Search results for: nanopore sequencing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 625

Search results for: nanopore sequencing

475 Development of a Multi-Locus DNA Metabarcoding Method for Endangered Animal Species Identification

Authors: Meimei Shi

Abstract:

Objectives: The identification of endangered species, especially simultaneous detection of multiple species in complex samples, plays a critical role in alleged wildlife crime incidents and prevents illegal trade. This study was to develop a multi-locus DNA metabarcoding method for endangered animal species identification. Methods: Several pairs of universal primers were designed according to the mitochondria conserved gene regions. Experimental mixtures were artificially prepared by mixing well-defined species, including endangered species, e.g., forest musk, bear, tiger, pangolin, and sika deer. The artificial samples were prepared with 1-16 well-characterized species at 1% to 100% DNA concentrations. After multiplex-PCR amplification and parameter modification, the amplified products were analyzed by capillary electrophoresis and used for NGS library preparation. The DNA metabarcoding was carried out based on Illumina MiSeq amplicon sequencing. The data was processed with quality trimming, reads filtering, and OTU clustering; representative sequences were blasted using BLASTn. Results: According to the parameter modification and multiplex-PCR amplification results, five primer sets targeting COI, Cytb, 12S, and 16S, respectively, were selected as the NGS library amplification primer panel. High-throughput sequencing data analysis showed that the established multi-locus DNA metabarcoding method was sensitive and could accurately identify all species in artificial mixtures, including endangered animal species Moschus berezovskii, Ursus thibetanus, Panthera tigris, Manis pentadactyla, Cervus nippon at 1% (DNA concentration). In conclusion, the established species identification method provides technical support for customs and forensic scientists to prevent the illegal trade of endangered animals and their products.

Keywords: DNA metabarcoding, endangered animal species, mitochondria nucleic acid, multi-locus

Procedia PDF Downloads 140
474 Enzyme Producing Psyhrophilic Pseudomonas app. Isolated from Poultry Meats

Authors: Ali Aydin, Mert Sudagidan, Aysen Coban, Alparslan Kadir Devrim

Abstract:

Pseudomonas spp. (specifically, P. fluorescens and P. fragi) are considered the principal spoilage microorganisms of refrigerated poultry meats. The higher the level psychrophilic spoilage Pseudomonas spp. on carcasses at the end of processing lead to decrease the shelf life of the refrigerated product. The aim of the study was the identification of psychrophilic Pseudomonas spp. having proteolytic and lipolytic activities from poultry meats by 16S rRNA and rpoB gene sequencing, investigation of protease and lipase related genes and determination of proteolytic activity of Pseudomonas spp. In the of isolation procedure, collected chicken meat samples from local markets and slaughterhouses were homogenized and the lysates were incubated on Standard method agar and Skim Milk agar for selection of proteolytic bacteria and tributyrin agar for selection of lipolytic bacteria at +4 °C for 7 days. After detection of proteolytic and lipolytic colonies, the isolates were firstly analyzed by biochemical tests such as Gram staining, catalase and oxidase tests. DNA gene sequencing analysis and comparison with GenBank revealed that 126 strong enzyme Pseudomonas spp. were identified as predominantly P. fluorescens (n=55), P. fragi (n=42), Pseudomonas spp. (n=24), P. cedrina (n=2), P. poae (n=1), P. koreensis (n=1), and P. gessardi (n=1). Additionally, protease related aprX gene was screened in the strains and it was detected in 69/126 strains, whereas, lipase related lipA gene was found in 9 Pseudomonas strains. Protease activity was determined using commercially available protease assay kit and 5 strains showed high protease activity. The results showed that psychrophilic Pseudomonas strains were present in chicken meat samples and they can produce important levels of proteases and lipases for food spoilage to decrease food quality and safety.

Keywords: Pseudomonas, chicken meat, protease, lipase

Procedia PDF Downloads 388
473 Changing the Landscape of Fungal Genomics: New Trends

Authors: Igor V. Grigoriev

Abstract:

Understanding of biological processes encoded in fungi is instrumental in addressing future food, feed, and energy demands of the growing human population. Genomics is a powerful and quickly evolving tool to understand these processes. The Fungal Genomics Program of the US Department of Energy Joint Genome Institute (JGI) partners with researchers around the world to explore fungi in several large scale genomics projects, changing the fungal genomics landscape. The key trends of these changes include: (i) rapidly increasing scale of sequencing and analysis, (ii) developing approaches to go beyond culturable fungi and explore fungal ‘dark matter,’ or unculturables, and (iii) functional genomics and multi-omics data integration. Power of comparative genomics has been recently demonstrated in several JGI projects targeting mycorrhizae, plant pathogens, wood decay fungi, and sugar fermenting yeasts. The largest JGI project ‘1000 Fungal Genomes’ aims at exploring the diversity across the Fungal Tree of Life in order to better understand fungal evolution and to build a catalogue of genes, enzymes, and pathways for biotechnological applications. At this point, at least 65% of over 700 known families have one or more reference genomes sequenced, enabling metagenomics studies of microbial communities and their interactions with plants. For many of the remaining families no representative species are available from culture collections. To sequence genomes of unculturable fungi two approaches have been developed: (a) sequencing DNA from fruiting bodies of ‘macro’ and (b) single cell genomics using fungal spores. The latter has been tested using zoospores from the early diverging fungi and resulted in several near-complete genomes from underexplored branches of the Fungal Tree, including the first genomes of Zoopagomycotina. Genome sequence serves as a reference for transcriptomics studies, the first step towards functional genomics. In the JGI fungal mini-ENCODE project transcriptomes of the model fungus Neurospora crassa grown on a spectrum of carbon sources have been collected to build regulatory gene networks. Epigenomics is another tool to understand gene regulation and recently introduced single molecule sequencing platforms not only provide better genome assemblies but can also detect DNA modifications. For example, 6mC methylome was surveyed across many diverse fungi and the highest among Eukaryota levels of 6mC methylation has been reported. Finally, data production at such scale requires data integration to enable efficient data analysis. Over 700 fungal genomes and other -omes have been integrated in JGI MycoCosm portal and equipped with comparative genomics tools to enable researchers addressing a broad spectrum of biological questions and applications for bioenergy and biotechnology.

Keywords: fungal genomics, single cell genomics, DNA methylation, comparative genomics

Procedia PDF Downloads 209
472 DNA Polymorphism Studies of β-Lactoglobulin Gene in Native Saudi Goat Breeds

Authors: Amr A. El Hanafy, Muhammad I. Qureshi, Jamal Sabir, Mohamed Mutawakil, Mohamed M. Ahmed, Hassan El Ashmaoui, Hassan Ramadan, Mohamed Abou-Alsoud, Mahmoud Abdel Sadek

Abstract:

β-Lactoglobulin (β-LG) is the dominant non-casein whey protein found in bovine milk and of most ruminants. The amino acid sequence of β-LG along with its 3-dimensional structure illustrates linkage with the lipocalin superfamily. Preliminary studies in goats indicated that milk yield can be influenced by polymorphism in genes coding for whey proteins. The aim of this study is to identify and evaluate the incidence of functional polymorphisms in the exonic and intronic portions of β-LG gene in native Saudi goat breeds (Ardi, Habsi, and Harri). Blood samples were collected from 300 animals (100 for each breed) and genomic DNA was extracted using QIAamp DNA extraction Kit. A fragment of the β-LG gene from exon 7 to 3’ flanking region was amplified with pairs of specific primers. Subsequent digestion with Sac II restriction endonuclease revealed two alleles (A and B) and three different banding patterns or genotypes i.e. AA, AB and BB. The statistical analysis showed that β-LG AA genotype had higher milk yield than β-LG AB and β-LG BB genotypes. Nucleotide sequencing of the selected β-LG fragments was done and submitted to GenBank NCBI (Accession No. KJ544248, KJ588275, KJ588276, KJ783455, KJ783456 and KJ874959). Two already established SNPs in exon 7 (+4601 and +4603) and one fresh SNP in the 3’ UTR region were detected in the β-LG fragments with designated AA genotype. The polymorphisms in exon 7 did not produce any amino acid change. Phylogenetic analysis on the basis of nucleotide sequences of native Saudi goats indicated evolutional similarity with the GenBank reference sequences of goat, Bubalus bubalis and Bos taurus.

Keywords: β-Lactoglobulin, Saudi goats, PCR-RFLP, functional polymorphism, nucleotide sequencing, phylogenetic analysis

Procedia PDF Downloads 501
471 Aire-Dependent Transcripts have Shortened 3’UTRs and Show Greater Stability by Evading Microrna-Mediated Repression

Authors: Clotilde Guyon, Nada Jmari, Yen-Chin Li, Jean Denoyel, Noriyuki Fujikado, Christophe Blanchet, David Root, Matthieu Giraud

Abstract:

Aire induces ectopic expression of a large repertoire of tissue-specific antigen (TSA) genes in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in maturing T cells. Although important mechanisms of Aire-induced transcription have recently been disclosed through the identification and the study of Aire’s partners, the fine transcriptional functions underlied by a number of them and conferred to Aire are still unknown. Alternative cleavage and polyadenylation (APA) is an essential mRNA processing step regulated by the termination complex consisting of 85 proteins, 10 of them have been related to Aire. We evaluated APA in MECs in vivo by microarray analysis with mRNA-spanning probes and RNA deep sequencing. We uncovered the preference of Aire-dependent transcripts for short-3’UTR isoforms and for proximal poly(A) site selection marked by the increased binding of the cleavage factor Cstf-64. RNA interference of the 10 Aire-related proteins revealed that Clp1, a member of the core termination complex, exerts a profound effect on short 3’UTR isoform preference. Clp1 is also significantly upregulated in the MECs compared to 25 mouse tissues in which we found that TSA expression is associated with longer 3’UTR isoforms. Aire-dependent transcripts escape a global 3’UTR lengthening associated with MEC differentiation, thereby potentiating the repressive effect of microRNAs that are globally upregulated in mature MECs. Consistent with these findings, RNA deep sequencing of actinomycinD-treated MECs revealed the increased stability of short 3’UTR Aire-induced transcripts, resulting in TSA transcripts accumulation and contributing for their enrichment in the MECs.

Keywords: Aire, central tolerance, miRNAs, transcription termination

Procedia PDF Downloads 384
470 Functionalized Nano porous Ceramic Membranes for Electrodialysis Treatment of Harsh Wastewater

Authors: Emily Rabe, Stephanie Candelaria, Rachel Malone, Olivia Lenz, Greg Newbloom

Abstract:

Electrodialysis (ED) is a well-developed technology for ion removal in a variety of applications. However, many industries generate harsh wastewater streams that are incompatible with traditional ion exchange membranes. Membrion® has developed novel ceramic-based ion exchange membranes (IEMs) offering several advantages over traditional polymer membranes: high performance in low pH, chemical resistance to oxidizers, and a rigid structure that minimizes swelling. These membranes are synthesized with our patented silane-based sol-gel techniques. The pore size, shape, and network structure are engineered through a molecular self-assembly process where thermodynamic driving forces are used to direct where and how pores form. Either cationic or anionic groups can be added within the membrane nanopore structure to create cation- and anion-exchange membranes. The ceramic IEMs are produced on a roll-to-roll manufacturing line with low-temperature processing. Membrane performance testing is conducted using in-house permselectivity, area-specific resistance, and ED stack testing setups. Ceramic-based IEMs show comparable performance to traditional IEMs and offer some unique advantages. Long exposure to highly acidic solutions has a negligible impact on ED performance. Additionally, we have observed stable performance in the presence of strong oxidizing agents such as hydrogen peroxide. This stability is expected, as the ceramic backbone of these materials is already in a fully oxidized state. This data suggests ceramic membranes, made using sol-gel chemistry, could be an ideal solution for acidic and/or oxidizing wastewater streams from processes such as semiconductor manufacturing and mining.

Keywords: ion exchange, membrane, silane chemistry, nanostructure, wastewater

Procedia PDF Downloads 86
469 Effects of Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Composition of Bacteria in Feces of Finishing Steers

Authors: Yan Li, Qingxiang Meng, Bo Zhou, Zhenming Zhou

Abstract:

The objective of this study was to compare the effects of ensiled mulberry leaves (EML), and sun-dried mulberry fruit pomace (SMFP) on fecal bacterial communities in Simmental crossbred finishing steers fed the following 3 diets: a standard TMR diet, standard diet containing EML and standard diet containing SMFP, and the diets had similar protein and energy levels. Bacterial communities in the fecal content were analyzed using Illumina Miseq sequencing of the V4 region of the 16S rRNA gene amplification. Quantitative real-time PCR was used to detect the selected bacterial species in the feces. Most of the sequences were assigned to phyla Firmicutes (56.67%) and Bacteroidetes(35.90%), followed by Proteobacteria(1.86%), Verrucomicrobia(1.80%) and Tenericutes(1.37%). And the predominant genera included the 5-7N15 (5.91%), CF231 (2.49%), Oscillospira (2.33%), Paludibacter (1.23%) and Akkermansia(1.11%). As for the treatments, no significant differences were observed in Firmicutes (p = 0.28), Bacteroidetes (p = 0.63), Proteobacteria (p = 0.46), Verrucomicrobia (p = 0.17) and Tenericutes (p = 0.75). On the genus level, classified genera with high abundance (more than 0.1%) mainly came from two phyla: Bacteroidetes and Firmicutes. Also no differences were observed in most genera level, 5-7N15 (p = 0.21), CF231 (p = 0.62), Oscillospira (p = 0.9), Paludibacter (p = 0.33) and Akkermansia (p = 0.37), except that rc4-4 were lower in the CON and SMFP groups compared to the EML animals (p = 0.02). Additionally, there were no differences in richness estimate and diversity indices (p > 0.16), and treatments had no significant effect on most selected bacterial species in the fecal (p > 0.06), except that Ruminococcus albus were higher in the EML group (p < 0.01) and Streptococcus bovis were lower in the CON group (p < 0.01). In conclusion, diets supplemented with EML and SMFP have little influence on fecal bacterial community composition in finishing steers.

Keywords: fecal bacteria community composition, sequencing, ensiled mulberry leaves (EML), sun-dried mulberry fruit pomace (SMFP)

Procedia PDF Downloads 325
468 The Impact of CYP2C9 Gene Polymorphisms on Warfarin Dosing

Authors: Weaam Aldeeban, Majd Aljamali, Lama A. Youssef

Abstract:

Background & Objective: Warfarin is considered a problematic drug due to its narrow therapeutic window and wide inter-individual response variations, which are attributed to demographic, environmental, and genetic factors, particularly single nucleotide polymorphism (SNPs) in the genes encoding VKORC1 and CYP2C9 involved in warfarin's mechanism of action and metabolism, respectively. CYP2C9*2rs1799853 and CYP2C9*3rs1057910 alleles are linked to reduced enzyme activity, as carriers of either or both alleles are classified as moderate or slow metabolizers, and therefore exhibit higher sensitivity of warfarin compared with wild type (CYP2C9*1*1). Our study aimed to assess the frequency of *1, *2, and *3 alleles in the CYP2C9 gene in a cohort of Syrian patients receiving a maintenance dose of warfarin for different indications, the impact of genotypes on warfarin dosing, and the frequency of adverse effects (i.e., bleedings). Subjects & Methods: This retrospective cohort study encompassed 94 patients treated with warfarin. Patients’ genotypes were identified by sequencing the polymerase chain reaction (PCR) specific products of the gene encoding CYP2C9, and the effects on warfarin therapeutic outcomes were investigated. Results: Sequencing revealed that 43.6% of the study population has the *2 and/or *3 SNPs. The mean weekly maintenance dose of warfarin was 37.42 ± 15.5 mg for patients with the wild-type allele (CYP2C9*1*1), whereas patients with one or both variants (*2 and/or *3) demanded a significantly lower dose (28.59 ±11.58 mg) of warfarin, (P= 0.015). A higher percentage (40.7%) of patients with allele *2 and/or *3 experienced hemorrhagic accidents compared with only 17.9% of patients with the wild type *1*1, (P = 0.04). Conclusions: Our study proves an association between *2 and *3 genotypes and higher sensitivity to warfarin and a tendency to bleed, which necessitates lowering the dose. These findings emphasize the significance of CYP2C9 genotyping prior to commencing warfarin therapy in order to achieve optimal and faster dose control and to ensure effectiveness and safety.

Keywords: warfarin, CYP2C9, polymorphisms, Syrian, hemorrhage

Procedia PDF Downloads 146
467 The Cleavage of DNA by the Anti-Tumor Drug Bleomycin at the Transcription Start Sites of Human Genes Using Genome-Wide Techniques

Authors: Vincent Murray

Abstract:

The glycopeptide bleomycin is used in the treatment of testicular cancer, Hodgkin's lymphoma, and squamous cell carcinoma. Bleomycin damages and cleaves DNA in human cells, and this is considered to be the main mode of action for bleomycin's anti-tumor activity. In particular, double-strand breaks are thought to be the main mechanism for the cellular toxicity of bleomycin. Using Illumina next-generation DNA sequencing techniques, the genome-wide sequence specificity of bleomycin-induced double-strand breaks was determined in human cells. The degree of bleomycin cleavage was also assessed at the transcription start sites (TSSs) of actively transcribed genes and compared with non-transcribed genes. It was observed that bleomycin preferentially cleaved at the TSSs of actively transcribed human genes. There was a correlation between the degree of this enhanced cleavage at TSSs and the level of transcriptional activity. Bleomycin cleavage is also affected by chromatin structure and at TSSs, the peaks of bleomycin cleavage were approximately 200 bp apart. This indicated that bleomycin was able to detect phased nucleosomes at the TSSs of actively transcribed human genes. The genome-wide cleavage pattern of the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin was also investigated in human cells. As found for bleomycin, these bleomycin analogues also preferentially cleaved at the TSSs of actively transcribed human genes. The cytotoxicity (IC₅₀ values) of these bleomycin analogues was determined. It was found that the degree of enhanced cleavage at TSSs was inversely correlated with the IC₅₀ values of the bleomycin analogues. This suggested that the level of cleavage at the TSSs of actively transcribed human genes was important for the cytotoxicity of bleomycin and analogues. Hence this study provided a deeper understanding of the cellular processes involved in the cancer chemotherapeutic activity of bleomycin.

Keywords: anti-tumour activity, bleomycin analogues, chromatin structure, genome-wide study, Illumina DNA sequencing

Procedia PDF Downloads 121
466 Citrobacter Braakii, a New Plant Pathogen, Causal Agent of Walnut Decline

Authors: Mohammadreza Hajialigol, Nargues Falahi Charkhabi, Fatemeh Shahryari, Saadat Sarikhani

Abstract:

BACKGROUND AND OBJECTIVES Walnut canker is characterized by brown to blackish roundish blotches on the trunks and main branches, necrosis of inner bark and bleeding with dark brown to black-colored exudates. The present study aimed to identify the causative agents of walnut decline by their phenotypic features, approval of pathogenicity, the partial sequencing of the housekeeping genes in Razavi Khorasan. MATERIAL AND METHODS Ten Symptomatic samples were collected from walnut orchards of Razavi Khorasan in 2019. Pathogenicity of all isolated strains was carried out on walnut immature fruits cv. ‘Hartley’ and young green twigs of cv. ‘Chandler’. All pathogenic strains were subjected to physiological, morphological and biochemical tests. 16S rRNA and housekeeping genes (fusA, leuS, and pyrG) were partially amplified and sequenced. RESULTS Eight strains were able to cause necrosis and a dark-colored region in the mesocarp of immature walnut fruits, and three representative strains caused necrosis on young inoculated twigs. Strains utilized starch, however, did not utilized esculin, Tween 20, Tween 80, and gelatin. The partial 16S rRNA gene sequence of strain KH7 indicated 99.63 % similarity to that of Citrobacter braakii ATCC5113T. The phylogenetic analyses based on the partial sequencing of three housekeeping genes, fusA (633 bp), pyrG (305), and leuS (640 bp), demonstrated that strains KH1, KH3, and KH7 belong to C. braakii species in a monophyletic clade with high bootstrap support. CONCLUSION To the best of our knowledge, this is the first report of C. braakii as a new plant pathogen which cause walnut decline. Identification of bacteria associated with walnut decline will eventually improve our understanding of the etiology of the disease and may result in improved management techniques for control.

Keywords: emerging pathogens, Iran, juglans regia, MLSA

Procedia PDF Downloads 92
465 Competitive DNA Calibrators as Quality Reference Standards (QRS™) for Germline and Somatic Copy Number Variations/Variant Allelic Frequencies Analyses

Authors: Eirini Konstanta, Cedric Gouedard, Aggeliki Delimitsou, Stefania Patera, Samuel Murray

Abstract:

Introduction: Quality reference DNA standards (QRS) for molecular testing by next-generation sequencing (NGS) are essential for accurate quantitation of copy number variations (CNV) for germline and variant allelic frequencies (VAF) for somatic analyses. Objectives: Presently, several molecular analytics for oncology patients are reliant upon quantitative metrics. Test validation and standardisation are also reliant upon the availability of surrogate control materials allowing for understanding test LOD (limit of detection), sensitivity, specificity. We have developed a dual calibration platform allowing for QRS pairs to be included in analysed DNA samples, allowing for accurate quantitation of CNV and VAF metrics within and between patient samples. Methods: QRS™ blocks up to 500nt were designed for common NGS panel targets incorporating ≥ 2 identification tags (IDTDNA.com). These were analysed upon spiking into gDNA, somatic, and ctDNA using a proprietary CalSuite™ platform adaptable to common LIMS. Results: We demonstrate QRS™ calibration reproducibility spiked to 5–25% at ± 2.5% in gDNA and ctDNA. Furthermore, we demonstrate CNV and VAF within and between samples (gDNA and ctDNA) with the same reproducibility (± 2.5%) in a clinical sample of lung cancer and HBOC (EGFR and BRCA1, respectively). CNV analytics was performed with similar accuracy using a single pair of QRS calibrators when using multiple single targeted sequencing controls. Conclusion: Dual paired QRS™ calibrators allow for accurate and reproducible quantitative analyses of CNV, VAF, intrinsic sample allele measurement, inter and intra-sample measure not only simplifying NGS analytics but allowing for monitoring clinically relevant biomarker VAF across patient ctDNA samples with improved accuracy.

Keywords: calibrator, CNV, gene copy number, VAF

Procedia PDF Downloads 153
464 Cytochrome B Diversity and Phylogeny of Egyptian Sheep Breeds

Authors: Othman E. Othman, Agnés Germot, Daniel Petit, Abderrahman Maftah

Abstract:

Threats to the biodiversity are increasing due to the loss of genetic diversity within the species utilized in agriculture. Due to the progressive substitution of the less productive, locally adapted and native breeds by highly productive breeds, the number of threatened breeds is increased. In these conditions, it is more strategically important than ever to preserve as much the farm animal diversity as possible, to ensure a prompt and proper response to the needs of future generations. Mitochondrial (mtDNA) sequencing has been used to explain the origins of many modern domestic livestock species. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. Because of the eastern location of Egypt in the Mediterranean basin and the presence of fat-tailed sheep breeds- character quite common in Turkey and Syria- where genotypes that seem quite primitive, the phylogenetic studies of Egyptian sheep breeds become particularly attractive. We aimed in this work to clarify the genetic affinities, biodiversity and phylogeny of five Egyptian sheep breeds using cytochrome B sequencing. Blood samples were collected from 63 animals belonging to the five tested breeds; Barki, Rahmani, Ossimi, Saidi and Sohagi. The total DNA was extracted and the specific primer allowed the conventional PCR amplification of the cytochrome B region of mtDNA (approximately 1272 bp). PCR amplified products were purified and sequenced. The alignment of Sixty-three samples was done using BioEdit software. DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 34 polymorphic sites leading to the formation of 18 haplotypes. The haplotype diversity in five tested breeds ranged from 0.676 in Rahmani breed to 0.894 in Sohagi breed. The genetic distances (D) and the average number of pairwise differences (Dxy) between breeds were estimated. The lowest distance was observed between Rahmani and Saidi (D: 1.674 and Dxy: 0.00150) while the highest distance was observed between Ossimi and Sohagi (D: 5.233 and Dxy: 0.00475). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of the 63 analyzed samples were aligned with references sequences of different haplogroups. The phylogeny result showed the presence of three haplogroups (HapA, HapB and HapC) in the 63 examined samples. The other two haplogroups described in literature (HapD and HapE) were not found. The result showed that 50 out of 63 tested animals cluster with haplogroup B (79.37%) whereas 7 tested animals cluster with haplogroup A (11.11%) and 6 animals cluster with haplogroup C (9.52%). In conclusion, the phylogenetic reconstructions showed that the majority of Egyptian sheep breeds belonging to haplogroup B which is the dominant haplogroup in Eastern Mediterranean countries like Syria and Turkey. Some individuals are belonging to haplogroups A and C, suggesting that the crosses were done with other breeds for characteristic selection for growth and wool quality.

Keywords: cytochrome B, diversity, phylogheny, Egyptian sheep breeds

Procedia PDF Downloads 375
463 Biotechnological Interventions for Crop Improvement in Nutricereal Pearl Millet

Authors: Supriya Ambawat, Subaran Singh, C. Tara Satyavathi, B. S. Rajpurohit, Ummed Singh, Balraj Singh

Abstract:

Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important staple food of the arid and semiarid tropical regions of Asia, Africa, and Latin America. It is rightly termed as nutricereal as it has high nutrition value and a good source of carbohydrate, protein, fat, ash, dietary fiber, potassium, magnesium, iron, zinc, etc. Pearl millet has low prolamine fraction and is gluten free which is useful for people having a gluten allergy. It has several health benefits like reduction in blood pressure, thyroid, diabe¬tes, cardiovascular and celiac diseases but its direct consumption as food has significantly declined due to several reasons. Keeping this in view, it is important to reorient the ef¬forts to generate demand through value-addition and quality improvement and create awareness on the nutritional merits of pearl millet. In India, through Indian Council of Agricultural Research-All India Coordinated Research Project on Pearl millet, multilocational coordinated trials for developed hybrids were conducted at various centers. The gene banks of pearl millet contain varieties with high levels of iron and zinc which were used to produce new pearl millet varieties with elevated iron levels bred with the high‐yielding varieties. Thus, using breeding approaches and biochemical analysis, a total of 167 hybrids and 61 varieties were identified and released for cultivation in different agro-ecological zones of the country which also includes some biofortified hybrids rich in Fe and Zn. Further, using several biotechnological interventions such as molecular markers, next-generation sequencing (NGS), association mapping, nested association mapping (NAM), MAGIC populations, genome editing, genotyping by sequencing (GBS), genome wide association studies (GWAS) advancement in millet improvement has become possible by identifying and tagging of genes underlying a trait in the genome. Using DArT markers very high density linkage maps were constructed for pearl millet. Improved HHB67 has been released using marker assisted selection (MAS) strategies, and genomic tools were used to identify Fe-Zn Quantitative Trait Loci (QTL). The draft genome sequence of millet has also opened various ways to explore pearl millet. Further, genomic positions of significantly associated simple sequence repeat (SSR) markers with iron and zinc content in the consensus map is being identified and research is in progress towards mapping QTLs for flour rancidity. The sequence information is being used to explore genes and enzymatic pathways responsible for rancidity of flour. Thus, development and application of several biotechnological approaches along with biofortification can accelerate the genetic gain targets for pearl millet improvement and help improve its quality.

Keywords: Biotechnological approaches, genomic tools, malnutrition, MAS, nutricereal, pearl millet, sequencing.

Procedia PDF Downloads 186
462 The Use of Bleomycin and Analogues to Probe the Chromatin Structure of Human Genes

Authors: Vincent Murray

Abstract:

The chromatin structure at the transcription start sites (TSSs) of genes is very important in the control of gene expression. In order for gene expression to occur, the chromatin structure at the TSS has to be altered so that the transcriptional machinery can be assembled and RNA transcripts can be produced. In particular, the nucleosome structure and positioning around the TSS has to be changed. Bleomycin is utilized as an anti-tumor agent to treat Hodgkin's lymphoma, squamous cell carcinoma, and testicular cancer. Bleomycin produces DNA damage in human cells and DNA strand breaks, especially double-strand breaks, are thought to be responsible for the cancer chemotherapeutic activity of bleomycin. Bleomycin is a large glycopeptide with molecular weight of approximately 1500 Daltons and hence its DNA strand cleavage activity can be utilized as a probe of chromatin structure. In this project, Illumina next-generation DNA sequencing technology was used to determine the position of DNA double-strand breaks at the TSSs of genes in intact cells. In this genome-wide study, it was found that bleomycin cleavage preferentially occurred at the TSSs of actively transcribed human genes in comparison with non-transcribed genes. There was a correlation between the level of enhanced bleomycin cleavage at TSSs and the degree of transcriptional activity. In addition, bleomycin was able to determine the position of nucleosomes at the TSSs of human genes. Bleomycin analogues were also utilized as probes of chromatin structure at the TSSs of human genes. In a similar manner to bleomycin, the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin preferentially cleaved at the TSSs of human genes. Interestingly this degree of enhanced TSS cleavage inversely correlated with the cytotoxicity (IC50 values) of BLM analogues. This indicated that the degree of cleavage by bleomycin analogues at the TSSs of human genes was very important in the cytotoxicity of bleomycin and analogues. It also provided a deeper insight into the mechanism of action of this cancer chemotherapeutic agent since actively transcribed genes were preferentially targeted.

Keywords: anti-cancer activity, chromatin structure, cytotoxicity, gene expression, next-generation DNA sequencing

Procedia PDF Downloads 117
461 Enamel Structure Defect, the Rare Dental Anomaly: Isolated or Syndromic

Authors: Nehal F. Hassib, Rasha M. El Hossini, Inas M. Sayed, Maha R. Abouzeid, Nermeen A. Bayoumi, Aida M. Mosaad, Lamia K. Gadallah, Moataz Bellah A. T. Abdelbari, Heba A. El-Sayed, Hasnaa Elbendary, Ghada Abdel-Salam, Maha Zaki, Mostafa I. Mostafa, Mohamed S. Abdel-Hamid

Abstract:

Enamel, the outermost layer of the tooth crown, is the hardest dental tissue and serves as a protective barrier. Amelogenesis, the process of enamel formation, is regulated by multiple genes to ensure normal, defect-free enamel. Defective enamel manifests as hypoplasia or as amelogenesis imperfecta (AI), which may occur in isolation or as part of a syndrome. This study presents 29 patients from 18 unrelated families (16 females and 13 males) who exhibited distinctive enamel abnormalities. We conducted thorough clinical examinations and requested laboratory and radiological investigations. Blood samples were collected for molecular analysis, utilizing a targeted panel for known AI variants and whole exome sequencing for unknown variants. Eleven variants linked to enamel anomalies were identified: four genes associated with isolated AI (WDR72, ACP4, SLC24A4, and FAM83H) and seven associated with syndromic forms, including enamel renal syndrome (FAM20A), tricho-dento-osseous syndrome (DLX3), Jalili syndrome (CNNM4), and others linked to neurological and mitochondrial disorders, skeletal dysplasia, and peroxisome disorders. Abnormal oral and dental phenotypes in individuals may indicate serious inherited disorders. Enamel defects have significant implications for aesthetics, function, and patients' psychological well-being. Dental examination, alongside clinical and molecular investigations, is crucial for the accurate diagnosis and prediction of inherited conditions.

Keywords: amelogenesis imperfecta, enamel defect, Enamel renal syndrome, DLX3, Jalili syndrome, WDR72, FAM83H, whole exome sequencing

Procedia PDF Downloads 25
460 One Health Approach: The Importance of Improving the Identification of Waterborne Bacteria in Austrian Water

Authors: Aurora Gitto, Philipp Proksch

Abstract:

The presence of various microorganisms (bacteria, fungi) in surface water and groundwater represents an important issue for human health worldwide. The matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) has emerged as a promising and reliable tool for bacteria identification in clinical diagnostic microbiology and environmental strains thanks to an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. The study aims first to conceptualise and set up library information and create a comprehensive database of MALDI-TOF-MS spectra from environmental water samples. The samples were analysed over a year (2021-2022) using membrane filtration methodology (0.45 μm and 0.22 μm) and then isolated on R2A agar for a period of 5 days and Yeast extract agar growing at 22 °C up to 4 days and 37 °C for 48 hours. The undetected organisms by MALDI-TOF-MS were analysed by PCR and then sequenced. The information obtained by the sequencing was further implemented in the MALDI-TOF-MS library. Among the culturable bacteria, the results show how the incubator temperature affects the growth of some genera instead of others, as demonstrated by Pseudomonas sp., which grows at 22 °C, compared to Bacillus sp., which is abundant at 37 °C. The bacteria community shows a variation in composition also between the media used, as demonstrated with R2A agar which has been defined by a higher presence of organisms not detected compared to YEA. Interesting is the variability of the Genus over one year of sampling and how the seasonality impacts the bacteria community; in fact, in some sampling locations, we observed how the composition changed, moving from winter to spring and summer. In conclusion, the bacteria community in groundwater and river bank filtration represents important information that needs to be added to the library to simplify future water quality analysis but mainly to prevent potential risks to human health.

Keywords: water quality, MALDI-TOF-MS, sequencing, library

Procedia PDF Downloads 83
459 Phylogenetic Studies of Six Egyptian Sheep Breeds Using Cytochrome B

Authors: Othman Elmahdy Othman, Agnés Germot, Daniel Petit, Muhammad Khodary, Abderrahman Maftah

Abstract:

Recently, the control (D-loop) and cytochrome b (Cyt b) regions of mtDNA have received more attention due to their role in the genetic diversity and phylogenetic studies in different livestock which give important knowledge towards the genetic resource conservation. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. By using cytochrome B sequencing, we aimed to clarify the genetic affinities and phylogeny of six Egyptian sheep breeds. Blood samples were collected from 111 animals belonging to six Egyptian sheep breeds; Barki, Rahmani, Ossimi, Saidi, Sohagi and Fallahi. The total DNA was extracted and the specific primers were used for conventional PCR amplification of the cytochrome B region of mtDNA. PCR amplified products were purified and sequenced. The alignment of sequences was done using BioEdit software and DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 39 polymorphic sites leading to the formation of 29 haplotypes. The haplotype diversity in six tested breeds ranged from 0.643 in Rahmani breed to 0.871 in Barki breed. The lowest genetic distance was observed between Rahmani and Saidi (D: 1.436 and Dxy: 0.00127) while the highest distance was observed between Ossimi and Sohagi (D: 6.050 and Dxy: 0.00534). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of 111 analyzed samples were aligned with references sequences of different haplogroups; A, B, C, D and E. The phylogeny result showed the presence of four haplogroups; HapA, HapB, HapC and HapE in the examined samples whereas the haplogroup D was not found. The result showed that 88 out of 111 tested animals cluster with haplogroup B (79.28%), whereas 12 tested animals cluster with haplogroup A (10.81%), 10 animals cluster with haplogroup C (9.01%) and one animal belongs to haplogroup E (0.90%).

Keywords: phylogeny, genetic biodiversity, MtDNA, cytochrome B, Egyptian sheep

Procedia PDF Downloads 347
458 Transcriptome Analysis for Insights into Disease Progression in Dengue Patients

Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee

Abstract:

Dengue virus infection is now considered as one of the most important mosquito-borne infection in human. The virus is known to promote vascular permeability, cerebral edema leading to Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Dengue infection has known to be endemic in India for over two centuries as a benign and self-limited disease. In the last couple of years, the disease symptoms have changed, manifesting severe secondary complication. So far, Delhi has experienced 12 outbreaks of dengue virus infection since 1997 with the last reported in 2014-15. Without specific antivirals, the case management of high-risk dengue patients entirely relies on supportive care, involving constant monitoring and timely fluid support to prevent hypovolemic shock. Nonetheless, the diverse clinical spectrum of dengue disease, as well as its initial similarity to other viral febrile illnesses, presents a challenge in the early identification of this high-risk group. WHO recommends the use of warning signs to identify high-risk patients, but warning signs generally appear during, or just one day before the development of severe illness, thus, providing only a narrow window for clinical intervention. The ability to predict which patient may develop DHF and DSS may improve the triage and treatment. With the recent discovery of high throughput RNA sequencing allows us to understand the disease progression at the genomic level. Here, we will collate the results of RNA-Sequencing data obtained recently from PBMC of different categories of dengue patients from India and will discuss the possible role of deregulated genes and long non-coding RNAs NEAT1 for development of disease progression.

Keywords: long non-coding RNA (lncRNA), dengue, peripheral blood mononuclear cell (PBMC), nuclear enriched abundant transcript 1 (NEAT1), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS)

Procedia PDF Downloads 309
457 Re-Stating the Origin of Tetrapod Using Measures of Phylogenetic Support for Phylogenomic Data

Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou

Abstract:

Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to re-investigate the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high internode certainty, relative gene support, and high gene concordance factor. The evidence stems from five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup, such as slow-evolving species, while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.

Keywords: novel measures of phylogenetic support for phylogenomic data, gene concordance factor confidence, relative gene support, internode certainty, origin of tetrapods

Procedia PDF Downloads 60
456 Methylation Profiling and Validation of Candidate Tissue-Specific Differentially Methylated Regions for Identification of Human Blood, Saliva, Semen and Vaginal Fluid and Its Application in Forensics

Authors: Meenu Joshi, Natalie Naidoo, Farzeen Kader

Abstract:

Identification of body fluids is an essential step in forensic investigation to aid in crime reconstruction. Tissue-specific differentially methylated regions (tDMRs) of the human genome can be targeted to be used as biomarkers to differentiate between body fluids. The present study was undertaken to establish the methylation status of potential tDMRs in blood, semen, saliva, and vaginal fluid by using methylation-specific PCR (MSP) and bisulfite sequencing (BS). The methylation statuses of 3 potential tDMRS in genes ZNF282, PTPRS, and HPCAL1 were analysed in 10 samples of each body fluid. With MSP analysis, the ZNF282, and PTPRS1 tDMR displayed semen-specific hypomethylation while HPCAL1 tDMR showed saliva-specific hypomethylation. With quantitative analysis by BS, the ZNF282 tDMR showed statistically significant difference in overall methylation between semen and all other body fluids as well as at individual CpG sites (p < 0.05). To evaluate the effect of environmental conditions on the stability of methylation profiles of the ZNF282 tDMR, five samples of each body fluid were subjected to five different forensic simulated conditions (dry at room temperature, wet in an exsiccator, outside on the ground, sprayed with alcohol, and sprayed with bleach) for 50 days. Vaginal fluid showed highest DNA recovery under all conditions while semen had least DNA quantity. Under outside on the ground condition, all body fluids except semen showed a decrease in methylation level; however, a significant decrease in methylation level was observed for saliva. A statistical significant difference was observed for saliva and semen (p < 0.05) for outside on the ground condition. No differences in methylation level were observed for the ZNF282 tDMR under all conditions for vaginal fluid samples. Thus, in the present study ZNF282 tDMR has been identified as a novel and stable semen-specific hypomethylation marker.

Keywords: body fluids, bisulphite sequencing, forensics, tDMRs, MSP

Procedia PDF Downloads 163
455 Exploring Emerging Viruses From a Protected Reserve

Authors: Nemat Sokhandan Bashir

Abstract:

Threats from viruses to agricultural crops could be even larger than the losses caused by the other pathogens because, in many cases, the viral infection is latent but crucial from an epidemic point of view. Wild vegetation can be a source of many viruses that eventually find their destiny in crop plants. Although often asymptomatic in wild plants due to adaptation, they can potentially cause serious losses in crops. Therefore, exploring viruses in wild vegetation is very important. Recently, omics have been quite useful for exploring plant viruses from various plant sources, especially wild vegetation. For instance, we have discovered viruses such as Ambrossia asymptomatic virus I (AAV-1) through the application of metagenomics from Oklahoma Prairie Reserve. Accordingly, extracts from randomly-sampled plants are subjected to high speed and ultracentrifugation to separated virus-like particles (VLP), then nucleic acids in the form of DNA or RNA are extracted from such VLPs by treatment with phenol—chloroform and subsequent precipitation by ethanol. The nucleic acid preparations are separately treated with RNAse or DNAse in order to determine the genome component of VLPs. In the case of RNAs, the complementary cDNAs are synthesized before submitting to DNA sequencing. However, for VLPs with DNA contents, the procedure would be relatively straightforward without making cDNA. Because the length of the nucleic acid content of VPLs can be different, various strategies are employed to achieve sequencing. Techniques similar to so-called "chromosome walking" may be used to achieve sequences of long segments. When the nucleotide sequence data were obtained, they were subjected to BLAST analysis to determine the most related previously reported virus sequences. In one case, we determined that the novel virus was AAV-l because the sequence comparison and analysis revealed that the reads were the closest to the Indian citrus ringspot virus (ICRSV). AAV—l had an RNA genome with 7408 nucleotides in length and contained six open reading frames (ORFs). Based on phylogenies inferred from the replicase and coat protein ORFs of the virus, it was placed in the genus Mandarivirus.

Keywords: wild, plant, novel, metagenomics

Procedia PDF Downloads 80
454 Molecular Dissection of Late Flowering under a Photoperiod-Insensitive Genetic Background in Soybean

Authors: Fei Sun, Meilan Xu, Jianghui Zhu, Maria Stefanie Dwiyanti, Cheolwoo Park, Fanjiang Kong, Baohui Liu, Tetsuya Yamada, Jun Abe

Abstract:

Reduced or lack of sensitivity to long daylengths is a key character for soybean, a short-day crop, to adapt to higher latitudinal environments. However, the photoperiod-insensitivity often results in a reduction of the duration of vegetative growth and final yield. To overcome this limitation, a photoperiod insensitive line (RIL16) was developed in this study that delayed flowering from the recombinant inbred population derived from a cross between a photoperiod-insensitive cultivar AGS292 and a late-flowering Thai cultivar K3. Expression analyses under SD and LD conditions revealed that the expression levels of FLOWERING LOCUS T (FT) orthologues, FT2a and FT5a, were lowered in RIL16 relative to AGS292, although the expression of E1, a soybean-specific suppressor for FTs, was inhibited in both conditions. A soybean orthologue of TARGET OF EAT1 (TOE1), another suppressor of FT, showed an upregulated expression in RIL16, which appeared to reflect a lower expression of miR172a. Our data suggest that the delayed flowering of RIL16 most likely is controlled by genes involved in an age-dependent pathway in flowering. The QTL analysis based on 1,125 SNPs obtained from Restriction Site Associated DNA Sequencing revealed two major QTLs for flowering dates in Chromosome 16 and two minor QTLs in Chromosome 4, all of which accounted for 55% and 48% of the whole variations observed in natural day length and artificially-induced long day length conditions, respectively. The intervals of the major QTLs harbored FT2a and FT5a, respectively, on the basis of annotated genes in the Williams 82 reference genome. Sequencing analysis further revealed a nonsynonymous mutation in FT2a and an SNP in the 3′ UTR region of FT5a. A further study may elucidate a detailed mechanism underlying the QTL for late flowering. The alleles from K3 at the two QTLs can be used singly or in combination to retain an appropriate duration of vegetative growth to maximize the final yield of photoperiod-insensitive soybeans.

Keywords: FT genes, miR72a, photoperiod-insensitive, soybean flowering

Procedia PDF Downloads 221
453 Characterization of Transcription Factors Involved in Early Defense Response during Interaction of Oil Palm Elaeis guineensis Jacq. with Ganoderma boninense

Authors: Sakeh N. Mohd, Bahari M. N. Abdul, Abdullah S. N. Akmar

Abstract:

Oil palm production generates high export earnings to many countries especially in Southeast Asian region. Infection by necrotrophic fungus, Ganoderma boninense on oil palm results in basal stem rot which compromises oil palm production leading to significant economic loss. There are no reliable disease treatments nor promising resistant oil palm variety has been cultivated to eradicate the disease up to date. Thus, understanding molecular mechanisms underlying early interactions of oil palm with Ganoderma boninense may be vital to promote preventive or control measure of the disease. In the present study, four months old oil palm seedlings were infected via artificial inoculation of Ganoderma boninense on rubber wood blocks. Roots of six biological replicates of treated and untreated oil palm seedlings were harvested at 0, 3, 7 and 11 days post inoculation. Next-generation sequencing was performed to generate high-throughput RNA-Seq data and identify differentially expressed genes (DEGs) during early oil palm-Ganoderma boninense interaction. Based on de novo transcriptome assembly, a total of 427,122,605 paired-end clean reads were assembled into 30,654 unigenes. DEGs analysis revealed upregulation of 173 transcription factors on Ganoderma boninense-treated oil palm seedlings. Sixty-one transcription factors were categorized as DEGs according to stringent cut-off values of genes with log2 ratio [Number of treated oil palm seedlings/ Number of untreated oil palm seedlings] ≥ |1.0| (corresponding to 2-fold or more upregulation) and P-value ≤ 0.01. Transcription factors in response to biotic stress will be screened out from abiotic stress using reverse transcriptase polymerase chain reaction. Transcription factors unique to biotic stress will be verified using real-time polymerase chain reaction. The findings will help researchers to pinpoint defense response mechanism specific against Ganoderma boninense.

Keywords: Ganoderma boninense, necrotrophic, next-generation sequencing, transcription factors

Procedia PDF Downloads 267
452 Investigating the Efficiency of Granular Sludge for Recovery of Phosphate from Wastewater

Authors: Sara Salehi, Ka Yu Cheng, Anna Heitz, Maneesha Ginige

Abstract:

This study investigated the efficiency of granular sludge for phosphorous (P) recovery from wastewater. A laboratory scale sequencing batch reactor (SBR) was operated under alternating aerobic/anaerobic conditions to enrich a P accumulating granular biomass. This study showed that an overall 45-fold increase in P concentration could be achieved by reducing the volume of the P capturing liquor by 5-fold in the anaerobic P release phase. Moreover, different fractions of the granular biomass have different individual contributions towards generating a concentrated stream of P.

Keywords: granular sludge, PAOs, P recovery, SBR

Procedia PDF Downloads 483
451 Identification of Rare Mutations in Genes Involved in Monogenic Forms of Obesity and Diabetes in Obese Guadeloupean Children through Next-Generation Sequencing

Authors: Lydia Foucan, Laurent Larifla, Emmanuelle Durand, Christine Rambhojan, Veronique Dhennin, Jean-Marc Lacorte, Philippe Froguel, Amelie Bonnefond

Abstract:

In the population of Guadeloupe Island (472,124 inhabitants and 80% of subjects of African descent), overweight and obesity were estimated at 23% and 9% respectively among children. High prevalence of diabetes has been reported (~10%) in the adult population. Nevertheless, no study has investigated the contribution of gene mutations to childhood obesity in this population. We aimed to investigate rare genetic mutations in genes involved in monogenic obesity or diabetes in obese Afro-Caribbean children from Guadeloupe Island using next-generation sequencing. The present investigation included unrelated obese children, from a previous study on overweight conducted in Guadeloupe Island in 2013. We sequenced coding regions of 59 genes involved in monogenic obesity or diabetes. A total of 25 obese schoolchildren (with Z-score of body mass index [BMI]: 2.0 to 2.8) were screened for rare mutations (non-synonymous, splice-site, or insertion/deletion) in 59 genes. Mean age of the study population was 12.4 ± 1.1 years. Seventeen children (68%) had insulin-resistance (HOMA-IR > 3.16). A family history of obesity (mother or father) was observed in eight children and three of the accompanying parent presented with type 2 diabetes. None of the children had gonadotrophic abnormality or mental retardation. We detected five rare heterozygous mutations, in four genes involved in monogenic obesity, in five different obese children: MC4R p.Ile301Thr and SIM1 p.Val326Thrfs*43 mutations which were pathogenic; SIM1 p.Ser343Pro and SH2B1 p.Pro90His mutations which were likely pathogenic; and NTRK2 p.Leu140Phe that was of uncertain significance. In parallel, we identified seven carriers of mutation in ABCC8 or KCNJ11 (involved in monogenic diabetes), which were of uncertain significance (KCNJ11 p.Val13Met, KCNJ11 p.Val151Met, ABCC8 p.Lys1521Asn and ABCC8 p.Ala625Val). Rare pathogenic or likely pathogenic mutations, linked to severe obesity were detected in more than 15% of this Afro-Caribbean population at high risk of obesity and type 2 diabetes.

Keywords: childhood obesity, MC4R, monogenic obesity, SIM1

Procedia PDF Downloads 195
450 Identification of New Familial Breast Cancer Susceptibility Genes: Are We There Yet?

Authors: Ian Campbell, Gillian Mitchell, Paul James, Na Li, Ella Thompson

Abstract:

The genetic cause of the majority of multiple-case breast cancer families remains unresolved. Next generation sequencing has emerged as an efficient strategy for identifying predisposing mutations in individuals with inherited cancer. We are conducting whole exome sequence analysis of germ line DNA from multiple affected relatives from breast cancer families, with the aim of identifying rare protein truncating and non-synonymous variants that are likely to include novel cancer predisposing mutations. Data from more than 200 exomes show that on average each individual carries 30-50 protein truncating mutations and 300-400 rare non-synonymous variants. Heterogeneity among our exome data strongly suggest that numerous moderate penetrance genes remain to be discovered, with each gene individually accounting for only a small fraction of families (~0.5%). This scenario marks validation of candidate breast cancer predisposing genes in large case-control studies as the rate-limiting step in resolving the missing heritability of breast cancer. The aim of this study is to screen genes that are recurrently mutated among our exome data in a larger cohort of cases and controls to assess the prevalence of inactivating mutations that may be associated with breast cancer risk. We are using the Agilent HaloPlex Target Enrichment System to screen the coding regions of 168 genes in 1,000 BRCA1/2 mutation-negative familial breast cancer cases and 1,000 cancer-naive controls. To date, our interim analysis has identified 21 genes which carry an excess of truncating mutations in multiple breast cancer families versus controls. Established breast cancer susceptibility gene PALB2 is the most frequently mutated gene (13/998 cases versus 0/1009 controls), but other interesting candidates include NPSR1, GSN, POLD2, and TOX3. These and other genes are being validated in a second cohort of 1,000 cases and controls. Our experience demonstrates that beyond PALB2, the prevalence of mutations in the remaining breast cancer predisposition genes is likely to be very low making definitive validation exceptionally challenging.

Keywords: predisposition, familial, exome sequencing, breast cancer

Procedia PDF Downloads 494
449 Measures of Phylogenetic Support for Phylogenomic and the Whole Genomes of Two Lungfish Restate Lungfish and Origin of Land Vertebrates

Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou

Abstract:

Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to reassess the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high gene support confidence with confidence intervals exceeding 95%, high internode certainty, and high gene concordance factor. The evidence stems from two datasets containing recently deciphered whole genomes of two lungfish species, as well as five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa diminishes the number of orthologues and leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction (LBA) and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.

Keywords: gene support confidence (GSC), origin of land vertebrates, coelacanth, two whole genomes of lungfishes, confidence intervals

Procedia PDF Downloads 89
448 Nanostructured Oxide Layer by Anodization on Austenitic Stainless Steels: Structural and Corrosion Insights

Authors: Surya Prakash Gajagouni, Akram Alfantazi, Imad Barsoum

Abstract:

Austenitic stainless steels are widely recognized for their exceptional corrosion resistance and mechanical properties, rendering them indispensable materials across various industries from construction to biomedical applications. However, in chloride and high temperature atmosphere it to further enhance their surface properties, anodization has emerged as a promising surface treatment technique. Anodization modifies the surface of stainless steels by creating a protective oxide layer, improving corrosion resistance and imparting additional functional characteristics. This paper explores the structural and corrosion characteristics of anodized austenitic stainless steels (AISI 304) using a two-step anodic technique. We utilized a perchloric acid-based electrolyte followed by an ammonium fluoride-based electrolyte. This sequential approach aimed to cultivate deeper and intricately self-ordered nanopore oxide arrays on a substrate made of 304 stainless steel. Electron Microscopic (SEM and TEM) images revealed nanoporous layered structures with increased length and crack development correlating with higher voltage and anodization time. Surface composition and chemical oxidation state of surface-treated SS were determined using X-ray photoelectron spectroscopy (XPS) techniques, revealing a surface layer rich in Ni and suppressed Cr, resulting in a thin film composed of Ni and Fe oxide compared to untreated SS. Electrochemical studies demonstrated enhanced corrosion resistance in a strong alkaline medium compared to untreated SS. Understanding the intricate relationship between the structural features of anodized stainless steels and their corrosion resistance is crucial for optimizing the performance of these materials in diverse applications. This study aims to contribute to the advancement of surface engineering strategies for enhancing the durability and functionality of austenitic stainless steels in aggressive environments.

Keywords: austenitic stainless steel, anodization, nanoporous oxides, marine corrosion

Procedia PDF Downloads 36
447 Tuberculosis in Humans and Animals in the Eastern Part of the Sudan

Authors: Yassir Adam Shuaib, Stefan Niemann, Eltahir Awad Khalil, Ulrich Schaible, Lothar Heinz Wieler, Mohammed Ahmed Bakhiet, Abbashar Osman Mohammed, Mohamed Abdelsalam Abdalla, Elvira Richter

Abstract:

Tuberculosis (TB) is a chronic bacterial disease of humans and animals and it is characterized by the progressive development of specific granulomatous tubercle lesions in affected tissues. In a six-month study, from June to November 2014, a total of 2,304 carcasses of cattle, camel, sheep, and goats slaughtered at East and West Gaash slaughterhouses, Kassala, were investigated during postmortem, in parallel, 101 sputum samples from TB suspected patients at Kassala and El-Gadarif Teaching Hospitals were collected in order to investigate tuberculosis in animals and humans. Only 0.1% carcasses were found with suspected TB lesions in the liver and lung and peritoneal cavity of two sheep and no tuberculous lesions were found in the carcasses of cattle, goats or camels. All samples, tissue lesions and sputum, were decontaminated by the NALC-NaOH method and cultured for mycobacterial growth at the NRZ for Mycobacteria, Research Center Borstel, Germany. Genotyping and molecular characterization of the grown strains were done by line probe assay (GenoType CM and MTBC) and 16S rDNA, rpoB gene, and ITS sequencing, spoligotyping, MIRU-VNTR typing and next generation sequencing (NGS). Culture of the specimens revealed growth of organisms from 81.6% of all samples. Mycobacterium tuberculosis (76.2%), M. intracellulare (14.2%), mixed infection with M. tuberculosis and M. intracellulare (6.0%) and mixed infection with M. tuberculosis and M. fortuitum and with M. intracellulare and unknown species (1.2%) were detected in the sputum samples and unknown species (1.2%) were detected in the samples of one of the animals tissues. From the 69 M. tuberculosis strains, 25 (36.2%) were showing either mono-drug-resistant or multi-drug-resistant or poly-drug-resistant but none was extensively drug-resistant. In conclusion, the prevalence of TB in animals was very low while in humans M. tuberculosis-Delhi/CAS lineage was responsible for most cases and there was an evidence of MDR transmission and acquisition.

Keywords: animal, human, slaughterhouse, Sudan, tuberculosis

Procedia PDF Downloads 369
446 Data Analysis for Taxonomy Prediction and Annotation of 16S rRNA Gene Sequences from Metagenome Data

Authors: Suchithra V., Shreedhanya, Kavya Menon, Vidya Niranjan

Abstract:

Skin metagenomics has a wide range of applications with direct relevance to the health of the organism. It gives us insight to the diverse community of microorganisms (the microbiome) harbored on the skin. In the recent years, it has become increasingly apparent that the interaction between skin microbiome and the human body plays a prominent role in immune system development, cancer development, disease pathology, and many other biological implications. Next Generation Sequencing has led to faster and better understanding of environmental organisms and their mutual interactions. This project is studying the human skin microbiome of different individuals having varied skin conditions. Bacterial 16S rRNA data of skin microbiome is downloaded from SRA toolkit provided by NCBI to perform metagenomics analysis. Twelve samples are selected with two controls, and 3 different categories, i.e., sex (male/female), skin type (moist/intermittently moist/sebaceous) and occlusion (occluded/intermittently occluded/exposed). Quality of the data is increased using Cutadapt, and its analysis is done using FastQC. USearch, a tool used to analyze an NGS data, provides a suitable platform to obtain taxonomy classification and abundance of bacteria from the metagenome data. The statistical tool used for analyzing the USearch result is METAGENassist. The results revealed that the top three abundant organisms found were: Prevotella, Corynebacterium, and Anaerococcus. Prevotella is known to be an infectious bacterium found on wound, tooth cavity, etc. Corynebacterium and Anaerococcus are opportunist bacteria responsible for skin odor. This result infers that Prevotella thrives easily in sebaceous skin conditions. Therefore it is better to undergo intermittently occluded treatment such as applying ointments, creams, etc. to treat wound for sebaceous skin type. Exposing the wound should be avoided as it leads to an increase in Prevotella abundance. Moist skin type individuals can opt for occluded or intermittently occluded treatment as they have shown to decrease the abundance of bacteria during treatment.

Keywords: bacterial 16S rRNA , next generation sequencing, skin metagenomics, skin microbiome, taxonomy

Procedia PDF Downloads 172