respondents, consisted of 58 males and 74 females aged 21- 30. The dependent variable of this study was BMI, and the independent variables consisted of sex and anthropometric measurements, which included ulna length, arm length, tibia length, knee height, mid-upper arm circumference, and calf circumference. Anthropometric information was measured and recorded in a single sitting. Simple and multiple linear regression analysis were used to create the prediction equation for BMI. Results: The male respondents had an average BMI of 24.63 kg/m² and the female respondents had an average of 22.52 kg/m². A total of 17 variables were analysed for its correlation with BMI. Bivariate analysis showed the variable with the strongest correlation with BMI was Mid-Upper Arm Circumference/√Ulna Length (MUAC/√UL) (r = 0.926 for males and r = 0.886 for females). Furthermore, MUAC alone also has a very strong correlation with BMI (r = 0,913 for males and r = 0,877 for females). Prediction models formed from either MUAC/√UL or MUAC alone both produce highly accurate predictions of BMI. However, measuring MUAC/√UL is considered inconvenient, which may cause difficulties when applied on the field. Conclusion: The prediction model considered most ideal to estimate BMI is: Male BMI (kg/m²) = 1.109(MUAC (cm)) – 9.202 and Female BMI (kg/m²) = 0.236 + 0.825(MUAC (cm)), based on its high accuracy levels and the convenience of measuring MUAC on the field.

Keywords: body mass index, mid-upper arm circumference, prediction model, ulna length

Procedia PDF Downloads 214
2484 A Congenital Case of Dandy-Walker Malformation

Authors: Neerja Meena, Paresh Sukhani

Abstract:

Dandy walker malformation is a generalised disorder of mesenchymal development that affect both the cerebellum and overlying meninges. Classically dandy-walker malformation consists of a triad of- 1:vermian and hemispheric cerebellar hypoplasia 2:cystic dilatation of 4th ventricle 3: enlarged posterior fossa with the upward migration of tentorium(lambdoid- torcular inversion). Clinical presentation: four months old female child with hydrocephalus and neurological symptoms. Generally- early death is common in classic dandy walker malformation. However, if it is relatively mild and uncomplicated by other CNS anomalies, intelligence can be normal and neurologic deficits minimal. Usually, VP shunting is the treatment of choice for this hydrocephalus. Conclusion: MRI is the modality of choice to diagnose posterior fossa malformation. However, it can be ruled out through using during the antenatal check as the prognosis of this malformation is not good; it's better to diagnose it inutero.

Keywords: Dandy Walker, Mri, Earlydaignosis, Treatment

Procedia PDF Downloads 76
2483 The Validation of RadCalc for Clinical Use: An Independent Monitor Unit Verification Software

Authors: Junior Akunzi

Abstract:

In the matter of patient treatment planning quality assurance in 3D conformational therapy (3D-CRT) and volumetric arc therapy (VMAT or RapidArc), the independent monitor unit verification calculation (MUVC) is an indispensable part of the process. Concerning 3D-CRT treatment planning, the MUVC can be performed manually applying the standard ESTRO formalism. However, due to the complex shape and the amount of beams in advanced treatment planning technic such as RapidArc, the manual independent MUVC is inadequate. Therefore, commercially available software such as RadCalc can be used to perform the MUVC in complex treatment planning been. Indeed, RadCalc (version 6.3 LifeLine Inc.) uses a simplified Clarkson algorithm to compute the dose contribution for individual RapidArc fields to the isocenter. The purpose of this project is the validation of RadCalc in 3D-CRT and RapidArc for treatment planning dosimetry quality assurance at Antoine Lacassagne center (Nice, France). Firstly, the interfaces between RadCalc and our treatment planning systems (TPS) Isogray (version 4.2) and Eclipse (version13.6) were checked for data transfer accuracy. Secondly, we created test plans in both Isogray and Eclipse featuring open fields, wedges fields, and irregular MLC fields. These test plans were transferred from TPSs according to the radiotherapy protocol of DICOM RT to RadCalc and the linac via Mosaiq (version 2.5). Measurements were performed in water phantom using a PTW cylindrical semiflex ionisation chamber (0.3 cm³, 31010) and compared with the TPSs and RadCalc calculation. Finally, 30 3D-CRT plans and 40 RapidArc plans created with patients CT scan were recalculated using the CT scan of a solid PMMA water equivalent phantom for 3D-CRT and the Octavius II phantom (PTW) CT scan for RapidArc. Next, we measure the doses delivered into these phantoms for each plan with a 0.3 cm³ PTW 31010 cylindrical semiflex ionisation chamber (3D-CRT) and 0.015 cm³ PTW PinPoint ionisation chamber (Rapidarc). For our test plans, good agreements were found between calculation (RadCalc and TPSs) and measurement (mean: 1.3%; standard deviation: ± 0.8%). Regarding the patient plans, the measured doses were compared to the calculation in RadCalc and in our TPSs. Moreover, RadCalc calculations were compared to Isogray and Eclispse ones. Agreements better than (2.8%; ± 1.2%) were found between RadCalc and TPSs. As for the comparison between calculation and measurement the agreement for all of our plans was better than (2.3%; ± 1.1%). The independent MU verification calculation software RadCal has been validated for clinical use and for both 3D-CRT and RapidArc techniques. The perspective of this project includes the validation of RadCal for the Tomotherapy machine installed at centre Antoine Lacassagne.

Keywords: 3D conformational radiotherapy, intensity modulated radiotherapy, monitor unit calculation, dosimetry quality assurance

Procedia PDF Downloads 216
2482 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 384
2481 Reduction of Speckle Noise in Echocardiographic Images: A Survey

Authors: Fathi Kallel, Saida Khachira, Mohamed Ben Slima, Ahmed Ben Hamida

Abstract:

Speckle noise is a main characteristic of cardiac ultrasound images, it corresponding to grainy appearance that degrades the image quality. For this reason, the ultrasound images are difficult to use automatically in clinical use, then treatments are required for this type of images. Then a filtering procedure of these images is necessary to eliminate the speckle noise and to improve the quality of ultrasound images which will be then segmented to extract the necessary forms that exist. In this paper, we present the importance of the pre-treatment step for segmentation. This work is applied to cardiac ultrasound images. In a first step, a comparative study of speckle filtering method will be presented and then we use a segmentation algorithm to locate and extract cardiac structures.

Keywords: medical image processing, ultrasound images, Speckle noise, image enhancement, speckle filtering, segmentation, snakes

Procedia PDF Downloads 530