Search results for: DNA damage response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7220

Search results for: DNA damage response

5450 Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed

Authors: Amr AbdelAzim Ali, G. A. Elsheikh, Moutaz M. Hegazy

Abstract:

Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity.

Keywords: friction torque, reaction wheels modeling, software in the loop, spacecraft attitude control

Procedia PDF Downloads 255
5449 Hybrid Polymer Microfluidic Platform for Studying Endothelial Cell Response to Micro Mechanical Environment

Authors: Mitesh Rathod, Jungho Ahn, Noo Li Jeon, Junghoon Lee

Abstract:

Endothelial cells respond to cues from both biochemical as well as micro mechanical environment. Significant effort has been directed to understand the effects of biochemical signaling, however, relatively little is known about regulation of endothelial cell biology by the micro mechanical environment. Numerous studies have been performed to understand how physical forces regulate endothelial cell behavior. In this regard, past studies have majorly focused on exploring how fluid shear stress governs endothelial cell behavior. Parallel plate flow chambers and rectangular microchannels are routinely employed for applying fluid shear force on endothelial cells. However, these studies fall short in mimicking the in vivo like micro environment from topological aspects. Few studies have only used circular microchannels to replicate in vivo like condition. Seldom efforts have been directed to elucidate the combined effect of topology, substrate rigidity and fluid shear stress on endothelial cell response. In this regard, we demonstrate a facile fabrication process to develop a hybrid polydimethylsiloxane microfluidic platform to study endothelial cell biology. On a single chip microchannels with different cross sections i.e., circular, rectangular and square have been fabricated. In addition, our fabrication approach allows variation in the substrate rigidity along the channel length. Two different variants of polydimethylsiloxane, namely Sylgard 184 and Sylgard 527, were utilized to achieve the variation in rigidity. Moreover, our approach also enables in creating Y bifurcation circular microchannels. Our microfluidic platform thus facilitates for conducting studies pertaining to endothelial cell morphology with respect to change in topology, substrate rigidity and fluid flow on a single chip. The hybrid platform was tested by culturing Human Umbilical Vein Endothelial Cells in circular microchannels with varying substrate rigidity, and exposed to fluid shear stress of 12 dynes/cm² and static conditions. Results indicate the cell area response to flow induced shear stress was governed by the underlying substrate mechanics.

Keywords: hybrid, microfluidic platform, PDMS, shear flow, substrate rigidity

Procedia PDF Downloads 263
5448 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: biochemical reactor, fermentation process, modelling, adaptive control

Procedia PDF Downloads 114
5447 Comparison of Air Quality in 2019 and 2020 in the Campuses of the University of the Basque Country

Authors: Elisabete Alberdi, Irantzu Álvarez, Nerea Astigarraga, Heber Hernández

Abstract:

The purpose of this research work is to study the emissions of certain substances that contribute to air pollution and, as far as possible, to try to eliminate or reduce them, to avoid damage to both health and the environment. This work focuses on analyzing and comparing air quality in 2019 and 2020 in the Autonomous Community of the Basque Country, especially near the UPV/EHU campuses. We use Geostatistics to develop a spatial model and to analyse the levels of pollutants in those areas where the scope of the monitoring stations is limited. Finally, different more sustainable transport alternatives for users have been proposed.

Keywords: air quality, pollutants, monitoring stations, environment, geostatistics

Procedia PDF Downloads 160
5446 Viability of EBT3 Film in Small Dimensions to Be Use for in-Vivo Dosimetry in Radiation Therapy

Authors: Abdul Qadir Jangda, Khadija Mariam, Usman Ahmed, Sharib Ahmed

Abstract:

The Gafchromic EBT3 film has the characteristic of high spatial resolution, weak energy dependence and near tissue equivalence which makes them viable to be used for in-vivo dosimetry in External Beam and Brachytherapy applications. The aim of this study is to assess the smallest film dimension that may be feasible for the use in in-vivo dosimetry. To evaluate the viability, the film sizes from 3 x 3 mm to 20 x 20 mm were calibrated with 6 MV Photon and 6 MeV electron beams. The Gafchromic EBT3 (Lot no. A05151201, Make: ISP) film was cut into five different sizes in order to establish the relationship between absorbed dose vs. film dimensions. The film dimension were 3 x 3, 5 x 5, 10 x 10, 15 x 15, and 20 x 20 mm. The films were irradiated on Varian Clinac® 2100C linear accelerator for dose range from 0 to 1000 cGy using PTW solid water phantom. The irradiation was performed as per clinical absolute dose rate calibratin setup, i.e. 100 cm SAD, 5.0 cm depth and field size of 10x10 cm2 and 100 cm SSD, 1.4 cm depth and 15x15 cm2 applicator for photon and electron respectively. The irradiated films were scanned with the landscape orientation and a post development time of 48 hours (minimum). Film scanning accomplished using Epson Expression 10000 XL Flatbed Scanner and quantitative analysis carried out with ImageJ freeware software. Results show that the dose variation with different film dimension ranging from 3 x 3 mm to 20 x 20 mm is very minimal with a maximum standard deviation of 0.0058 in Optical Density for a dose level of 3000 cGy and the the standard deviation increases with the increase in dose level. So the precaution must be taken while using the small dimension films for higher doses. Analysis shows that there is insignificant variation in the absorbed dose with a change in film dimension of EBT3 film. Study concludes that the film dimension upto 3 x 3 mm can safely be used up to a dose level of 3000 cGy without the need of recalibration for particular dimension in use for dosimetric application. However, for higher dose levels, one may need to calibrate the films for a particular dimension in use for higher accuracy. It was also noticed that the crystalline structure of the film got damage at the edges while cutting the film, which can contribute to the wrong dose if the region of interest includes the damage area of the film

Keywords: external beam radiotherapy, film calibration, film dosimetery, in-vivo dosimetery

Procedia PDF Downloads 481
5445 Development of a New Device for Bending Fatigue Testing

Authors: B. Mokhtarnia, M. Layeghi

Abstract:

This work presented an original bending fatigue-testing setup for fatigue characterization of composite materials. A three-point quasi-static setup was introduced that was capable of applying stress control load in different loading waveforms, frequencies, and stress ratios. This setup was equipped with computerized measuring instruments to evaluate fatigue damage mechanisms. A detailed description of its different parts and working features was given, and dynamic analysis was done to verify the functional accuracy of the device. Feasibility was validated successfully by conducting experimental fatigue tests.

Keywords: bending fatigue, quasi-static testing setup, experimental fatigue testing, composites

Procedia PDF Downloads 105
5444 Typhoon Disaster Risk Assessment of Mountain Village: A Case Study of Shanlin District in Kaohsiung

Authors: T. C. Hsu, H. L. Lin

Abstract:

Taiwan is mountainous country, 70% of land is covered with mountains. Because of extreme climate, the mountain villages with sensitive and fragile environment often get easily affected by inundation and debris flow from typhoon which brings huge rainfall. Due to inappropriate development, overuse and fewer access roads, occurrence of disaster becomes more frequent through downpour and rescue actions are postponed. However, risk map is generally established through administrative boundaries, the difference of urban and rural area is ignored. The neglect of mountain village characteristics eventually underestimates the importance of factors related to vulnerability and reduces the effectiveness. In disaster management, there are different strategies and actions at each stage. According to different tasks, there will be different risk indices and weights to analyze disaster risk for each stage and then it will contribute to confront threat and reduce impact appropriately on right time. Risk map is important in mitigation, but also in response stage because some factors such as road network will be changed by disaster. This study will use risk assessment to establish risk map of Shanlin District which is mountain village in Kaohsiung as a case study in mitigation and response stage through Analytic Hierarchy Process (AHP). AHP helps to recognize the composition and weights of risk factors in mountain village by experts’ opinions through survey design and is combined with present potential hazard map to produce risk map.

Keywords: risk assessment, mountain village, risk map, analytic hierarchy process

Procedia PDF Downloads 386
5443 Optimization of Ultrasound Assisted Extraction and Characterization of Functional Properties of Dietary Fiber from Oat Cultivar S2000

Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Waseem Khalid, Ammara Ainee, Taleeha Roheen, Sadaf Javaria, Aftab Ahmed, Hira Fatima, Mian Nadeem Riaz, Muhammad Zubair Khalid, Isam A. Mohamed Ahmed J, Moneera O. Aljobair

Abstract:

This study was executed to explore the efficacy of ultrasound-assisted extraction of dietary fiber from oat cultivar S2000. Extraction (variables time, temperature and amplitude) was optimized by using response surface methodology (RSM) conducted by Box Behnken Design (BBD). The effect of time, temperature and amplitude were studied at three levels. It was observed that time and temperature exerted more impact on extraction efficiency as compared to amplitude. The highest yield of total dietary fiber (TDF), soluble dietary fiber (SDF) and In-soluble dietary fiber (IDF) fractions were observed under ultrasound processing for 20 min at 40 ◦C with 80% amplitude. Characterization of extracted dietary fiber showed that it had better crystallinity, thermal properties and good fibrous structure. It also showed better functional properties as compared to traditionally extracted dietary fiber. Furthermore, dietary fibers from oats may offer high-value utilization and the expansion of comprehensive utilization in functional food and nutraceutical development.

Keywords: extraction, ultrasonication, response surface methodology, box behnken design

Procedia PDF Downloads 19
5442 Allelopathic Action of Diferents Sorghum bicolor [L.] Moench Fractions on Ipomoea grandifolia [Dammer] O'Donell

Authors: Mateus L. O. Freitas, Flávia H. de M. Libório, Letycia L. Ricardo, Patrícia da C. Zonetti, Graciene de S. Bido

Abstract:

Weeds compete with agricultural crops for resources such as light, water, and nutrients. This competition can cause significant damage to agricultural producers, and, currently, the use of agrochemicals is the most effective method for controlling these undesirable plants. Morning glory (Ipomoea grandifolia [Dammer] O'Donell) is an aggressive weed and significantly reduces agricultural productivity making harvesting difficult, especially mechanical harvesting. The biggest challenge in modern agriculture is to preserve high productivity reducing environmental damage and maintaining soil characteristics. No-till is a sustainable practice that can reduce the use of agrochemicals and environmental impacts due to the presence of plant residues in the soil, which release allelopathic compounds and reduce the incidence or alter the growth and development of crops and weeds. Sorghum (Sorghum bicolor [L.] Moench) is a forage with proven allelopathic activity, mainly for producing sorgholeone. In this context, this research aimed to evaluate the allelopathic action of sorghum fractions using hexane, dichloromethane, butanol, and ethyl acetate on the germination and initial growth of morning glory. The parameters analyzed were the percentage of germination, speed of germination, seedling length, and biomass weight (fresh and dry). The bioassays were performed in Petri dishes, kept in an incubation chamber for 7 days, at 25 °C, with a 12h photoperiod. The experimental design was completely randomized, with five replicates of each treatment. The data were evaluated by analysis of variance, and the averages between each treatment were compared using the Scott Knott test at a 5% significance level. The results indicated that the dichloromethane and ethyl acetate fractions showed bioherbicidal effects, promoting effective reductions on germination and initial growth of the morning glory. It was concluded that allelochemicals were probably extracted in these fractions. These secondary metabolites can reduce the use of agrochemicals and environmental impact, making agricultural production systems more sustainable.

Keywords: allelochemicals, secondary metabolism, sorgoleone, weeds

Procedia PDF Downloads 136
5441 Analysis and Evaluation of the Public Responses to Traffic Congestion Pricing Schemes in Urban Streets

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Traffic congestion pricing in urban streets is one of the most suitable options for solving the traffic problems and environment pollutions in the cities of the country. Unlike its acceptable outcomes, there are problems concerning the necessity to pay by the mass. Regarding the fact that public response in order to succeed in this strategy is so influential, studying their response and behavior to get the feedback and improve the strategies is of great importance. In this study, a questionnaire was used to examine the public reactions to the traffic congestion pricing schemes at the center of Tehran metropolis and the factors involved in people’s decision making in accepting or rejecting the congestion pricing schemes were assessed based on the data obtained from the questionnaire as well as the international experiences. Then, by analyzing and comparing the schemes, guidelines to reduce public objections to them are discussed. The results of reviewing and evaluating the public reactions show that all the pros and cons must be considered to guarantee the success of these projects. Consequently, with targeted public education and consciousness-raising advertisements, prior to initiating a scheme and ensuring the mechanism of the implementation after the start of the project, the initial opposition is reduced and, with the gradual emergence of the real and tangible benefits of its implementation, users’ satisfaction will increase.

Keywords: demand management, international experiences, traffic congestion pricing, public acceptance, public reactions, public objection

Procedia PDF Downloads 229
5440 A Review Investigating the Potential Of Zooxanthellae to Be Genetically Engineered to Combat Coral Bleaching

Authors: Anuschka Curran, Sandra Barnard

Abstract:

Coral reefs are of the most diverse and productive ecosystems on the planet, but due to the impact of climate change, these infrastructures are dying off primarily through coral bleaching. Coral bleaching can be described as the process by which zooxanthellae (algal endosymbionts) are expelled from the gastrodermal cavity of the respective coral host, causing increased coral whitening. The general consensus is that mass coral bleaching is due to the dysfunction of photosynthetic processes in the zooxanthellae as a result of the combined action of elevated temperature and light-stress. The question then is, do zooxanthellae have the potential to play a key role in the future of coral reef restoration through genetic engineering? The aim of this study is firstly to review the different zooxanthellae taxa and their traits with respect to environmental stress, and secondly, to review the information available on the protective mechanisms present in zooxanthellae cells when experiencing temperature fluctuations, specifically concentrating on heat shock proteins and the antioxidant stress response of zooxanthellae. The eight clades (A-H) previously recognized were redefined into seven genera. Different zooxanthellae taxa exhibit different traits, such as their photosynthetic stress responses to light and temperature. Zooxanthellae have the ability to determine the amount and type of heat shock proteins (hsps) present during a heat response. The zooxanthellae can regulate both the host’s respective hsps as well as their own. Hsps, generally found in genotype C3 zooxanthellae, such as Hsp70 and Hsp90, contribute to the thermal stress response of the respective coral host. Antioxidant activity found both within exposed coral tissue, and the zooxanthellae cells can prevent coral hosts from expelling their endosymbionts. The up-regulation of gene expression, which may mitigate thermal stress induction of any of the physiological aspects discussed, can ensure stable coral-zooxanthellae symbiosis in the future. It presents a viable alternative strategy to preserve reefs amidst climate change. In conclusion, despite their unusual molecular design, genetic engineering poses as a useful tool in understanding and manipulating variables and systems within zooxanthellae and therefore presents a solution that can ensure stable coral-zooxanthellae symbiosis in the future.

Keywords: antioxidant enzymes, genetic engineering, heat-shock proteins, Symbiodinium

Procedia PDF Downloads 173
5439 Evaluation of Radio Protective Potential of Indian Bamboo Leaves

Authors: Mansi Patel, Priti Mehta

Abstract:

Background: Ionizing radiations have detrimental effects on humans, and the growing technological encroachment has increased human exposure to it enormously. So, the safety issues have emphasized researchers to develop radioprotector from natural resources having minimal toxicity. A substance having anti-inflammatory, antioxidant, and immunomodulatory activity can be a potential candidate for radioprotection. One such plant with immense potential i.e. Bamboo was selected for the present study. Purpose: The study aims to evaluate the potential of Indian bamboo leaves for protection against the clastogenic effect of gamma radiation. Methods: The protective effect of bamboo leaf extract against gamma radiation-induced genetic damage in human peripheral blood lymphocytes (HPBLs) was evaluated in vitro using Cytokinesis blocked micronuclei assay (CBMN). The blood samples were pretreated with varying concentration of extract 30 min before the radiation exposure (4Gy & 6Gy). The reduction in the frequency of micronuclei was observed for the irradiated and control groups. The effect of various concentration of bamboo leaf extract (400,600,800 mg/kg) on the development of radiation induced sickness and altered mortality in mice exposed to 8 Gy of whole-body gamma radiation was studied. The developed symptoms were clinically scored by multiple endpoints for 30 days. Results: Treatment of HPBLs with varying concentration of extract before exposure to a different dose of γ- radiation resulted in significant (P < 0.0001) decline of radiation induced micronuclei. It showed dose dependent and concentration driven activity. The maximum protection ~ 70% was achieved at nine µg/ml concentration. Extract treated whole body irradiated mice showed 50%, 83.3% and 100% survival for 400, 600, and 800mg/kg with 1.05, 0.43 and 0 clinical score respectively when compared to Irradiated mice having 6.03 clinical score and 0% survival. Conclusion: Our findings indicate bamboo leaf extract reduced the radiation induced cytogenetic damage. It has also increased the survival ratio and reduced the radiation induced sickness and mortality when exposed to a lethal dose of gamma radiation.

Keywords: bamboo leaf extract, Cytokinesis blocked micronuclei (CBMN) assay, ionizing radiation, radio protector

Procedia PDF Downloads 131
5438 Evaluating the Effectiveness of Plantar Sensory Insoles and Remote Patient Monitoring for Early Intervention in Diabetic Foot Ulcer Prevention in Patients with Peripheral Neuropathy

Authors: Brock Liden, Eric Janowitz

Abstract:

Introduction: Diabetic peripheral neuropathy (DPN) affects 70% of individuals with diabetes1. DPN causes a loss of protective sensation, which can lead to tissue damage and diabetic foot ulcer (DFU) formation2. These ulcers can result in infections and lower-extremity amputations of toes, the entire foot, and the lower leg. Even after a DFU is healed, recurrence is common, with 49% of DFU patients developing another ulcer within a year and 68% within 5 years3. This case series examines the use of sensory insoles and newly available plantar data (pressure, temperature, step count, adherence) and remote patient monitoring in patients at risk of DFU. Methods: Participants were provided with custom-made sensory insoles to monitor plantar pressure, temperature, step count, and daily use and were provided with real-time cues for pressure offloading as they went about their daily activities. The sensory insoles were used to track subject compliance, ulceration, and response to feedback from real-time alerts. Patients were remotely monitored by a qualified healthcare professional and were contacted when areas of concern were seen and provided coaching on reducing risk factors and overall support to improve foot health. Results: Of the 40 participants provided with the sensory insole system, 4 presented with a DFU. Based on flags generated from the available plantar data, patients were contacted by the remote monitor to address potential concerns. A standard clinical escalation protocol detailed when and how concerns should be escalated to the provider by the remote monitor. Upon escalation to the provider, patients were brought into the clinic as needed, allowing for any issues to be addressed before more serious complications might arise. Conclusion: This case series explores the use of innovative sensory technology to collect plantar data (pressure, temperature, step count, and adherence) for DFU detection and early intervention. The results from this case series suggest the importance of sensory technology and remote patient monitoring in providing proactive, preventative care for patients at risk of DFU. This robust plantar data, with the addition of remote patient monitoring, allow for patients to be seen in the clinic when concerns arise, giving providers the opportunity to intervene early and prevent more serious complications, such as wounds, from occurring.

Keywords: diabetic foot ulcer, DFU prevention, digital therapeutics, remote patient monitoring

Procedia PDF Downloads 64
5437 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra High Performance Concrete Beams

Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes

Abstract:

Ultra high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined the fiber orientation was not significantly different. It is believed the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.

Keywords: fiber orientation, reinforced ultra high performance concrete beams, shear, transverse steel

Procedia PDF Downloads 102
5436 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 322
5435 Investigation of the Excitotoxicity Pathways in Neuroblastoma Cells

Authors: Merve Colak, Gizem Donmez Yalcin

Abstract:

Glutamate has many neurological functions in the central nervous system and is found at high concentrations in the brain. Increased levels of glutamate in the neuronal space are toxic, causing neuron damage and death. This is called glutamate-induced excitotoxicity. Excitotoxicity is among the causes of many neurological diseases such as trauma, cerebral ischemia, epilepsy, Parkinson's Disease, Alzheimer's Disease. Since neuroblastoma cells are known to be excitotoxic, we propose that excitotoxicity can be studied in neuroblastoma cells. Excitotoxicity can be induced using kainic acid in neuroblastoma cells. Measuring the secretion of glutamate, excitotoxicity can be analyzed in neuroblastoma cells.

Keywords: glutamate, excitotoxicity, kainic acid, Sirt4

Procedia PDF Downloads 145
5434 Facial Partial Unilateral Lentiginosis Treated with Low-Fluence Q-Switched 1,064-Nm Neodymium-Doped Yttrium Aluminum Garnet Laser

Authors: En Hyung Kim

Abstract:

Partial unilateral lentiginosis (PUL) is an unusual pigmentary disorder characterized by numerous lentigines grouped within an area of normal skin. Although treatment is not necessary, many patients with facial PUL seek medical help for cosmetic reasons. There is no established standard treatment for PUL. Conventional lasers may cause postinflammatory hyperpigmentation because keratinocytes are injured during the process. Also scarring, long downtime and pain are important issues. Case: A 19-year-old patient with facial PUL was treated with 1064-nm Q-Switched Neodymium-Doped Yttrium Aluminum Garnet (QS Nd:YAG) laser. The patient was treated at one-week intervals starting with a spot size of 6 mm, a fluence of 2.5 J/cm2 and a pulse rate of 10 Hz with 1-2 passes of slow sliding technique with approximately 5-15 % overlap. The fluence was elevated to 3 J/cm2 after the 4th session according to treatment response and patient tolerance. After 10 treatment sessions the lesions were remarkably improved. Discussion: Although the exact mechanism by which low fluence 1,064-nm QS Nd:YAG laser improves pigmentary lesions is unclear, the term ‘subcellular selective photothermolysis’ and ‘melanocyte apoptosis and replacement’ have been proposed. If appropriate measures are taken to monitor patient response during and after the procedure, low fluence 1064-nm QS Nd:YAG laser may achieve good cosmetic result in the treatment of PUL with a very safe and effective profile.

Keywords: laser toning, low fluence, 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser, partial unilateral lentiginosis

Procedia PDF Downloads 218
5433 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF)

Procedia PDF Downloads 287
5432 Chronic Renal Failure Associated with Heavy Metal Contamination of Drinking Water in Hail, Kingdom of Saudi Arabia

Authors: Elsayed A. M. Shokr, A. Alhazemi, T. Naser, Talal A. Zuhair, Adel A. Zuhair, Ahmed N. Alshamary, Thamer A. Alanazi, Hosam A. Alanazi

Abstract:

The main threats to human health from heavy metals are associated with exposure to Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. is mainly via intake of drinking water being the most important source in most populations. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. A strong relationship between contaminated drinking water with heavy metals from some of the stations of water shopping in Hail, KSA and chronic diseases such as renal failure, liver cirrhosis, and chronic anemia has been identified in this study. These diseases are apparently related to contaminant drinking water with heavy metals such as Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. Renal failure is related to contaminate drinking water with lead and cadmium, liver cirrhosis to copper and molybdenum, and chronic anemia to copper and cadmium. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. The general population is primarily exposed to mercury via drinking water being a major source of methyl mercury exposure, and dental amalgam. During the last century lead, cadmium, zinc, iron and arsenic is mainly via intake of drinking water being the most important source in most populations. Long-term exposure to lead, cadmium, zinc, iron and arsenic in drinking-water is mainly related to primarily in the form of kidney damage. Studies of these diseases suggest that abnormal incidence in specific areas is related to toxic materials in the groundwater and thereby led to the contamination of drinking water in these areas.

Keywords: heavy metals, liver functions, kidney functions and chronic renal failure, hail, renal, water

Procedia PDF Downloads 305
5431 Simulation Programs to Education of Crisis Management Members

Authors: Jiri Barta

Abstract:

This paper deals with a simulation programs and technologies using in the educational process for members of the crisis management. Risk analysis, simulation, preparation and planning are among the main activities of workers of crisis management. Made correctly simulation of emergency defines the extent of the danger. On this basis, it is possible to effectively prepare and plan measures to minimize damage. The paper is focused on simulation programs that are trained at the University of Defence. Implementation of the outputs from simulation programs in decision-making processes of crisis staffs is one of the main tasks of the research project.

Keywords: crisis management, continuity, critical infrastructure, dangerous substance, education, flood, simulation programs

Procedia PDF Downloads 452
5430 Plantar Neuro-Receptor Activation in Total Knee Arthroplasty Patients: Impact on Clinical Function, Pain, and Stiffness - A Randomized Controlled Trial

Authors: Woolfrey K., Woolfrey M., Bolton C. L., Warchuk D.

Abstract:

Objectives: Osteoarthritis is the most common joint disease of adults worldwide. Despite total knee arthroplasty (TKA) demonstrating high levels of success, 20% of patients report dissatisfaction with their result. VOXX Wellness Stasis Socks are embedded with a proprietary pattern of neuro-receptor activation points that have been proven to activate a precise neuro-response, according to the pattern theory of haptic perception, which stimulates improvements in pain and function. The use of this technology in TKA patients may prove beneficial as an adjunct to recovery as many patients suffer from deficits to their proprioceptive system caused by ligamentous damage and alterations to mechanoreceptors during the procedure. We hypothesized that VOXX Wellness Stasis Socks are a safe, cost-effective, and easily scalable strategy to support TKA patients through their recovery. Design: Double-blinded, placebo-controlled randomized trial. Participants: Patients scheduled to receive TKA were considered eligible for inclusion in the trial. Interventions: Intervention group (I): VOXX Wellness Stasis socks containing receptor point-activation technology. Control group (C): VOXX Wellness Stasis socks without receptor point-activation technology. Sock use during the waking hours x 6 weeks. Main Outcome Measures: Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) questionnaire completed at baseline, 2 weeks, and 6 weeks to assess pain, stiffness, and physical function. Results: Data analysis using SPSS software. P-values, effect sizes, and confidence intervals are reported to assess clinical relevance of the finding. Physical status classifications were compared using t-test. Within-subject and between-subject differences in the mean WOMAC were analyzed by ANOVA. Effect size was analyzed using Cramer’s V. Consistent improvement in WOMAC scores for pain and stiffness at 2 weeks post op in the I over the C group. The womac scores assessing physical function showed a consistent improvement at both 2 and 6 weeks post op in the I group compared to C group. Conclusions: VOXX proved to be a low cost, safe intervention in TKA to help patients improve with regard to pain, stiffness, and physical function. Disclosures: None

Keywords: osteoarthritis, RCT, pain management, total knee arthroplasty

Procedia PDF Downloads 518
5429 Testing a Dose-Response Model of Intergenerational Transmission of Family Violence

Authors: Katherine Maurer

Abstract:

Background and purpose: Violence that occurs within families is a global social problem. Children who are victims or witness to family violence are at risk for many negative effects both proximally and distally. One of the most disconcerting long-term effects occurs when child victims become adult perpetrators: the intergenerational transmission of family violence (ITFV). Early identification of those children most at risk for ITFV is needed to inform interventions to prevent future family violence perpetration and victimization. Only about 25-30% of child family violence victims become perpetrators of adult family violence (either child abuse, partner abuse, or both). Prior research has primarily been conducted using dichotomous measures of exposure (yes; no) to predict ITFV, given the low incidence rate in community samples. It is often assumed that exposure to greater amounts of violence predicts greater risk of ITFV. However, no previous longitudinal study with a community sample has tested a dose-response model of exposure to physical child abuse and parental physical intimate partner violence (IPV) using count data of frequency and severity of violence to predict adult ITFV. The current study used advanced statistical methods to test if increased childhood exposure would predict greater risk of ITFV. Methods: The study utilized 3 panels of prospective data from a cohort of 15 year olds (N=338) from the Project on Human Development in Chicago Neighborhoods longitudinal study. The data were comprised of a stratified probability sample of seven ethnic/racial categories and three socio-economic status levels. Structural equation modeling was employed to test a hurdle regression model of dose-response to predict ITFV. A version of the Conflict Tactics Scale was used to measure physical violence victimization, witnessing parental IPV and young adult IPV perpetration and victimization. Results: Consistent with previous findings, past 12 months incidence rates severity and frequency of interpersonal violence were highly skewed. While rates of parental and young adult IPV were about 40%, an unusually high rate of physical child abuse (57%) was reported. The vast majority of a number of acts of violence, whether minor or severe, were in the 1-3 range in the past 12 months. Reported frequencies of more than 5 times in the past year were rare, with less than 10% of those reporting more than six acts of minor or severe physical violence. As expected, minor acts of violence were much more common than acts of severe violence. Overall, regression analyses were not significant for the dose-response model of ITFV. Conclusions and implications: The results of the dose-response model were not significant due to a lack of power in the final sample (N=338). Nonetheless, the value of the approach was confirmed for the future research given the bi-modal nature of the distributions which suggest that in the context of both child physical abuse and physical IPV, there are at least two classes when frequency of acts is considered. Taking frequency into account in predictive models may help to better understand the relationship of exposure to ITFV outcomes. Further testing using hurdle regression models is suggested.

Keywords: intergenerational transmission of family violence, physical child abuse, intimate partner violence, structural equation modeling

Procedia PDF Downloads 226
5428 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades

Procedia PDF Downloads 86
5427 Optimization Techniques of Doubly-Fed Induction Generator Controller Design for Reliability Enhancement of Wind Energy Conversion Systems

Authors: Om Prakash Bharti, Aanchal Verma, R. K. Saket

Abstract:

The Doubly-Fed Induction Generator (DFIG) is suggested for Wind Energy Conversion System (WECS) to extract wind power. DFIG is preferably employed due to its robustness towards variable wind and rotor speed. DFIG has the adaptable property because the system parameters are smoothly dealt with, including real power, reactive power, DC-link voltage, and the transient and dynamic responses, which are needed to analyze constantly. The analysis becomes more prominent during any unusual condition in the electrical power system. Hence, the study and improvement in the system parameters and transient response performance of DFIG are required to be accomplished using some controlling techniques. For fulfilling the task, the present work implements and compares the optimization methods for the design of the DFIG controller for WECS. The bio-inspired optimization techniques are applied to get the optimal controller design parameters for DFIG-based WECS. The optimized DFIG controllers are then used to retrieve the transient response performance of the six-order DFIG model with a step input. The results using MATLAB/Simulink show the betterment of the Firefly algorithm (FFA) over other control techniques when compared with the other controller design methods.

Keywords: doubly-fed induction generator, wind turbine, wind energy conversion system, induction generator, transfer function, proportional, integral, derivatives

Procedia PDF Downloads 82
5426 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 126
5425 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study

Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis

Abstract:

The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.

Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand

Procedia PDF Downloads 181
5424 The History of the Residential Care Environments for the Elderly in Iran

Authors: Saeed Haghnia

Abstract:

This paper traces the back history of environments in which the elderly who could not stay in private dwellings were accommodated and taken care of in Iran in the 19th century. It investigates the factors impacting on the establishment of the first nursing homes in Iran in 1973. Today in 2020, the nursing home is the only available model of residential care environment for the elderly who cannot stay in private dwellings in Iran. Understanding the evolution of these environments from a socio-political perspective is crucial before studying nursing homes’ response to the elderly and society in Iran and seeking any alternative model specific to the context. However, no study on the evolution of these environments in Iran was found. Thus, this paper, by going through primary and secondary resources and from a socio-political perspective, investigates how the elderly who could not stay in private dwellings were accommodated and taken care of in Iran in the 19th century. Maristan, in the early 19th century in Egypt as a part of Islamic territory, is an example of such spaces in which homeless elderly were kept and taken care of. This study suggests that in the 19th century in Iran in lack of significant governmental influence over people’s social affairs, any potential environments accommodating and taking care of the elderly who could not stay in private dwellings (mainly homeless) in Iran were probably regulated or supported by local figures, specifically clergies, as a response to the need for taking care of the vulnerable members of society.

Keywords: nursing home, ageing, Iran, middle east, Qajar, Pahlavi

Procedia PDF Downloads 80
5423 Reading the Memoirs of American Caregiving Daughters: A Care-Focused Feminist Approach

Authors: Su-Lin Yu

Abstract:

This paper will explore how gender and care discourse are intersected, reformulated and contested in American daughters’ caregiving memoirs. In particular, it will attempt to show how gender structure has worked to regulate a daughter’s response to her mother’s illness. In other words, how do certain cultural notions and class difference affect the ways in which the daughter enacts her caregiving response to her mother’s illness? What is the interrelation of female subjectivity and care practice? To understand care and gender politics in the memoirs, this paper will engage in close readings of five texts: Sandra Bullock Simith’s Trading Places: Becoming My Mother’s Mother: A Daughter’s Memoir (2015),Martha Stettinius’s Inside the Dementia Epidemic: A Daughter’s Memoir (2012), Patricia Thompson Collamer’s Grace on the Ledge: a Caregiver's Memoir, Judith Henry’s The Dutiful Daughter's Guide to Caregiving: A Practical Memoir (2015), and The Daughter's Dilemma: A Survival Guide to Caring for an Aging, Abusive Parent by Emily Wanderer Cohen (2018). By analyzing these texts, this paper will show why adult daughters become the primary caregivers, how gender norms and care practices influence a daughter’s thoughts and actions, and how it affects her self-understanding. Taken as a whole, then, the paper will provide an important examination not only of care and gender politics, but also a contribution to the intersecting discourses of illness, death, and mother-daughter relationship.

Keywords: care ethics, daughter-mother relationship, gender politics, memoirs

Procedia PDF Downloads 248
5422 Therapeutic Role of T Subpopulations Cells (CD4, CD8 and Treg (CD25 and FOXP3+ Cells) of UC MSC Isolated from Three Different Methods in Various Disease

Authors: Kumari Rekha, Mathur K Dhananjay, Maheshwari Deepanshu, Nautiyal Nidhi, Shubham Smriti, Laal Deepika, Sinha Swati, Kumar Anupam, Biswas Subhrajit, Shiv Kumar Sarin

Abstract:

Background: Mesenchymal stem cells are multipotent stem cells derived from mesoderm and are used for therapeutic purposes because of their self-renewal, homing capacity, Immunomodulatory capability, low immunogenicity and mitochondrial transfer signaling. MSCs have the ability to regulate the mechanism of both innate as well as adaptive immune responses through the modulation of cellular response and the secretion of inflammatory mediators. Different sources of MSC are UC MSC, BM MSC, Dental Pulp, and Adipose MSC. The most frequent source used is umbilical cord tissue due to its being easily available and free of limitations of collection procedures from respective hospitals. The immunosuppressive role of MSCs is particularly interesting for clinical use since it confers resistance to rejection by the host immune response. Methodology: In this study, T helper cells (TH4), Cytotoxic T cells (CD-8), immunoregulatory cells (CD25 +FOXP3+) are compared from isolated MSC from three different methods, UC Dissociation Kit (Miltenyi), Explant Culture and Collagenase Type-IV. To check the immunomodulatory property, these MSCs were seeded with PBMC(Coculture) in CD3 coated 24 well plates. Cd28 antibody was added in coculture for six days. The coculture was analyzed in FACS Verse flow cytometry. Results: From flow cytometry analysis of coculture, it found that All over T helper cells (CD4+) number p<0.0264 increases in (All Enzymes) MSC rather than explant MSC(p>0.0895) as compared to Collagenase(p>0.7889) in a coculture of Activated T cell and Mesenchymal Stem Cell. Similar T reg cells (CD25+, FOXP3+) expression p<0.0234increases in All Enzymes), decreases in Explant and Collagenase. Experiments have shown that MSCs can also directly prevent the cytotoxic activity of CD8 lymphocytes mainly by blocking their proliferation rather than by inhibiting the cytotoxic effect. And promoting the t-reg cells, which helps in the mediation of immune response in various diseases. Conclusion: MSC suppress Cytotoxic CD8 T cell and Enhance immunoregulatory T reg (CD4+, CD25+, FOXP3+) Cell expression. Thus, MSC maintains a proper balance(ratio) between CD4 T cells and Cytotoxic CD8 T cells.

Keywords: MSC, disease, T cell, T regulatory

Procedia PDF Downloads 99
5421 Development of a Combustible Gas Detector with Two Sensor Modules to Enable Measuring Range of Low Concentration

Authors: Young Gyu Kim, Sangguk Ahn, Gyoutae Park, Hiesik Kim

Abstract:

In the gas industrial fields, there are many problems to detect extremely small amounts of combustible gas (CH₄) if a conventional semiconductor is used. Those reasons are that measuring is difficult at the low concentration level, the stabilization time is long, and an initial response time is slow. In this study, we propose a method to solve these issues using two specific sensors to overcome the circumstances of temperature and humidity. This idea is to combine a catalytic and a semiconductor type sensor and to utilize every advantage from every sensor’s characteristic. In order to achieve the goal, we reduced fluctuations of a gas sensor for temperature and humidity by applying designed circuits for sensing temperature and humidity. And we induced the best calibration line of gas sensors through adjusting a weight value corresponding to changeable patterns of temperature and humidity after their data are previously acquired and stored. We proposed and developed the gas leak detector using two sensor modules, which is first operated by a semiconductor sensor for measuring small gas quantities and second a catalytic type sensor is detected if measuring range of the first sensor is beyond. We conclusively verified characteristics of sharp sensitivity and fast response time against even at lower gas concentration level through experiments other than a conventional gas sensor. We think that our proposed idea is very useful if another gas leak is developed to enable measuring extremely small quantities of toxic and flammable gases.

Keywords: gas sensor, leak detector, lower concentration, and calibration

Procedia PDF Downloads 229