Search results for: viscous and adhesive forces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1703

Search results for: viscous and adhesive forces

1553 Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery

Authors: Meet Bhatia

Abstract:

Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs.

Keywords: hydrogen peroxide, well stimulation, heavy oil recovery, steam injection

Procedia PDF Downloads 312
1552 Resolving a Piping Vibration Problem by Installing Viscous Damper Supports

Authors: Carlos Herrera Sierralta, Husain M. Muslim, Meshal T. Alsaiari, Daniel Fischer

Abstract:

Preventing piping fatigue flow induced vibration in the Oil & Gas sector demands not only the constant development of engineering design methodologies based on available software packages, but also special piping support technologies for designing safe and reliable piping systems. The vast majority of piping vibration problems in the Oil & Gas industry are provoked by the process flow characteristics which are basically intrinsically related to the fluid properties, the type of service and its different operational scenarios. In general, the corrective actions recommended for flow induced vibration in piping systems can be grouped in two major areas: those which affect the excitation mechanisms typically associated to process variables, and those which affect the response mechanism of the pipework per se, and the pipework associated steel support structure. Where possible the first option is to try to solve the flow induced problem from the excitation mechanism perspective. However, in producing facilities the approach of changing process parameters might not always be convenient as it could lead to reduction of production rates or it may require the shutdown of the system in order to perform the required piping modification. That impediment might lead to a second option, which is to modify the response of the piping system to excitation generated by the type of process flow. In principle, the action of shifting the natural frequency of the system well above the frequency inherent to the process always favours the elimination, or considerably reduces, the level of vibration experienced by the piping system. Tightening up the clearances at the supports (ideally zero gap), and adding new static supports at the system, are typical ways of increasing the natural frequency of the piping system. However, only stiffening the piping system may not be sufficient to resolve the vibration problem, and in some cases, it might not be feasible to implement it at all, as the available piping layout could create limitations on adding supports due to thermal expansion/contraction requirements. In these cases, utilization of viscous damper supports could be recommended as these devices can allow relatively large quasi-static movement of piping while providing sufficient capabilities of dissipating the vibration. Therefore, when correctly selected and installed, viscous damper supports can provide a significant effect on the response of the piping system over a wide range of frequencies. Viscous dampers cannot be used to support sustained, static loads. This paper shows over a real case example, a methodology which allows to determine the selection of the viscous damper supports via a dynamic analysis model. By implementing this methodology, it was possible to resolve the piping vibration problem throughout redesigning adequately the existing static piping supports and by adding new viscous dampers supports. This was conducted on-stream at the oil crude pipeline in question without the necessity of reducing the production of the plant. Concluding that the application of the methodology of this paper can be applied to solve similar cases in a straightforward manner.

Keywords: dynamic analysis, flow induced vibration, piping supports, turbulent flow, slug flow, viscous damper

Procedia PDF Downloads 100
1551 Basic Business-Forces behind the Surviving and Sustainable Organizations: The Case of Medium Scale Contractors in South Africa

Authors: Iruka C. Anugwo, Winston M. Shakantu

Abstract:

The objective of this study is to uncover the basic business-forces that necessitated the survival and sustainable performance of the medium scale contractors in the South African construction market. This study is essential as it set to contribute towards long-term strategic solutions for combating the incessant failure of start-ups construction organizations within South African. The study used a qualitative research methodology; as the most appropriate approach to elicit and understand, and uncover the phenomena that are basic business-forces for the active contractors in the market. The study also adopted a phenomenological study approach; and in-depth interviews were conducted with 20 medium scale contractors in Port Elizabeth, South Africa, between months of August to October 2015. This allowed for an in-depth understanding of the critical and basic business-forces that influenced their survival and performance beyond the first five years of business operation. Findings of the study showed that for potential contractors (startups), to survival in the competitive business environment such as construction industry, they must possess the basic business-forces. These forces are educational knowledge in construction and business management related disciplines, adequate industrial experiences, competencies and capabilities to delivery excellent services and products as well as embracing the spirit of entrepreneurship. Convincingly, it can be concluded that the strategic approach to minimize the endless failure of startups construction businesses; the potential construction contractors must endeavoring to access and acquire the basic educationally knowledge, training and qualification; need to acquire industrial experiences in collaboration with required competencies, capabilities and entrepreneurship acumen. Without these basic business-forces as been discovered in this study, the majority of the contractors gaining entrance in the market will find it difficult to develop and grow a competitive and sustainable construction organization in South Africa.

Keywords: basic business-forces, medium scale contractors, South Africa, sustainable organisations

Procedia PDF Downloads 260
1550 A Human Centered Design of an Exoskeleton Using Multibody Simulation

Authors: Sebastian Kölbl, Thomas Reitmaier, Mathias Hartmann

Abstract:

Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined.

Keywords: assistive devices, ergonomic design, inverse dynamics, inverse kinematics, multibody simulation

Procedia PDF Downloads 136
1549 Modeling and Simulation of Underwater Flexible Manipulator as Raleigh Beam Using Bond Graph

Authors: Sumit Kumar, Sunil Kumar, Chandan Deep Singh

Abstract:

This paper presents modeling and simulation of flexible robot in an underwater environment. The underwater environment completely contrasts with ground or space environment. The robot in an underwater situation is subjected to various dynamic forces like buoyancy forces, hydrostatic and hydrodynamic forces. The underwater robot is modeled as Rayleigh beam. The developed model further allows estimating the deflection of tip in two directions. The complete dynamics of the underwater robot is analyzed, which is the main focus of this investigation. The control of robot trajectory is not discussed in this paper. Simulation is performed using Symbol Shakti software.

Keywords: bond graph modeling, dynamics. modeling, rayleigh beam, underwater robot

Procedia PDF Downloads 560
1548 Elite Rain: A Solution to the Problem of Destructive Processes in Iran and Other Countries

Authors: Khaled Ali Soltan

Abstract:

Iran can be considered a triangle that is affected by 3 forces: the government, the elite, and the people. Over the last 100 years, these three forces have been at odds with each other. This lack of coordination and sometimes antagonism among these three forces has led to lawlessness in Iran (both the government and the people have entered the cycle of lawlessness) and the spread of destructive processes in the country and the destruction of resources, both natural and human resources. The direct and negative impact of this issue on people's lives as well as the environment highlights the importance of this article. This article descriptively deals with the issue and suggests solutions and examines possible problems and obstacles. There seems to be a way to establish a connection’ closeness and coordination among these three forces and put them on the path of development. ELITE RAIN is a scientific-popular process that can create coordination and cooperation between these forces, prevent destructive processes in the country and put it on the path of sustainable development and a better life. This solution is a more advanced model of brainstorming technique introduced by Alex Osborn in 1953. Given that people have tried different types of protests to improve the status quo, such as the change of government in 1979 which led to the establishment of the theocracy, participating in elections that resulted in more frustration and corruption due to the lack of real parties, and sporadic street protests that resulted in nothing more than repression, it seems that this solution can be successful.

Keywords: corruption, destruction of resources, elite rain, Iran, legal complaints, sustainable development, the elite

Procedia PDF Downloads 55
1547 Influence of Preheating Self-Adhesive Cements on the Degree of Conversion, Cell Migration and Cell Viability in NIH/3T3

Authors: Celso Afonso Klein Jr., Henrique Cantarelli, Fernando Portella, Keiichi Hosaka, Eduardo Reston, Fabricio Collares, Roberto Zimmer

Abstract:

TTo evaluate the influence of preheating self-adhesive cement at 39ºC on cell migration, cytotoxicity and degree of conversion. RelyX U200, Set PP and MaxCem Elite were subjected to a degree of conversion analysis (FTIR-ATR). For the cytotoxicity analysis, extracts (24 h and 7 days) were placed in contact with NIH/3T3 cells. For cell migration, images were captured of each sample until the possible closure of the cleft occurred. In the results of the degree of conversion, preheating did not improve the conversion of cement. For the MTT, preheating did not improve the results within 24 hours. However, it generated positive results within 7 days for the Set PP resin cement. For cell migration, high rates of cell death were found in all groups. It is concluded that preheating at 39ºC caused a positive effect only in increasing the cell viability of the Set PP resin cement and that both materials analyzed are highly cytotoxic.

Keywords: dental cements, resin cements, degree of conversion, cytotoxicity, cell migration assays

Procedia PDF Downloads 42
1546 Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices

Authors: M. Habibi

Abstract:

The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy.

Keywords: plasmoids, p11B fuel, ion viscous heating, quantum magnetic field, plasma focus device

Procedia PDF Downloads 432
1545 Nanomaterials for Archaeological Stone Conservation: Re-Assembly of Archaeological Heavy Stones Using Epoxy Resin Modified with Clay Nanoparticles

Authors: Sayed Mansour, Mohammad Aldoasri, Nagib Elmarzugi, Nadia A. Al-Mouallimi

Abstract:

The archaeological large stone used in construction of ancient Pharaonic tombs, temples, obelisks and other sculptures, always subject to physicomechanical deterioration and destructive forces, leading to their partial or total broken. The task of reassembling this type of artifact represent a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken large stone. The epoxy resins are used extensively in stone conservation and re-assembly of broken stone because of their outstanding mechanical properties. The introduction of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and large objects. The aim of this study is to evaluate the effectiveness of clay nanoparticles in enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive stone by adding proper amounts of those nanoparticles. The nanoparticles reinforced epoxy nanocomposite was prepared by direct melt mixing with a nanoparticles content of 3% (w/v), and then mould forming in the form of rectangular samples, and used as adhesive for experimental stone samples. Scanning electron microscopy (SEM) was employed to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. The stability and efficiency of the prepared epoxy-nanocomposites and stone block assemblies with new formulated adhesives were tested by aging artificially the samples under different environmental conditions. The effect of incorporating clay nanoparticles on the mechanical properties of epoxy adhesives was evaluated comparatively before and after aging by measuring the tensile, compressive, and Elongation strength tests. The morphological studies revealed that the mixture process between epoxy and nanoparticles has succeeded with a relatively homogeneous morphology and good dispersion in low nano-particles loadings in epoxy matrix was obtained. The results show that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and Elongation strength. Moreover, a marked improvement of the mechanical properties of stone joints increased in all states by adding nano-clay to epoxy in comparison with pure epoxy resin.

Keywords: epoxy resins, nanocomposites, clay nanoparticles, re-assembly, archaeological massive stones, mechanical properties

Procedia PDF Downloads 89
1544 Modeling of Cold Tube Drawing with a Fixed Plug by Finite Element Method and Determination of Optimum Drawing Parameters

Authors: E. Yarar, E. A. Guven, S. Karabay

Abstract:

In this study, a comprehensive simulation was made for the cold tube drawing with fixed plug. The cold tube drawing process is preferred due to its high surface quality and the high mechanical properties. In drawing processes applied to materials with low plastic deformability, cracks can occur on the surfaces and the process efficiency decreases. The aim of the work is to investigate the effects of different drawing parameters on drawing forces and stresses. In the simulations, optimum conditions were investigated for four different materials, Ti64Al4V, AA5052, AISI4140, and C365. One of the most important parameters for the cold drawing process is the die angle. Three dies were designed for the analysis with semi die angles of 5°, 10°, and 15°. Three different parameters were used for the friction coefficient between die and the material. In the simulations, reduction of area and the drawing speed is kept constant. Drawing is done in one pass. According to the simulation results, the highest drawing forces were obtained in Ti64Al4V. As the semi die angle increases, the drawing forces decrease. The change in semi die angle was most effective on Ti64Al4V. Increasing the coefficient of friction is another effect that increases the drawing forces. The increase in the friction coefficient has also increased in drawing stresses. The increase in die angle also increased the drawing stress distribution for the other three materials outside C365. According to the results of the analysis, it is found that the designed drawing die is suitable for drawing. The lowest drawing stress distribution and drawing forces were obtained for AA5052. Drawing die parameters have a direct effect on the results. In addition, lubricants used for drawing have a significant effect on drawing forces.

Keywords: cold tube drawing, drawing force, drawing stress, semi die angle

Procedia PDF Downloads 144
1543 Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body

Authors: Rabah Haoui

Abstract:

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.

Keywords: hypersonic flow, viscous flow, chemical kinetic, dissociation, finite volumes, frozen and non-equilibrium flow

Procedia PDF Downloads 439
1542 The Experimental Investigation of Temperature Influence on the Oscillations of Particles on Liquid Surfaces

Authors: Sathish K. Gurupatham, Farhad Sayedzada, Naji Dauk, Valmiki Sooklal, Laura Ruhala

Abstract:

It was shown recently that small particles and powders spontaneously disperse on liquid surfaces when they come into contact with the interface for the first time. This happens due to the combined effect of the capillary force, buoyant weight of the particle and the viscous drag that the particle experiences in the liquid. The particle undergoes oscillations normal to the interface before it comes to rest on the interface. These oscillations, in turn, induce a flow on the interface which disperses the particles radially outward. This phenomenon has a significant role in the pollination of sea plants such as Ruppia in which the formation of ‘pollen rafts’ is the first step. This paper investigates, experimentally, the influence of the temperature of the liquid on which this dispersion occurs. It was observed that the frequency of oscillations of the particles decreased with the increase in the temperature of the liquid. It is because the magnitude of capillary force also decreased when the temperature of the liquid increased.

Keywords: particle dispersion, capillary force, viscous drag, oscillations

Procedia PDF Downloads 341
1541 Kenaf MDF Panels with Soy Based Adhesive. The Influence of Preparation Parameters on Physciomechanical Properties

Authors: Imtiaz Ali, Krishnan Jayaraman, Debes Bhattacharyya

Abstract:

Soybean concentrate is abundant material and renewable product that is recently been explored as an alternative to conventional formaldehyde based resins in wood based products. The main goal of this study is to evaluate the technical feasibility of manufacturing environment friendly MDF panels from renewable resources. The panels are made by using kenaf bast fibers (KB) as wood substitute and soy based adhesive as bonding material. Second order response surface regression models are used to understand the effects and interactions of resin content (RC) and pressing time (PT) on the mechanical and water soaking properties of kenaf panels. The mechanical and water soaking properties are significantly improved as the RC increased and reached at the highest level at maximum resin loading (12%). The effect of pressing time is significant in the first phase when the pressing time increased from 4 to 6 min; however the effect was not as significant when pressing time further increased to 8 min. The second order regression equations further confirm that the variation in process parameters has strong relationship with the physciomechanical properties. The MDF panels the minimum requirements of internal bond strength, modulus of rupture and modulus of elasticity as recommended by US wood MDF standard specifications for G110, G120, G130 and G140 grade MDF panels. However, the thickness swelling results are considerably poorer than the recommended values of general purpose standard requirements. This deficiency can be counterbalanced by the advantage of being formaldehyde free panels made from renewable sources and by making them suitable alternative for less humid environment applications.

Keywords: kenaf, Medium density fibreboard, soy adhesive, mechanical properties, water soaking properties

Procedia PDF Downloads 347
1540 High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis

Authors: D. Henninger, A. Zopey, T. Ihde, C. Mehring

Abstract:

The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.

Keywords: dynamic performance model, high-fidelity model, 1D-3D decoupled analysis, solenoid-operated hydraulic servo valve, CFD and electromagnetic FEA

Procedia PDF Downloads 155
1539 Analytical Technique for Definition of Internal Forces in Links of Robotic Systems and Mechanisms with Statically Indeterminate and Determinate Structures Taking into Account the Distributed Dynamical Loads and Concentrated Forces

Authors: Saltanat Zhilkibayeva, Muratulla Utenov, Nurzhan Utenov

Abstract:

The distributed inertia forces of complex nature appear in links of rod mechanisms within the motion process. Such loads raise a number of problems, as the problems of destruction caused by a large force of inertia; elastic deformation of the mechanism can be considerable, that can bring the mechanism out of action. In this work, a new analytical approach for the definition of internal forces in links of robotic systems and mechanisms with statically indeterminate and determinate structures taking into account the distributed inertial and concentrated forces is proposed. The relations between the intensity of distributed inertia forces and link weight with geometrical, physical and kinematic characteristics are determined in this work. The distribution laws of inertia forces and dead weight make it possible at each position of links to deduce the laws of distribution of internal forces along the axis of the link, in which loads are found at any point of the link. The approximation matrixes of forces of an element under the action of distributed inertia loads with the trapezoidal intensity are defined. The obtained approximation matrixes establish the dependence between the force vector in any cross-section of the element and the force vector in calculated cross-sections, as well as allow defining the physical characteristics of the element, i.e., compliance matrix of discrete elements. Hence, the compliance matrixes of an element under the action of distributed inertial loads of trapezoidal shape along the axis of the element are determined. The internal loads of each continual link are unambiguously determined by a set of internal loads in its separate cross-sections and by the approximation matrixes. Therefore, the task is reduced to the calculation of internal forces in a final number of cross-sections of elements. Consequently, it leads to a discrete model of elastic calculation of links of rod mechanisms. The discrete model of the elements of mechanisms and robotic systems and their discrete model as a whole are constructed. The dynamic equilibrium equations for the discrete model of the elements are also received in this work as well as the equilibrium equations of the pin and rigid joints expressed through required parameters of internal forces. Obtained systems of dynamic equilibrium equations are sufficient for the definition of internal forces in links of mechanisms, which structure is statically definable. For determination of internal forces of statically indeterminate mechanisms (in the way of determination of internal forces), it is necessary to build a compliance matrix for the entire discrete model of the rod mechanism, that is reached in this work. As a result by means of developed technique the programs in the MAPLE18 system are made and animations of the motion of the fourth class mechanisms of statically determinate and statically indeterminate structures with construction on links the intensity of cross and axial distributed inertial loads, the bending moments, cross and axial forces, depending on kinematic characteristics of links are obtained.

Keywords: distributed inertial forces, internal forces, statically determinate mechanisms, statically indeterminate mechanisms

Procedia PDF Downloads 196
1538 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids

Authors: Markus Rütten, Olaf Wünsch

Abstract:

Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.

Keywords: heat transfer, thermo-viscous fluids, shear thinning, vortex shedding

Procedia PDF Downloads 280
1537 Advances in Axonal Biomechanics and Mechanobiology: A Nanotechnology-Based Approach to the Study of Mechanotransduction of Axonal Growth

Authors: Alessandro Falconieri, Sara De Vincentiis, Vittoria Raffa

Abstract:

Mechanical force regulates axonal growth, elongation and maturation processes. This force is opening new frontiers in the field, contributing to a general understanding of the mechanisms of axon growth that, in the past, was thought to be governed exclusively by the growth cone and its ability to influence axonal growth in response to chemical signals. A method recently developed in our laboratory allows, through the labeling of neurons with magnetic nanoparticles (MNPs) and the use of permanent magnets, to apply extremely low mechanical forces, similar to those generated endogenously by the growth cone or by the increase of body mass during the organism growth. We found that these extremely low forces strongly enhance the spontaneous axonal elongation rate as well as neuronal sprouting. Data obtained don’t exclude that local phenomena, such as local transport and local translation, may be involved. These new advances could shed new light on what happens when the cell is subjected to external mechanical forces, opening new interesting scenarios in the field of mechanobiology.

Keywords: axon, external mechanical forces, magnetic nanoparticles, mechanotransduction

Procedia PDF Downloads 102
1536 The Investigation of the Impact of Process and Location Parameters in Warpage Study of Semiconductor Packages

Authors: Wheyming Song, Ssu-Ping Lin

Abstract:

The primary advantage of package-on-package (PoP) packaging is that since it has less volume, it weighs less. But this is also related to its principal drawback, which is warpage. This research investigates how PoP package warpage patterns are affected by assembling process parameters, including substrate temperature, injection speed, injection temperature, and compound forces. We also investigate how warpage patterns are affected by the location of the silicon chip. The methodologies used in this research are design of experiment and warpage simulation via ANSYS. We propose a regression model to predict the warpage value as a function of substrate temperature, injection speed, injection temperature, and compound forces. Our results show that interaction effects exist between substrate temperature and compound forces and between injection speed and injection temperature. Therefore, determining the optimal values for substrate temperature, compound forces, injection speed, and injection temperature cannot be done individually. Also, our results show that the warpage patterns based on the location of silicon chips can be classified into 11 groups, with the largest warpage occurring at the left-most and right-most sides.

Keywords: package-on-package, warpage, design of experiment, simulation

Procedia PDF Downloads 279
1535 The Falling Point of Lubricant

Authors: Arafat Husain

Abstract:

The lubricants are one of the most used resource in today’s world. Lot of the superpowers are dependent on the lubricant resource for their country to function. To see that the lubricants are not adulterated we need to develop some efficient ways and to see which fluid has been added to the lubricant. So to observe the these malpractices in the lubricant we need to develop a method. We take a elastic ball and through it at probability circle in the submerged in the lubricant at a fixed force and see the distance of pitching and the point of fall. Then we the ratio of distance of falling to the distance of pitching and if the measured ratio is greater than one the fluid is less viscous and if the ratio is lesser than the lubricant is viscous. We will check the falling point of pure lubricant at fixed force and every pure lubricant would have a fixed falling point. After that we would adulterate the lubricant and note the falling point and if the falling point is less than the standard value then adulterate is solid and if the adulterate is liquid the falling point will be more than the standard value. Hence the comparison with the standard falling point will give the efficiency of the lubricant.

Keywords: falling point of lubricant, falling point ratios, probability circle, octane number

Procedia PDF Downloads 469
1534 Dynamics of the Moving Ship at Complex and Sudden Impact of External Forces

Authors: Bo Liu, Liangtian Gao, Idrees Qasim

Abstract:

The impact of the storm leads to accidents even in the case of vessels that meet the computed safety criteria for stability. That is why, in order to clarify the causes of the accident and shipwreck, it is necessary to study the dynamics of the ship under the complex sudden impact of external forces. The task is to determine the movement and landing of the ship in the complex and sudden impact of external forces, i.e. when the ship's load changes over a relatively short period of time. For the solution, a technique was used to study the ship's dynamics, which is based on the compilation of a system of differential equations of motion. A coordinate system was adopted for the equation of motion of the hull and the determination of external forces. As a numerical method of integration, the 4th order Runge-Kutta method was chosen. The results of the calculation show that dynamic deviations were lower for high-altitude vessels. The study of the movement of the hull under a difficult situation is performed: receiving of cargo, impact of a flurry of wind and subsequent displacement of the cargo. The risk of overturning and flooding was assessed.

Keywords: dynamics, statics, roll, trim, vertical displacement, dynamic load, tilt

Procedia PDF Downloads 192
1533 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation

Authors: A. Yanik, U. Aldemir

Abstract:

This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.

Keywords: bridge structures, passive control, seismic, semi-active control, viscous damping

Procedia PDF Downloads 219
1532 Experimental Investigation on Activated Carbon Based Cryosorption Pump

Authors: K. B. Vinay, K. G. Vismay, S. Kasturirengan, G. A. Vivek

Abstract:

Cryosorption pumps are considered to be safe, quiet and ultra-high vacuum production pumps which have their application from Semiconductor industries to ITER [International Thermonuclear Experimental Reactor] units. The principle of physisorption of gases over highly porous materials like activated charcoal at cryogenic temperatures (below -1500°C) is involved in determining the pumping speed of gases like Helium, Hydrogen, Argon and Nitrogen. This paper aims at providing detailed overview of development of Cryosorption pump which is the modern ultra-high vacuum pump and characterization of different activated charcoal materials that optimizes the performance of the pump. Different grades of charcoal were tested in order to determine the pumping speed of the pump and were compared with commercially available Varian cryopanel. The results for bare panel, bare panel with adhesive, cryopanel with pellets, and cryopanel with granules were obtained and compared. The comparison showed that cryopanel adhered with small granules gave better pumping speeds than large sized pellets.

Keywords: adhesive, cryopanel, granules, pellets

Procedia PDF Downloads 398
1531 Review for Mechanical Tests of Corner Joints on Wooden Windows and Effects to the Stiffness

Authors: Milan Podlena, Stepan Hysek, Jiri Prochazka, Martin Bohm, Jan Bomba

Abstract:

Corner joints are the weakest part of windows, where the members are connected together. Since the dimensions of the windows started become bigger, the strength requirements for corner joints started to increase as well. Therefore, the aim of this study was to test the samples of corner joints of wooden windows. Moisture content of test specimens was stabilized in the climate chamber. After conditioning, test specimens were loaded in the laboratory conditions onto an universal testing machine and the failure load was measured. Data was recalculated by using goniometric, bending moment and stiffness equation to the stiffness coefficients and the bending moments were investigated. The results showed difference that was observed for the mortise with tenon joint and the dowel joint. This difference was explained by a varied adhesive bond area, which is related to the dimensions of dowels (diameter and length) as well. The bending moments and stiffness ware (except of type of corner joint) also affected by type of used adhesive, type of dowels and wood species.

Keywords: corner joint, wooden window, bending moment, stiffness

Procedia PDF Downloads 192
1530 Development of Hydrodynamic Drag Calculation and Cavity Shape Generation for Supercavitating Torpedoes

Authors: Sertac Arslan, Sezer Kefeli

Abstract:

In this paper, firstly supercavitating phenomenon and supercavity shape design parameters are explained and then drag force calculation methods of high speed supercavitating torpedoes are investigated with numerical techniques and verified with empirical studies. In order to reach huge speeds such as 200, 300 knots for underwater vehicles, hydrodynamic hull drag force which is proportional to density of water (ρ) and square of speed should be reduced. Conventional heavy weight torpedoes could reach up to ~50 knots by classic underwater hydrodynamic techniques. However, to exceed 50 knots and reach about 200 knots speeds, hydrodynamic viscous forces must be reduced or eliminated completely. This requirement revives supercavitation phenomena that could be implemented to conventional torpedoes. Supercavitation is the use of cavitation effects to create a gas bubble, allowing the torpedo to move at huge speed through the water by being fully developed cavitation bubble. When the torpedo moves in a cavitation envelope due to cavitator in nose section and solid fuel rocket engine in rear section, this kind of torpedoes could be entitled as Supercavitating Torpedoes. There are two types of cavitation; first one is natural cavitation, and second one is ventilated cavitation. In this study, disk cavitator is modeled with natural cavitation and supercavitation phenomenon parameters are studied. Moreover, drag force calculation is performed for disk shape cavitator with numerical techniques and compared via empirical studies. Drag forces are calculated with computational fluid dynamics methods and different empirical methods. Numerical calculation method is developed by comparing with empirical results. In verification study cavitation number (σ), drag coefficient (CD) and drag force (D), cavity wall velocity (U

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavity flows

Procedia PDF Downloads 156
1529 The Utilization of Magneto-Hydrodynamics Framework in Expansion of Magnetized Conformal Flow

Authors: Majid Karimabadi, Ahmad Farzaneh Kore, Behnam Azadegan

Abstract:

The evolution of magnetized quark gluon plasma (QGP) in the framework of magneto- hydrodynamics is the focus of our study. We are investigating the temporal and spatial evolution of QGP using a second order viscous hydrodynamic framework. The fluid is considered to be magnetized and subjected to the influence of a magnetic field that is generated during the early stages of relativistic heavy ion collisions. We assume boost invariance along the beam line, which is represented by the z coordinate, and fluid expansion in the x direction. Additionally, we assume that the magnetic field is perpendicular to the reaction plane, which corresponds to the y direction. The fluid is considered to have infinite electrical conductivity. To analyze this system, we solve the coupled Maxwell and conservation equations. By doing so, we are able to determine the time and space dependence of the energy density, velocity, and magnetic field in the transverse plane of the viscous magnetized hot plasma. Furthermore, we obtain the spectrum of hadrons and compare it with experimental data.

Keywords: QGP, magnetohydrodynamics, hadrons, conversation

Procedia PDF Downloads 32
1528 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer

Authors: Hao-Su Liu, Jun-Qing Lei

Abstract:

This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.

Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge

Procedia PDF Downloads 293
1527 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System

Authors: Soltani Amir, Wang Xuan

Abstract:

The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.

Keywords: active control, passive control, viscous dampers, structural control, vibration control, tall building

Procedia PDF Downloads 485
1526 Effect of Marine Stress Starvation Conditions on Survival and Retention of the Properties of Potential Probiotic Bacillus Strains

Authors: Abdelkarim Mahdhi, Fdhila Kais, Faouzi Lamari, Zeineb Hmila, Fathi Kamoun, Maria Ángeles Esteban, Amina Bakhrouf

Abstract:

Pathogenic bacteria are considered to be responsible for several infectious diseases in aquaculture. To overcome diseases in fish culture, the use of antimicrobial drugs as strategy, have been adopted. The use of probiotic was a promising approach to avoid the risk associated to pathogenic bacteria. To find a biological control treatment against pathogens, we undertook this investigation to study the maintain of the probiotic properties of Bacillus sp., such as viability, adhesive ability to abiotic surface, antibacterial activity and pathogenicity/toxicity, under marine starvation conditions. Our data revealed that the tested strains maintained their capacity to inhibit pathogens in vivo and in vitro conditions. These strains maintain their adhesive capacity to polystyrene and do not demonstrate the pathogenic or toxic effect to the host. The obtained results give insight about the effect of starvation conditions on the physiological responses of these Bacillus strains that can be considered as a potential candidate’s probiotic.

Keywords: bacillus, probiotic, cell viability, starvation conditions

Procedia PDF Downloads 383
1525 About the Interface Bonding Safety of Adhesively Bonded Concrete Joints Under Cracking: A Fracture Energetic Approach

Authors: Brandtner-Hafner Martin

Abstract:

Adhesives are increasingly being used in the construction sector. On the one hand, this concerns dowel reinforcements using chemical anchors. On the other hand, the sealing and repair of cracks in structural concrete components are still on the rise. In the field of bonding, the interface between the joined materials is the most critical area. Therefore, it is of immense importance to characterize and investigate this section sufficiently by fracture analysis. Since standardized mechanical test methods are not sufficiently capable of doing this, recourse is made to an innovative concept based on fracture energy. Therefore, a series of experimental tests were performed using the so-called GF-principle to study the interface bonding safety of adhesively bonded concrete joints. Several different structural adhesive systems based on epoxy, CA/A hybrid, PUR, MS polymer, dispersion, and acrylate were selected for bonding concrete substrates. The results show that stable crack propagation and prevention of uncontrolled failure in bonded concrete joints depend very much on the adhesive system used, and only fracture analytical evaluation methods can provide empirical information on this.

Keywords: interface bonding safety, adhesively bonded concrete joints, GF-principle, fracture analysis

Procedia PDF Downloads 282
1524 Spectral Coherence Analysis between Grinding Interaction Forces and the Relative Motion of the Workpiece and the Cutting Tool

Authors: Abdulhamit Donder, Erhan Ilhan Konukseven

Abstract:

Grinding operation is performed in order to obtain desired surfaces precisely in machining process. The needed relative motion between the cutting tool and the workpiece is generally created either by the movement of the cutting tool or by the movement of the workpiece or by the movement of both of them as in our case. For all these cases, the coherence level between the movements and the interaction forces is a key influential parameter for efficient grinding. Therefore, in this work, spectral coherence analysis has been performed to investigate the coherence level between grinding interaction forces and the movement of the workpiece on our robotic-grinding experimental setup in METU Mechatronics Laboratory.

Keywords: coherence analysis, correlation, FFT, grinding, hanning window, machining, Piezo actuator, reverse arrangements test, spectral analysis

Procedia PDF Downloads 378