Search results for: seismically designed buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6657

Search results for: seismically designed buildings

6507 Architectural and Structural Analysis of Selected Tall Buildings in Warsaw, Poland

Authors: J. Szolomicki, H. Golasz-Szolomicka

Abstract:

This paper presents elements of architectural and structural analysis of selected high-rise buildings in the Polish capital city of Warsaw. When analyzing the architecture of Warsaw, it can be concluded that it is currently a rapidly growing city with technologically advanced skyscrapers that belong to the category of intelligent buildings. The constructional boom over the last dozen years has seen the erection of postmodern skyscrapers for office and residential use. This article focuses on how Warsaw has recently joined the most architecturally interesting cities in Europe. Warsaw is currently in fifth place in Europe in terms of the number of skyscrapers and is considered the second most preferred city in Europe (after London) for investment related to them. However, the architectural development of the city could not take place without the participation of eminent Polish and foreign architects such as Stefan Kuryłowicz, Lary Oltmans, Helmut Jahn or Daniel Libeskind.

Keywords: core structure, curtain facade, raft foundation, tall buildings

Procedia PDF Downloads 240
6506 Internet of Things for Smart Dedicated Outdoor Air System in Buildings

Authors: Dararat Tongdee, Surapong Chirarattananon, Somchai Maneewan, Chantana Punlek

Abstract:

Recently, the Internet of Things (IoT) is the important technology that connects devices to the network and people can access real-time communication. This technology is used to report, collect, and analyze the big data for achieving a purpose. For a smart building, there are many IoT technologies that enable management and building operators to improve occupant thermal comfort, indoor air quality, and building energy efficiency. In this research, we propose monitoring and controlling performance of a smart dedicated outdoor air system (SDOAS) based on IoT platform. The SDOAS was specifically designed with the desiccant unit and thermoelectric module. The designed system was intended to monitor, notify, and control indoor environmental factors such as temperature, humidity, and carbon dioxide (CO₂) level. The SDOAS was tested under the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 62.2) and indoor air quality standard. The system will notify the user by Blynk notification when the status of the building is uncomfortable or tolerable limits are reached according to the conditions that were set. The user can then control the system via a Blynk application on a smartphone. The experimental result indicates that the temperature and humidity of indoor fresh air in the comfort zone are approximately 26 degree Celsius and 58% respectively. Furthermore, the CO₂ level was controlled lower than 1000 ppm by indoor air quality standard condition. Therefore, the proposed system can efficiently work and be easy to use for buildings.

Keywords: internet of things, indoor air quality, smart dedicated outdoor air system, thermal comfort

Procedia PDF Downloads 173
6505 Optimal Load Factors for Seismic Design of Buildings

Authors: Juan Bojórquez, Sonia E. Ruiz, Edén Bojórquez, David de León Escobedo

Abstract:

A life-cycle optimization procedure to establish the best load factors combinations for seismic design of buildings, is proposed. The expected cost of damage from future earthquakes within the life of the structure is estimated, and realistic cost functions are assumed. The functions include: Repair cost, cost of contents damage, cost associated with loss of life, cost of injuries and economic loss. The loads considered are dead, live and earthquake load. The study is performed for reinforced concrete buildings located in Mexico City. The buildings are modeled as multiple-degree-of-freedom frame structures. The parameter selected to measure the structural damage is the maximum inter-story drift. The structural models are subjected to 31 soft-soil ground motions recorded in the Lake Zone of Mexico City. In order to obtain the annual structural failure rates, a numerical integration method is applied.

Keywords: load factors, life-cycle analysis, seismic design, reinforced concrete buildings

Procedia PDF Downloads 594
6504 Comparing Occupants’ Satisfaction in LEED Certified Office Buildings and Non-LEED Certified Office Buildings: A Case Study of Office Buildings in Egypt and Turkey

Authors: Amgad A. Farghal, Dina I. El Desouki

Abstract:

Energy consumption and users’ satisfaction were compared in three LEED certified office buildings in turkey and an office building in Egypt. The field studies were conducted in summer 2012. The measured environmental parameters in the four buildings were indoor air temperature, relative humidity, CO2 percentage and light intensity. The traditional building is located in Smart Village in Abu Rawash, Cairo, Egypt. The building was studied for 7 days resulting in 84 responds. The three rated buildings are in Istanbul; Turkey. A Platinum LEED certified office building is owned by BASF and gained a platinum certificate for new construction and major renovation. The building was studied for 3 days resulting in 13 responds. A Gold LEED certified office building is owned by BASF and gained a gold certificate for new construction and major renovation. The building was studied for 2 days resulting in 10 responds. A silver LEED certified office building is owned by Unilever and gained a silver certificate for commercial interiors. The building was studied for 7 days resulting in 84 responds. The results showed that all buildings had no significant difference regarding occupants’ satisfaction with the amount of lighting, noise level, odor and access to the outdoor view. There was significant difference between occupants’ satisfaction in LEED certified buildings and the traditional building regarding the thermal environment and the perception of the general environment (colors, carpet and decoration. The findings suggest that careful design could lead to a certified building that enhances the thermal environment and the perception of the indoor environment leading to energy consumption without scarifying occupants’ satisfaction.

Keywords: energy consumption, occupants’ satisfaction, rating systems, office buildings

Procedia PDF Downloads 394
6503 Developing a Framework to Aid Sustainable Assessment in Indian Buildings

Authors: P. Amarnath, Albert Thomas

Abstract:

Buildings qualify to be the major consumer of energy and resources thereby urging the designers, architects and policy makers to place a great deal of effort in achieving and implementing sustainable building strategies in construction. Green building rating systems help a great deal in this by measuring the effectiveness of these strategies along with the escalation of building performance in social, environmental and economic perspective, and construct new sustainable buildings. However, for a country like India, enormous population and its rapid rate of growth impose an increasing burden on the country's limited and continuously degrading natural resource base, which also includes the land available for construction. In general, the number of sustainable rated buildings in India is very minimal primarily due to the complexity and obstinate nature of the assessment systems/regulations that restrict the stakeholders and designers in proper implementation and utilization of these rating systems. This paper aims to introduce a data driven and user-friendly framework which cross compares the present prominent green building rating systems such as LEED, BREEAM, and GRIHA and subsequently help the users to rate their proposed building design as per the regulations of these assessment frameworks. This framework is validated using the input data collected from green buildings constructed globally. The proposed system has prospects to encourage the users to test the efficiency of various sustainable construction practices and thereby promote more sustainable buildings in the country.

Keywords: BREEAM, GRIHA, green building rating systems, LEED, sustainable buildings

Procedia PDF Downloads 102
6502 Study on the Key Stakeholders' Perception and Establishment of Sustainability Goals in the Green Building Projects: The Case of Malaysia

Authors: Nor Kalsum M. Isa, Mohd Yazid M. Yunos, Anuar Alias, Mazdi Marzuki, Kamarul Ismail, Mohd H. Ibrahim

Abstract:

Green building is an emerging concept with the ultimate target to achieve sustainable development by integrating sustainability goals and principles into project development. Basically, a green building is a building that is designed, constructed and operated to boost environmental, economic, health and productivity performance over conventional buildings. The buildings have been proven to be successful in contributing towards sustainability and project success. The purpose of this study was to determine the benefits of sustainability application in building projects, looking towards project success from the perspective of Malaysian key project stakeholders. The study also aimed to explore the establishment of sustainability goals in the green building projects in Malaysia. The Triple Bottom Line (TBL) Concept of Sustainability was used as the foundation theoretical framework. Surveys, interviews and multiple case study methods were employed. A sample of 188 Malaysian building project stakeholders was selected for questionnaire surveys, and 15 stakeholders from three award-winning green building projects in Malaysia were involved in the interviews. The study found that the majority of the respondents were less aware that the sustainability integration in the building project can significantly affect cost reduction, schedule effectiveness and stakeholders’ satisfaction with the performance of buildings as at the same level as the quality performance. Of the four sustainability goals, the environmental aspect was given more priority than others in the development of the green building projects.

Keywords: green building, sustainability, project stakeholders, Malaysia

Procedia PDF Downloads 534
6501 Numerical Simulations on the Torsional Behavior of Multistory Concrete Masonry Buildings

Authors: Alvaro Jose Cordova, Hsuan Teh Hu

Abstract:

The use of concrete masonry constructions in developing countries has become very frequent, especially for domestic purpose. Most of them with asymmetric wall configurations in plan resulting in significant torsional actions when subjected to seismic loads. The study consisted on the finding of a material model for hollow unreinforced concrete masonry and a validation with experimental data found in literature. Numerical simulations were performed to 20 buildings with variations in wall distributions and heights. Results were analyzed by inspection and with a non-linear static method. The findings revealed that eccentricities as well as structure rigidities have a strong influence on the overall response of concrete masonry buildings. In addition, slab rotations depicted more accurate information about the torsional behavior than maximum versus average displacement ratios. The failure modes in low buildings were characterized by high tensile strains in the first floor. Whereas in tall buildings these strains were lowered significantly by higher compression stresses due to a higher self-weight. These tall buildings developed multiple plastic hinges along the height. Finally, the non-linear static analysis exposed a brittle response for all masonry assemblies. This type of behavior is undesired in any construction and the need for a material model for reinforced masonry is pointed out.

Keywords: concrete damaged plasticity, concrete masonry, macro-modeling, nonlinear static analysis, torsional capacity

Procedia PDF Downloads 274
6500 The Social Impact of Green Buildings

Authors: Elise Machline

Abstract:

Policy instruments have been developed worldwide to reduce the energy demand of buildings. Two types of such instruments have been green building rating systems and energy efficiency standards for buildings -such as Green Star (Australia), LEED (United States, Leadership in Energy and Environmental Design), Energy Star (United States), and BREEAM (United Kingdom, Building Research Establishment Environmental Assessment Method). The popularity of the idea of sustainable development has allowed the actors to consider the potential value generated by the environmental performance of buildings, labeled “green value” in the literature. Sustainable performances of buildings are expected to improve their attractiveness, increasing their value. A growing number of empirical studies demonstrate that green buildings yield rental/sale premia, as well as higher occupancy rates and thus higher asset values. The results suggest that green buildings are not affordable to all and that their construction tends to have a gentrifying effect. An increasing number of countries are institutionalizing green strategies for affordable housing. In that sense, making green buildings affordable to all will depend on government policies. That research aims to investigate whether green building fosters inequality in Israel, under the banner of sustainability. The method is comparison (of the market value). This method involves comparing the green buildings sale prices with non-certified buildings of the same type that have undergone recent transactions. The “market value” is deduced from those sources by analogy. The results show that, in Israel, green building projects are usually addressed to the middle to upper classes. The green apartment’s sale premium is about 19% (comparing to non-certified dwelling). There is a link between energy and/or environmental performance and the financial value of the dwellings. Moreover, price differential is much higher than the value of energy savings. This perpetuates socio-spatial and socio-economic inequality as well as ecological vulnerability for the poor and other socially marginal groups. Moreover, there are no green affordable housings and the authorities do not subsidy green building or retrofitting.

Keywords: green building, gentrification, social housing, green value, green building certification

Procedia PDF Downloads 393
6499 Retrofitting Measures for Existing Housing Stock in Kazakhstan

Authors: S. Yessengabulov, A. Uyzbayeva

Abstract:

Residential buildings fund of Kazakhstan was built in the Soviet time about 35-60 years ago without considering energy efficiency measures. Currently, most of these buildings are in a rundown condition and fail to meet the minimum of hygienic, sanitary and comfortable living requirements. The paper aims to examine the reports of recent building energy survey activities in the country and provide a possible solution for retrofitting existing housing stock built before 1989 which could be applicable for building envelope in cold climate. Methodology also includes two-dimensional modeling of possible practical solutions and further recommendations.

Keywords: energy audit, energy efficient buildings in Kazakhstan, retrofit, two-dimensional conduction heat transfer analysis

Procedia PDF Downloads 220
6498 Study on Seismic Assessment of Earthquake-Damaged Reinforced Concrete Buildings

Authors: Fu-Pei Hsiao, Fung-Chung Tu, Chien-Kuo Chiu

Abstract:

In this work, to develop a method for detailed assesses of post-earthquake seismic performance for RC buildings in Taiwan, experimental data for several column specimens with various failure modes (flexural failure, flexural-shear failure, and shear failure) are used to derive reduction factors of seismic capacity for specified damage states. According to the damage states of RC columns and their corresponding seismic reduction factors suggested by experimental data, this work applies the detailed seismic performance assessment method to identify the seismic capacity of earthquake-damaged RC buildings. Additionally, a post-earthquake emergent assessment procedure is proposed that can provide the data needed for decision about earthquake-damaged buildings in a region with high seismic hazard. Finally, three actual earthquake-damaged school buildings in Taiwan are used as a case study to demonstrate application of the proposed assessment method.

Keywords: seismic assessment, seismic reduction factor, residual seismic ratio, post-earthquake, reinforced concrete, building

Procedia PDF Downloads 376
6497 Dynamic Modeling of the Green Building Movement in the U.S.: Strategies to Reduce Carbon Footprint of Residential Building Stock

Authors: Nuri Onat, Omer Tatari, Gokhan Egilmez

Abstract:

The U.S. buildings consume significant amount of energy and natural resources and they are responsible for approximately 40 % of the greenhouse gases emitted in the United States. Awareness of these environmental impacts paved the way for the adoption of green building movement. The green building movement is a rapidly increasing trend. Green Construction market has generated $173 billion dollars in GDP, supported over 2.4 million jobs, and provided $123 billion dollars in labor earnings. The number of LEED certified buildings is projected to be almost half of the all new, nonresidential buildings by 2015. National Science and Technology Council (NSTC) aims to increase number of net-zero energy buildings (NZB). The ultimate goal is to have all commercial NZB by 2050 in the US (NSTC 2008). Green Building Initiative (GBI) became the first green building organization that is accredited by American National Standards Institute (ANSI), which will also boost number of green buildings certified by Green Globes. However, there is much less focus on greening the residential buildings, although the environmental impacts of existing residential buildings are more than that of commercial buildings. In this regard, current research aims to model the residential green building movement with a dynamic model approach and assess the possible strategies to stabilize the carbon footprint of the U.S. residential building stock. Three aspects of sustainable development are considered in policy making, namely: high performance green building (HPGB) construction, NZB construction and building retrofitting. 19 different policy options are proposed and analyzed. Results of this study explored that increasing the construction rate of HPGBs or NZBs is not a sufficient policy to stabilize the carbon footprint of the residential buildings. Energy efficient building retrofitting options are found to be more effective strategies then increasing HPGBs and NZBs construction. Also, significance of shifting to renewable energy sources for electricity generation is stressed.

Keywords: green building movement, residential buildings, carbon footprint, system dynamics

Procedia PDF Downloads 397
6496 Fragility Analysis of a Soft First-Story Building in Mexico City

Authors: Rene Jimenez, Sonia E. Ruiz, Miguel A. Orellana

Abstract:

On 09/19/2017, a Mw = 7.1 intraslab earthquake occurred in Mexico causing the collapse of about 40 buildings. Many of these were 5- or 6-story buildings with soft first story; so, it is desirable to perform a structural fragility analysis of typical structures representative of those buildings and to propose a reliable structural solution. Here, a typical 5-story building constituted by regular R/C moment-resisting frames in the first story and confined masonry walls in the upper levels, similar to the collapsed structures on the 09/19/2017 Mexico earthquake, is analyzed. Three different structural solutions of the 5-story building are considered: S1) it is designed in accordance with the Mexico City Building Code-2004; S2) then, the column dimensions of the first story corresponding to S1 are reduced, and S3) viscous dampers are added at the first story of solution S2. A number of dynamic incremental analyses are performed for each structural solution, using a 3D structural model. The hysteretic behavior model of the masonry was calibrated with experiments performed at the Laboratory of Structures at UNAM. Ten seismic ground motions are used to excite the structures; they correspond to ground motions recorded in intermediate soil of Mexico City with a dominant period around 1s, where the structures are located. The fragility curves of the buildings are obtained for different values of the maximum inter-story drift demands. Results show that solutions S1 and S3 give place to similar probabilities of exceedance of a given value of inter-story drift for the same seismic intensity, and that solution S2 presents a higher probability of exceedance for the same seismic intensity and inter-story drift demand. Therefore, it is concluded that solution S3 (which corresponds to the building with soft first story and energy dissipation devices) can be a reliable solution from the structural point of view.

Keywords: demand hazard analysis, fragility curves, incremental dynamic analyzes, soft-first story, structural capacity

Procedia PDF Downloads 150
6495 Parametric Models of Facade Designs of High-Rise Residential Buildings

Authors: Yuchen Sharon Sung, Yingjui Tseng

Abstract:

High-rise residential buildings have become the most mainstream housing pattern in the world’s metropolises under the current trend of urbanization. The facades of high-rise buildings are essential elements of the urban landscape. The skins of these facades are important media between the interior and exterior of high- rise buildings. It not only connects between users and environments, but also plays an important functional and aesthetic role. This research involves a study of skins of high-rise residential buildings using the methodology of shape grammar to find out the rules which determine the combinations of the facade patterns and analyze the patterns’ parameters using software Grasshopper. We chose a number of facades of high-rise residential buildings as source to discover the underlying rules and concepts of the generation of facade skins. This research also provides the rules that influence the composition of facade skins. The items of the facade skins, such as windows, balconies, walls, sun visors and metal grilles are treated as elements in the system of facade skins. The compositions of these elements will be categorized and described by logical rules; and the types of high-rise building facade skins will be modelled by Grasshopper. Then a variety of analyzed patterns can also be applied on other facade skins through this parametric mechanism. Using these patterns established in the models, researchers can analyze each single item to do more detail tests and architects can apply each of these items to construct their facades for other buildings through various combinations and permutations. The goal of these models is to develop a mechanism to generate prototypes in order to facilitate generation of various facade skins.

Keywords: facade skin, grasshopper, high-rise residential building, shape grammar

Procedia PDF Downloads 485
6494 Increase the Ductility of Tall Buildings Using Green Material Bamboo for Earthquake Zone

Authors: Shef Amir Arasy

Abstract:

In 2023, the world's population will be 7.8 billion, which has increased significantly in the last 20 years. Every country in the world is experiencing the impacts of climate change directly and indirectly. However, the community still needs to build massive infrastructure and buildings. The massive CO2 emissions which lead to climate change come from cement usage in construction activity. Bamboo is one of the most sustainable materials for reducing carbon emissions and releasing more than 30% oxygen compared to the mass of trees. Besides, bamboo harvest time is faster than other sustainable materials, around 3-4 years. Furthermore, Bamboo has a high tensile strength, which can provide ductility effectively to prevent damage to buildings during an earthquake. By the finite element method, this research analyzes bamboo configuration and connection for tall building structures under different earthquake frequencies and fire. The aim of this research is to provide proper design and connection of bamboo buildings that can be more reliable than concrete structures.

Keywords: bamboo, concrete, ductility, earthquake.

Procedia PDF Downloads 42
6493 An Architectural Study on the Railway Station Buildings in Malaysia during British Era, 1885-1957

Authors: Nor Hafizah Anuar, M. Gul Akdeniz

Abstract:

This paper attempted on emphasize on the station buildings façade elements. Station buildings were essential part of the transportation that reflected the technology. Comparative analysis on architectural styles will also be made between the railway station buildings of Malaysia and any railway station buildings which have similarities. The Malay Peninsula which is strategically situated between the Straits of Malacca and the South China Sea makes it an ideal location for trade. Malacca became an important trading port whereby merchants from around the world stopover to exchange various products. The Portuguese ruled Malacca for 130 years (1511–1641) and for the next century and a half (1641–1824), the Dutch endeavoured to maintain an economic monopoly along the coasts of Malaya. Malacca came permanently under British rule under the Anglo-Dutch Treaty, 1824. Up to Malaysian independence in 1957, Malaya saw a great influx of Chinese and Indian migrants as workers to support its growing industrial needs facilitated by the British. The growing tin ore mining and rubber industry resulted as the reason of the development of the railways as urgency to transport it from one place to another. The existence of railway transportation becomes more significant when the city started to bloom and the British started to build grandeur buildings that have different functions; administrative buildings, town and city halls, railway stations, public works department, courts, and post offices.

Keywords: Malaysia, station building, architectural styles, facade elements

Procedia PDF Downloads 143
6492 An Overview of Bioclimatic Design Strategies for Energy Efficient Buildings: A Case Study of Semi-Arid Climate, Lahore

Authors: Beenish Mujahid, Sana Malik

Abstract:

Bioclimatic design Strategies plays a dynamic role in construction of Sustainable Buildings. This approach leads to reduction in the mechanical cooling of building which provides comfort to the occupants in sustainable manner. Such bioclimatic measures provide a complete framework of building design through responding to climatic features of particular site. The featured Passive cooling techniques for hot climatic region provides comfortable indoor temperature with ecological and financial benefits. The study is based on highlighting this approach to produce energy efficient buildings for Semi-Arid climate like Lahore, Pakistan. Being part of developing country, energy savings in Lahore city would help the Power Sector and resolves the World Issues of Global Warming and Ozone Layer Depletion. This article reviews the bioclimatic design strategies and their critical analysis to drive guidelines for Sustainable buildings in Lahore. The study shows that the demand for mechanical cooling systems including air conditioning, fans, and air coolers can be reduced through regional climatic design.

Keywords: bioclimatic design, buildings, comfort, energy efficient, Lahore

Procedia PDF Downloads 233
6491 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency

Authors: Valeriya Tyo, Serikbolat Yessengabulov

Abstract:

Regions with extreme climate conditions such as Astana city require energy saving measures to increase the energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of the key factors to be considered. The architectural form of a building has the impact on space heating and cooling energy use, however, the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.

Keywords: building geometry, energy efficiency, heat gain, heat loss

Procedia PDF Downloads 474
6490 An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings

Authors: Kwok W. Mui, Ling T. Wong, Chin T. Cheung, Ho C. Yu

Abstract:

Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents.

Keywords: calculator, indoor environmental quality (IEQ), residential buildings, 5-star benchmarks

Procedia PDF Downloads 446
6489 Surveying Earthquake Vulnerabilities of District 13 of Kabul City, Afghanistan

Authors: Mohsen Mohammadi, Toshio Fujimi

Abstract:

High population and irregular urban development in Kabul city, Afghanistan's capital, are among factors that increase its vulnerability to earthquake disasters (on top of its location in a high seismic region); this can lead to widespread economic loss and casualties. This study aims to evaluate earthquake risks in Kabul's 13th district based on scientific data. The research data, which include hazard curves of Kabul, vulnerability curves, and a questionnaire survey through sampling in district 13, have been incorporated to develop risk curves. To estimate potential casualties, we used a set of M parameters in a model developed by Coburn and Spence. The results indicate that in the worst case scenario, more than 90% of district 13, which comprises mostly residential buildings, is exposed to high risk; this may lead to nearly 1000 million USD economic loss and 120 thousand casualties (equal to 25.88% of the 13th district's population) for a nighttime earthquake. To reduce risks, we present the reconstruction of the most vulnerable buildings, which are primarily adobe and masonry buildings. A comparison of risk reduction between reconstructing adobe and masonry buildings indicates that rebuilding adobe buildings would be more effective.

Keywords: earthquake risk evaluation, Kabul, mitigation, vulnerability

Procedia PDF Downloads 254
6488 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading

Authors: Neeraj Kumar, J. P. Narayan

Abstract:

The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.

Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings

Procedia PDF Downloads 193
6487 NABERS Indoor Environment - a Rating Tool to Benchmark the IEQ of Australian Office Commercial Buildings

Authors: Kazi Hossain

Abstract:

The National Australian Built Environment Rating System (NABERS) is the key industry standard for measuring and benchmarking environmental performance of existing buildings in Australia. Developed and run by the New South Wales government, NABERS measures the operational efficiency of different types of buildings by using a set of tools that provide an easy to understand graphical rating outcome ranged from 0 to 6 stars. This set of tools also include a tool called NABERS IE which enables tenants or building managers to benchmark their buildings indoor environment quality against the national market. Launched in 2009, the number NABERS IE ratings have steadily increased from 10 certified ratings in 2011 to 43 in 2013. However there is a massive uptake of over 50 ratings alone in 2014 making the number of ratings to reach over 100. This paper outlines the methodology used to create this tool, a statistical overview of the tool, and the driving factor that motivates the building owners and managers to use this tool every year to rate their buildings.

Keywords: Acoustic comfort, Indoor air quality, Indoor Environment, NABERS, National Australian Built Environment Rating System, Performance rating, Rating System, Thermal comfort, Ventilation effectiveness, Visual comfort.

Procedia PDF Downloads 532
6486 Natural Patterns for Sustainable Cooling in the Architecture of Residential Buildings in Iran (Hot and Dry Climate)

Authors: Elnaz Abbasian, Mohsen Faizi

Abstract:

In its thousand-year development, architecture has gained valuable patterns. Iran’s desert regions possess developed patterns of traditional architecture and outstanding skeletal features. Unfortunately increasing population and urbanization growth in the past decade as well as the lack of harmony with environment’s texture has destroyed such permanent concepts in the building’s skeleton, causing a lot of energy waste in the modern architecture. The important question is how cooling patterns of Iran’s traditional architecture can be used in a new way in the modern architecture of residential buildings? This research is library-based and documental that looks at sustainable development, analyzes the features of Iranian architecture in hot and dry climate in terms of sustainability as well as historical patterns, and makes a model for real environment. By methodological analysis of past, it intends to suggest a new pattern for residential buildings’ cooling in Iran’s hot and dry climate which is in full accordance to the ecology of the design and at the same time possesses the architectural indices of the past. In the process of cities’ physical development, ecological measures, in proportion to desert’s natural background and climate conditions, has kept the natural fences, preventing buildings from facing climate adversities. Designing and construction of buildings with this viewpoint can reduce the energy needed for maintaining and regulating environmental conditions and with the use of appropriate building technology help minimizing the consumption of fossil fuels while having permanent patterns of desert buildings’ architecture.

Keywords: sustainability concepts, sustainable development, energy climate architecture, fossil fuel, hot and dry climate, patterns of traditional sustainability for residential buildings, modern pattern of cooling

Procedia PDF Downloads 275
6485 Evaluating Energy Transition of a complex of buildings in a historic site of Rome toward Zero-Emissions for a Sustainable Future

Authors: Silvia Di Turi, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Domenico Palladino

Abstract:

Recent European policies have been set ambitious targets aimed at significantly reducing CO2 emissions by 2030, with a long-term vision of transforming existing buildings into Zero-Emissions Buildings (ZEmB) by 2050. This vision represents a key point for the energy transition as the whole building stock currently accounts for 36% of total energy consumption across the Europe, mainly due to their poor energy performance. The challenge towards Zero-Emissions Buildings is particularly felt in Italy, where a significant number of buildings with historical significance or situated within protected/constrained areas can be found. Furthermore, an estimated 70% of the national building stock are built before 1976, indicating a widespread issue of poor energy performance. Addressing the energy ineƯiciency of these buildings is crucial to refining a comprehensive energy renovation approach aimed at facilitating their energy transition. In this framework the current study focuses on analysing a challenging complex of buildings to be totally restored through significant energy renovation interventions. The goal is to recover these disused buildings situated in a significant archaeological zone of Rome, contributing to the restoration and reintegration of this historically valuable site, while also oƯering insights useful for achieving zeroemission requirements for buildings within such contexts. In pursuit of meeting the stringent zero-emission requirements, a comprehensive study was carried out to assess the complex of buildings, envisioning substantial renovation measures on building envelope and plant systems and incorporating renewable energy system solutions, always respecting and preserving the historic site. An energy audit of the complex of buildings was performed to define the actual energy consumption for each energy service by adopting the hourly calculation methods. Subsequently, significant energy renovation interventions on both building envelope and mechanical systems have been examined respecting the historical value and preservation of site. These retrofit strategies have been investigated with threefold aims: 1) to recover the existing buildings ensuring the energy eƯiciency of the whole complex of buildings, 2) to explore which solutions have allowed achieving and facilitating the ZEmB status, 3) to balance the energy transition requirements with the sustainable aspect in order to preserve the historic value of the buildings and site. This study has pointed out the potentiality and the technical challenges associated with implementing renovation solutions for such buildings, representing one of the first attempt towards realizing this ambitious target for this type of building.

Keywords: energy conservation and transition, complex of buildings in historic site, zero-emission buildings, energy efficiency recovery

Procedia PDF Downloads 32
6484 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.

Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm

Procedia PDF Downloads 304
6483 Seismic Loss Assessment for Peruvian University Buildings with Simulated Fragility Functions

Authors: Jose Ruiz, Jose Velasquez, Holger Lovon

Abstract:

Peruvian university buildings are critical structures for which very little research about its seismic vulnerability is available. This paper develops a probabilistic methodology that predicts seismic loss for university buildings with simulated fragility functions. Two university buildings located in the city of Cusco were analyzed. Fragility functions were developed considering seismic and structural parameters uncertainty. The fragility functions were generated with the Latin Hypercube technique, an improved Montecarlo-based method, which optimizes the sampling of structural parameters and provides at least 100 reliable samples for every level of seismic demand. Concrete compressive strength, maximum concrete strain and yield stress of the reinforcing steel were considered as the key structural parameters. The seismic demand is defined by synthetic records which are compatible with the elastic Peruvian design spectrum. Acceleration records are scaled based on the peak ground acceleration on rigid soil (PGA) which goes from 0.05g to 1.00g. A total of 2000 structural models were considered to account for both structural and seismic variability. These functions represent the overall building behavior because they give rational information regarding damage ratios for defined levels of seismic demand. The university buildings show an expected Mean Damage Factor of 8.80% and 19.05%, respectively, for the 0.22g-PGA scenario, which was amplified by the soil type coefficient and resulted in 0.26g-PGA. These ratios were computed considering a seismic demand related to 10% of probability of exceedance in 50 years which is a requirement in the Peruvian seismic code. These results show an acceptable seismic performance for both buildings.

Keywords: fragility functions, university buildings, loss assessment, Montecarlo simulation, latin hypercube

Procedia PDF Downloads 115
6482 Seismic Retrofits – A Catalyst for Minimizing the Building Sector’s Carbon Footprint

Authors: Juliane Spaak

Abstract:

A life-cycle assessment was performed, looking at seven retrofit projects in New Zealand using LCAQuickV3.5. The study found that retrofits save up to 80% of embodied carbon emissions for the structural elements compared to a new building. In other words, it is only a 20% carbon investment to transform and extend a building’s life. In addition, the systems were evaluated by looking at environmental impacts over the design life of these buildings and resilience using FEMA P58 and PACT software. With the increasing interest in Zero Carbon targets, significant changes in the building and construction sector are required. Emissions for buildings arise from both embodied carbon and operations. Based on the significant advancements in building energy technology, the focus is moving more toward embodied carbon, a large portion of which is associated with the structure. Since older buildings make up most of the real estate stock of our cities around the world, their reuse through structural retrofit and wider refurbishment plays an important role in extending the life of a building’s embodied carbon. New Zealand’s building owners and engineers have learned a lot about seismic issues following a decade of significant earthquakes. Recent earthquakes have brought to light the necessity to move away from constructing code-minimum structures that are designed for life safety but are frequently ‘disposable’ after a moderate earthquake event, especially in relation to a structure’s ability to minimize damage. This means weaker buildings sit as ‘carbon liabilities’, with considerably more carbon likely to be expended remediating damage after a shake. Renovating and retrofitting older assets plays a big part in reducing the carbon profile of the buildings sector, as breathing new life into a building’s structure is vastly more sustainable than the highest quality ‘green’ new builds, which are inherently more carbon-intensive. The demolition of viable older buildings (often including heritage buildings) is increasingly at odds with society’s desire for a lower carbon economy. Bringing seismic resilience and carbon best practice together in decision-making can open the door to commercially attractive outcomes, with retrofits that include structural and sustainability upgrades transforming the asset’s revenue generation. Across the global real estate market, tenants are increasingly demanding the buildings they occupy be resilient and aligned with their own climate targets. The relationship between seismic performance and ‘sustainable design’ has yet to fully mature, yet in a wider context is of profound consequence. A whole-of-life carbon perspective on a building means designing for the likely natural hazards within the asset’s expected lifespan, be that earthquake, storms, damage, bushfires, fires, and so on, ¬with financial mitigation (e.g., insurance) part, but not all, of the picture.

Keywords: retrofit, sustainability, earthquake, reuse, carbon, resilient

Procedia PDF Downloads 51
6481 Clients’ Priorities in Delivery of Green Projects: South African Perspective

Authors: C. Mothobiso, D. Root

Abstract:

Purpose: This study attempts to identify the clients’ main priorities when delivering green projects. The aim is to compare if the clients have the same interest that are similar in delivery of convectional buildings as compared to green buildings. The main purpose is to find why other clients are investing in green buildings while others are reluctant and adopting green building at a slow pace. Design/methodology/approach: A sample of construction professional accredited by the Green Building Council of South Africa (GBCSA) was sent a questionnaire to participate in the research. Since GBSCSA accredited professionals have knowledge and experience about the green buildings, they are chosen as the sample. The research is qualitative because it evaluates the perceptions and knowledge around the subject matter. Research limitations: The research focuses only on the South African construction clients. Findings: Findings reveal that private clients invest more on green buildings as compared to government and parastatal entities. Private clients prioritise on maximising returns on investments and they mainly invest on buildings that save energies and have low life cycle costs. Private clients are perceived to be more knowledgeable about the benefits of green building project as compared to government and Parastatals clients. Shortage of expertise and managerial skill leads to low adaptation of green buildings in the government and parastatal projects. Other factors, which seem to disintegrate the adoption of green buildings, are the readiness of supply chain within the industry and inappropriate procurements strategies adopted by clients. The evaluation of the clients’ priorities will enable the design team to come up with innovative ways to approach the design process so that clients’ priorities and needs are identified and met. Practical implications: The findings are indicating that clients’ needs and priorities have a huge impact on the delivery of the project in terms of time, quality and cost of the project.

Keywords: construction clients, design team, green construction and project deliver

Procedia PDF Downloads 252
6480 Analyzing the Results of Buildings Energy Audit by Using Grey Set Theory

Authors: Tooraj Karimi, Mohammadreza Sadeghi Moghadam

Abstract:

Grey set theory has the advantage of using fewer data to analyze many factors, and it is therefore more appropriate for system study rather than traditional statistical regression which require massive data, normal distribution in the data and few variant factors. So, in this paper grey clustering and entropy of coefficient vector of grey evaluations are used to analyze energy consumption in buildings of the Oil Ministry in Tehran. In fact, this article intends to analyze the results of energy audit reports and defines most favorable characteristics of system, which is energy consumption of buildings, and most favorable factors affecting these characteristics in order to modify and improve them. According to the results of the model, ‘the real Building Load Coefficient’ has been selected as the most important system characteristic and ‘uncontrolled area of the building’ has been diagnosed as the most favorable factor which has the greatest effect on energy consumption of building. Grey clustering in this study has been used for two purposes: First, all the variables of building relate to energy audit cluster in two main groups of indicators and the number of variables is reduced. Second, grey clustering with variable weights has been used to classify all buildings in three categories named ‘no standard deviation’, ‘low standard deviation’ and ‘non- standard’. Entropy of coefficient vector of Grey evaluations is calculated to investigate greyness of results. It shows that among the 38 buildings surveyed in terms of energy consumption, 3 cases are in standard group, 24 cases are in ‘low standard deviation’ group and 11 buildings are completely non-standard. In addition, clustering greyness of 13 buildings is less than 0.5 and average uncertainly of clustering results is 66%.

Keywords: energy audit, grey set theory, grey incidence matrixes, grey clustering, Iran oil ministry

Procedia PDF Downloads 348
6479 Damages Inflicted on Steel Structures and Metal Buildings due to Insufficient Supervision and Monitoring and Non-Observance of the Rules of the Regulations

Authors: Ehsan Sadie

Abstract:

Despite the experience of heavy losses and damages of recent earthquakes such as 8 km E of Pāhala, Hawaii, 11 km W of Salvaleón de Higüey, Dominican Republic and 49 km SSE of Punta Cana, Dominican Republic earthquakes, the possibility of large earthquakes in most populated areas of any country and the serious need for quality control in the design and implementation of buildings, not enough attention has been paid to the proper construction. Steel structures constitute a significant part of construction in any metropolitan area. This article gives a brief overview of the implementation status of these buildings in urban areas and considers the weaknesses of performance that typically occur due to negligence or insufficient mastery of the building supervisor in the principles of operation of earthquake-resistant buildings, and provides appropriate and possible solutions to improve the construction.

Keywords: bracing member, concentrated load, diaphragm system, earthquake engineering, load-bearing system, shear force, seismic retrofitting, steel building, strip foundation, supervising engineer, vulnerability of building

Procedia PDF Downloads 104
6478 Experimental and Analytical Investigation of Seismic Behavior of Concrete Beam-Column Joints Strengthened by Fiber-Reinforced Polymers Jacketing

Authors: Ebrahim Zamani Beydokhti, Hashem Shariatmadar

Abstract:

This paper presents an experimental and analytical investigation on the behavior of retrofitted beam-column joints subjected to reversed cyclic loading. The experimental program comprises 8 external beam–column joint connection subassemblages tested in 2 phases; one was the damaging phase and second was the repairing phase. The beam-column joints were no seismically designed, i.e. the joint, beam and column critical zones had no special transverse stirrups. The joins were tested under cyclic loading in previous research. The experiment had two phases named damage phase and retrofit phase. Then the experimental results compared with analytical results achieved from modeling in OpenSees software. The presence of lateral slab and the axial load amount were analytically investigated. The results showed that increasing the axial load and presence of lateral slab increased the joint capacity. The presence of lateral slab increased the dissipated energy, while the axial load had no significant effect on it.

Keywords: concrete beam-column joints, CFRP sheets, lateral slab, axial load

Procedia PDF Downloads 120