Search results for: heterogeneous photo catalysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1217

Search results for: heterogeneous photo catalysis

1067 Comparative Study of Ni Catalysts Supported by Silica and Modified by Metal Additions Co and Ce for The Steam Reforming of Methane

Authors: Ali Zazi, Ouiza Cherifi

Abstract:

The Catalysts materials Ni-SiO₂, Ni-Co-SiO₂ and Ni-Ce-SiO₂ were synthetized by classical method impregnation and supported by silica. This involves combing the silica with an adequate rate of the solution of nickel nitrates, or nickel nitrate and cobalt nitrate, or nickel nitrate and cerium nitrate, mixed, dried and calcined at 700 ° c. These catalysts have been characterized by different physicochemical analysis techniques. The atomic absorption spectrometry indicates that the real contents of nickel, cerium and cobalt are close to the theoretical contents previously assumed, which let's say that the nitrate solutions have impregnated well the silica support. The BET results show that the surface area of the specific surfaces decreases slightly after impregnation with nickel nitrates or Co and Ce metals and a further slight decrease after the reaction. This is likely due to coke deposition. X-ray diffraction shows the presence of the different SiO₂ and NiO phases for all catalysts—theCoO phase for that promoted by Co and the Ce₂O₂ phase for that promoted by Ce. The methane steam reforming reaction was carried out on a quartz reactor in a fixed bed. Reactants and products of the reaction were analyzed by a gas chromatograph. This study shows that the metal addition of Cerium or Cobalt improves the majority of the catalytic performance of Ni for the steam reforming reaction of methane. And we conclude the classification of our Catalysts in order of decreasing activity and catalytic performances as follows: Ni-Ce / SiO₂ >Ni-Co / SiO₂> Ni / SiO₂ .

Keywords: cerium, cobalt, heterogeneous catalysis, hydrogen, methane, steam reforming, synthesis gas

Procedia PDF Downloads 163
1066 Rational Design and Synthesis of 2D/3D Conjugated Porous Polymers via Facile and 'Greener' Direct Arylation Polycondensation

Authors: Hassan Bohra, Mingfeng Wang

Abstract:

Conjugated porous polymers (CPPs) are amorphous, insoluble and highly robust organic semiconductors that have been largely synthesized by traditional transition-metal catalyzed reactions. The distinguishing feature of CPP materials is that they combine microporosity and high surface areas with extended conjugation, making them ideal for versatile applications such as separation, catalysis and energy storage. By applying a modular approach to synthesis, chemical and electronic properties of CPPs can be tailored for specific applications making these materials economical alternatives to inorganic semiconductors. Direct arylation - an environmentally benign alternative to traditional polymerization reactions – is one such reaction that extensively over the last decade for the synthesis of linear p-conjugated polymers. In this report, we present the synthesis and characterization of a new series of robust conjugated porous polymers synthesized by facile direct arylation polymerization of thiophene-flanked acceptor building blocks with multi-brominated aryls with different geometries. We observed that the porosities and morphologies of the polymers are determined by the chemical structure of the aryl bromide used. Moreover, good control of the optical bandgap in the range 2.53 - 1.3 eV could be obtained by using different building blocks. Structure-property relationships demonstrated in this study suggest that direct arylation polymerization is an attractive synthetic tool for the rational design of porous organic materials with tunable photo-physical properties for applications in photocatalysis, energy storage and conversion.

Keywords: direct arylation, conjugated porous polymers, triazine, photocatalysis

Procedia PDF Downloads 269
1065 Ultrasonic Degradation of Acephate: Effects of Operating Parameters

Authors: Naina Deshmukh

Abstract:

With the wide production, consumption, and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing. Among developing treatment technologies, Ultrasonication, as an emerging and promising technology for the removal of pesticides in the aqueous environment, has attracted the attention of many researchers in recent years. The degradation of acephate in aqueous solutions was investigated under the influence of ultrasound irradiation (20 kHz) in the presence of heterogeneous catalysts titanium dioxide (TiO2) and Zinc oxide (ZnO). The influence of various factors such as amount of catalyst (0.25, 0.5, 0.75, 1.0, 1.25 g/l), initial acephate concentration (100, 200, 300, 400 mg/l), and pH (3, 5, 7, 9, 11) were studied. The optimum catalyst dose was found to be 1 g/l of TiO2 and 1.25 g/l of ZnO for acephate at 100 mg/l, respectively. The maximum percentage degradation of acephate was observed at pH 11 for catalysts TiO2 and ZnO, respectively.

Keywords: ultrasonic degradation, acephate, TiO2, ZnO, heterogeneous catalyst

Procedia PDF Downloads 32
1064 Heterogeneous Catalytic Hydroesterification of Soybean Oil to Develop a Biodiesel Formation

Authors: O. Mowla, E. Kennedy, M. Stockenhuber

Abstract:

Finding alternative renewable resources of energy has attracted the attentions in consequence of limitation of the traditional fossil fuel resources, increasing of crude oil price and environmental concern over greenhouse gas emissions. Biodiesel (or Fatty Acid Methyl Esters (FAME)), an alternative energy source, is synthesised from renewable sources such as vegetable oils and animal fats and can be produced from waste oils. FAME can be produced via hydroesterification of oils. The process involves two stages. In the first stage of this process, fatty acids and glycerol are being obtained by hydrolysis of the feed stock oil. In the second stage, the recovered fatty acids are then esterified with an alcohol to methyl esters. The presence of a catalyst accelerates the rate of the hydroesterification reaction of oils. The overarching aim of this study is to find the effect of using zeolite as a catalyst in the heterogeneous hydroesterification of soybean oil. Both stages of the catalytic hydroesterification of soybean oil had been conducted at atmospheric and high-pressure conditions using reflux glass reactor and Parr reactor, respectively. The effect of operating parameters such as temperature and reaction time on the overall yield of biodiesel formation was also investigated.

Keywords: biodiesel, heterogeneous catalytic hydroesterification, soybean oil, zeolite

Procedia PDF Downloads 408
1063 Photocaged Carbohydrates: Versatile Tools for Biotechnological Applications

Authors: Claus Bier, Dennis Binder, Alexander Gruenberger, Dagmar Drobietz, Dietrich Kohlheyer, Anita Loeschcke, Karl Erich Jaeger, Thomas Drepper, Joerg Pietruszka

Abstract:

Light absorbing chromophoric systems are important optogenetic tools for biotechnical and biophysical investigations. Processes such as fluorescence or photolysis can be triggered by light-absorption of chromophores. These play a central role in life science. Photocaged compounds belong to such chromophoric systems. The photo-labile protecting groups enable them to release biologically active substances with high temporal and spatial resolution. The properties of photocaged compounds are specified by the characteristics of the caging group as well as the characteristics of the linked effector molecule. In our research, we work with different types of photo-labile protecting groups and various effector molecules giving us possible access to a large library of caged compounds. As a function of the caged effector molecule, a nearly limitless number of biological systems can be directed. Our main interest focusses on photocaging carbohydrates (e.g. arabinose) and their derivatives as effector molecules. Based on these resulting photocaged compounds a precisely controlled photoinduced gene expression will give us access to studies of numerous biotechnological and synthetic biological applications. It could be shown, that the regulation of gene expression via light is possible with photocaged carbohydrates achieving a higher-order control over this processes. With the one-step cleavable photocaged carbohydrate, a homogeneous expression was achieved in comparison to free carbohydrates.

Keywords: bacterial gene expression, biotechnology, caged compounds, carbohydrates, optogenetics, photo-removable protecting group

Procedia PDF Downloads 197
1062 Chiral Ruthenium Aminophosphine and Phosphine Iminopyridine Complexes: Synthesis and Application to Asymmetric Hydrogenation and Transfer Hydrogenation

Authors: Littlelet N. Scarlet, Kamaluddin Abdur-Rashid, Paul T. Maragh, Tara Dasgupta

Abstract:

Aminophosphines are a privileged class of ancillary ligands with emerging importance in homogeneous catalysis. The unique combination of soft phosphorus (P) and hard nitrogen (N) centres affords a variety of transition metal complexes as potential pre-catalysts for synthetically useful reactions. Herein three ligand systems will be reported; two bidentate ligands - (S)-8-(diphenyl-phosphino)-1,2,3,4-tetrahydronaphthalen-1-amine, (S)THNANH2, and (Rc)-1-((Sp)-2-diphenylphosphino) ferrocenylethylamine, (RcSp)PPFNH2 - and a tridentate (Rc)-1-((Sp)-2-diphenylphosphino) ferrocenylimino-pyridine, (RcSp)PPFNNH2 ligand; the latter prepared from the condensation of selected ferrocene aminophosphines with pyridine-2-carboxaldehyde. Suitable combinations of these aminophosphine ligands with ruthenium precursors have afforded highly efficient systems for the asymmetric hydrogenation and transfer hydrogenation of selected ketones in 2-propanol. The Ru-(S)THNANH2 precatalyst was the most efficient in the asymmetric hydrogenation of selected ketones with 100% conversions within 4 hours at a catalyst loading of 0.1 mol%. The Ru-(RcSp)PPFNNH2 precatalyst was the most efficient in the asymmetric transfer hydrogenation of the ketones with conversions as high as 98% with 0.1 mol% catalyst. However, the enantioselectivities were generally low.

Keywords: aminophosphine, asymmetric hydrogenation, homogeneous catalysis, ruthenium (II), transfer hydrogenation

Procedia PDF Downloads 233
1061 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams

Authors: Nidhi Sharotri, Dhiraj Sud

Abstract:

Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.

Keywords: quinalphos, doped-TiO2, mineralization, EPR

Procedia PDF Downloads 304
1060 Monodisperse Hallow Sandwich MOF for the Catalytic Oxidation of Benzene at Room Temperature

Authors: Srinivasapriyan Vijayan

Abstract:

Phenol is one of the most vital chemical in industry. Nowadays, phenol production is based upon the three-step cumene process, which involves a hazardous cumene hydroperoxide intermediate and produces nearly equimolar amounts of acetone as a coproduct. An attractive route in phenol production is the direct one-step selective hydroxylation of benzene using eco-friendly oxidants such as O2, N2O, and H2O2. In particular, the direct hydroxylation of benzene to form phenol with O2 has recently attracted extensive research attention because this process is green clean and eco-friendly. However, most of the catalytic systems involving O2 have a low rate of hydroxylation because the direct introduction of hydroxyl functionality into benzene is challenging. Almost all the developed catalytic systems require an elevated temperature and suffer from low conversion because of the notoriously low reactivity of aromatic C–H bonds. Moreover, increased reactivity of phenol relative to benzene makes the selective oxidation of benzene to phenol very difficult, especially under heating conditions. Hollow spheres, a very fascinating class of materials with good permeation and low density, highly monodisperse MOF hollow sandwich spheres have been rationally synthesized using monodisperse polystyrene (PS) nanoparticles as templates through a versatile step-by-step self-assembly strategy. So, our findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis. Because it is easy post-reaction separation, its cheap, green and recyclable.

Keywords: benzene hydroxylation, Fe-based metal organic frameworks, molecular oxygen, phenol

Procedia PDF Downloads 190
1059 The Effect of Calcining Temperature on Photocatalytic Activity of Porous ZnO Architecture

Authors: M. Masar, P. Janota, J. Sedlak, M. Machovsky, I. Kuritka

Abstract:

Zinc oxide (ZnO) nano crystals assembled porous architecture was prepared by thermal decomposition of zinc oxalate precursor at various temperatures ranging from 400-900°C. The effect of calcining temperature on structure and morphology was examined by scanning electron microscopy (SEM), X-ray diffractometry, thermogravimetry, and BET adsorption analysis. The porous nano crystalline ZnO morphology was developed due to the release of volatile precursor products, while the overall shape of ZnO micro crystals was retained as a legacy of the precursor. The average crystallite size increased with increasing temperature of calcination from approximately 21 nm to 79 nm, while the specific surface area decreased from 30 to 1.7 m2g-1. The photo catalytic performance of prepared ZnO powders was evaluated by degradation of methyl violet 2B, a model compound. The significantly highest photo catalytic activity was achieved with powder calcined at 500°C. This may be attributed to the sufficiently well-developed crystalline arrangement, while the specific surface area is still high enough.

Keywords: ZnO, porous structure, photodegradation, methyl violet

Procedia PDF Downloads 380
1058 Anti-Aging Effects of Retinol and Alpha Hydroxy Acid on Elastin Fibers of Artificially Photo-Aged Human Dermal Fibroblast Cell Lines

Authors: Mohammed Jarrar, Shalini Behl, Nadia Shaheen, Abeer Fatima, Reem Nasab

Abstract:

Skin aging is a slow multifactorial process influenced by both internal as well as external factors. Ultra-violet radiations (UV), diet, smoking and personal habits are the most common environmental factors that affect skin aging. Fat contents and fibrous proteins as collagen and elastin are core internal structural components. The direct influence of UV on elastin integrity and health is crucial on aging of skin by time. The deposition of abnormal elastic material is a major marker in a photo-aged skin. Searching for compounds that may protect against cutaneous photo-damage is highly valued. Retinoids and Alpha Hydroxy Acids protective and or repairing effects of UV have been endorsed by some researchers. For consolidating a better understanding of anti and protective effects of such anti-aging agents, we evaluated the combinatory effects of various dosages of lactic acid and retinol on the dermal fibroblasts elastin levels exposed to UV. The UV exposed cells showed significant reduction in the elastin levels. A combination of drugs with a higher concentration of lactic acid (30-35 mM) and a lower concentration of retinol (10-15mg/mL) showed to work better in enhancing elastin concentration in UV exposed cells. We assume this enhancement could be the result of increased tropo-elastin gene expression stimulated by retinol and lactic acid probably repaired the UV irradiated damage by enhancing the amount and integrity of the elastin fibers.

Keywords: alpha hydroxy acid, elastin, retinol, ultraviolet radiations

Procedia PDF Downloads 313
1057 Maximizing the Output of Solar Photovoltaic System

Authors: Vipresh Mehta , Aman Abhishek, Jatin Batra, Gautam Iyer

Abstract:

Huge amount of solar radiation reaching the earth can be harnessed to provide electricity through Photo voltaic (PV) panels. The solar PV is an exciting technology but suffers from low efficiency. A study on low efficiency in multi MW solar power plants reveals that the electric yield of the PV modules is reduced due to reflection of the irradiation from the sun and when a module’s temperature is elevated, as there is decrease in the voltage and efficiency. We intend to alter the structure of the PV system, We also intend to improve the efficiency of the Solar Photo Voltaic Panels by active cooling to reduce the temperature losses considerably and decrease reflection losses to some extent. Reflectors/concentrators and anti-reflecting coatings are also used to intensify the amount of output produced from the system. Apart from this, transformer-less Grid-tied Inverter. And also, a T-LCL immitance circuit is used to reduce the harmonics and produce a constant output from the entire system.

Keywords: PV panels, efficiency improvement, active cooling, quantum dots, organic-inorganic hybrid 3D panel, ground water tunneling

Procedia PDF Downloads 748
1056 Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications

Authors: Jing Lin, Zou Yiming, Goei Ronn, Li Yun, Amanda Ong Jiamin, Alfred Tok Iing Yoong

Abstract:

High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites.

Keywords: high-entropy alloy, thin-film, catalysis, water splitting, atomic layer deposition

Procedia PDF Downloads 101
1055 Ultrasonic Degradation of Acephate in Aqueous Solution: Effects of Operating Parameters

Authors: Naina S. Deshmukh, Manik P. Deosarkar

Abstract:

With the wide production, consumption, and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing. Among developing treatment technologies, ultrasonication, as an emerging and promising technology for the removal of pesticides in the aqueous environment, has attracted the attention of many researchers in recent years. The degradation of acephate in aqueous solutions was investigated under the influence of ultrasound irradiation (20 kHz) in the presence of heterogeneous catalysts titanium dioxide (TiO2) and Zinc oxide (ZnO). The influence of various factors such as amount of catalyst (0.25, 0.5, 0.75, 1.0, 1.25 g/l), initial acephate concentration (100, 200, 300, 400 mg/l), and pH (3, 5, 7, 9, 11) were studied. The optimum catalyst dose was found to be 1 g/l of TiO2 and 1.25 g/l of ZnO for acephate at 100 mg/l, respectively. The maximum percentage degradation of acephate was observed at pH 11 for catalyst TiO2 and ZnO, respectively.

Keywords: ultrasonic degradation, acephate, TiO2, ZnO, heterogeneous catalyst

Procedia PDF Downloads 75
1054 Surface Segregation-Inspired Design for Bimetallic Nanoparticle Catalysts

Authors: Yaxin Tang, Mingao Hou, Qian He, Guangfu Luo

Abstract:

Bimetallic nanoparticles serve as a promising class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their actual structures under operating conditions and the optimal design principles remains largely elusive. In this study, we unveil a prevalent surface segregation phenomenon in nearly 100 platinum-group-element-based bimetallic nanoparticles through first principles-based molecular dynamics simulations. Our findings highlight that two components in a nanoparticle with relatively lower surface energy tend to segregate to the surface. Motivated by this discovery, we propose a deliberate exploitation of surface segregation in designing bimetallic nanoparticle catalysts, aiming for heightened stability and reduced consumption of precious metals. To validate this strategy, we further investigate 36 platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis. Through a systematic examination of catalytic sites on nanoparticles, we identify several systems as top candidates with Pt-enriched surfaces, remarkable thermal stability, and superior catalytic activity for propane dehydrogenation. The insights gained garnered from this study are anticipated to provide a valuable framework for the optimal design of other bimetallic nanoparticles.

Keywords: bimetallic nanoparticles, platinum-group element, catalysis, surface segregation, first-principles calculations

Procedia PDF Downloads 28
1053 A Novel Photocrosslinkable and Cytocompatible Chitosan Coating for TI6AL4V Surfaces

Authors: D. Zujur, J. Moret, D. Rodriguez, L. Cruz, J. Lira, L. Gil, E. Dominguez, J. F. Alvarez-Barreto

Abstract:

In this work, chitosan (CH) has been used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. The Ti6Al4V surface was sandblasted with alumina particles and observed by SEM. Chitosan was chemically modified, via crodiimide chemistry, with lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photo-crosslinkable, respectively. The reaction was verified by FTIR, NMR, and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing the polymer crosslinking, and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating´s cytocompatibility was determined in vitro through the culture of rat bone marrow´s mesenchymal stem cells, using an MTT assay. The results show that the developed coating is cytocompatible, easy to apply and could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue-implant interface.

Keywords: chitosan, photo-crosslinking, Ti6Al4V, bioactive coating, hydrogel

Procedia PDF Downloads 303
1052 Design and Advancement of Hybrid Multilevel Inverter Interface with PhotoVoltaic

Authors: P.Kiruthika, K. Ramani

Abstract:

This paper presented the design and advancement of a single-phase 27-level Hybrid Multilevel DC-AC Converter interfacing with Photo Voltaic. In this context, the Multicarrier Pulse Width Modulation method can be implemented in 27-level Hybrid Multilevel Inverter for generating a switching pulse. Perturb & Observer algorithm can be used in the Maximum Power Point Tracking method for the Photo Voltaic system. By implementing Maximum Power Point Tracking with three separate solar panels as an input source to the 27-level Hybrid Multilevel Inverter. This proposed method can be simulated by using MATLAB/simulink. The result shown that the proposed method can achieve silky output wave forms, more flexibility in voltage range, and to reduce Total Harmonic Distortion in medium-voltage drives.

Keywords: Multi Carrier Pulse Width Modulation Technique (MCPWM), Multi Level Inverter (MLI), Maximum Power Point Tracking (MPPT), Perturb and Observer (P&O)

Procedia PDF Downloads 556
1051 Social Interaction of Gifted Students in a Heterogeneous Educational Environment

Authors: Ekaterina Donii

Abstract:

Understanding interpersonal competence, social interaction and peer relationships of gifted children is a concern for specialists in the field of gifted education. To gain more in-depth knowledge concerning the social functioning of gifted children among peers, we decided to study the social abilities of gifted children in a heterogeneous academic environment. Eight gifted children (5 of age 7, 1 of age 8.5, 1 of age 9.5 and 1 of age 10), their classmates (10 of age 7-8, 12 of age 8.5-9, 16 of age 9.5-10) and teachers participated in the study. The sociometric questionnaire analysis was based on the method of Rodríguez and Morera to check the social status of the gifted children among classmates. The Instrument Observational Protocol for Interactions within the Classroom (OPINTEC-v.5) was used to assess the social interactions between the gifted students, their classmates, and the teacher within the educational context. While doing a task together, the gifted children interacted more with popular and neither popular nor gifted classmates than with rejected classmates. While spending time together, the gifted children interacted more with neither popular nor rejected classmates than with popular or rejected classmates. All gifted children chose other gifted and non-gifted classmates for interaction, established close relations and demonstrated good social abilities interacting with their classmates. The aim of this study was to examine the social interactions, social status, and social network of the gifted students in a regular classroom. The majority of the gifted children were popular among their classmates and had good social skills. We should be alert, though, for those gifted children who do have social problems, in order to help them functioning in a regular classroom.

Keywords: gifted, heterogeneous environment, sociometric status, social interactions

Procedia PDF Downloads 321
1050 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst

Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba

Abstract:

Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.

Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations

Procedia PDF Downloads 303
1049 Clinical Parameters Response to Low Level Laser Versus Monochromatic Near Infrared Photo Energy in Diabetic Patient with Peripheral Neuropathy

Authors: Abeer Ahmed Abdehameed

Abstract:

Background: Diabetic sensorimotor polyneuropathy (DSP) is one of the most common micro vascular complications of type 2 diabetes. Loss of sensation is thought to contribute to lake of static and dynamic stability and increased risk of falling. Purpose: The purpose of this study was to compare the effects of low level laser (LLL) and monochromatic near infrared photo energy (MIRE) on pain , cutaneous sensation, static stability and index of lower limb blood flow in diabetic with peripheral neuropathy. Methods: Forty subjects with diabetic peripheral neuropathy were recruited for study. They were divided into two groups: The ( MIRE) group that included (20) patients and (LLL) group included (20) patients. All patients in the study had been subjected to various physical assessment procedures including pain, cutaneous sensation, Doppler flow meter and static stability assessments. The baseline measurements were followed by treatment sessions that conducted twice a week for 6 successive weeks. Results: The statistical analysis of the data had revealed significant improvement of the pain in both groups, with significant improvement in cutaneous sensation and static balance in (MIRE) group compared to (LLL) group; on the other hand results showed no significant differences on lower limb blood flow in both groups. Conclusion: Low level laser and monochromatic near infrared therapy can improve painful symptoms in patients with diabetic neuropathy. On the other hand (MIRE) is useful in improving cutaneous sensation and static stability in patients with diabetic neuropathy.

Keywords: diabetic neuropathy, doppler flow meter, low level laser, monochromatic near infrared photo energy

Procedia PDF Downloads 288
1048 Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts

Authors: Velid Demir, Mesut Akgün

Abstract:

The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al₂O₃ using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al₂O₃ was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La₂O₃/γ-Al₂O₃ at the same parameters. For this study, ZnO/γ-Al₂O₃ was the most suitable catalyst due to performance and cost considerations.

Keywords: biodiesel, heterogeneous catalyst, jatropha oil, supercritical methanol, transesterification

Procedia PDF Downloads 69
1047 Photopolymerization of Dimethacrylamide with (Meth)acrylates

Authors: Yuling Xu, Haibo Wang, Dong Xie

Abstract:

A photopolymerizable dimethacrylamide was synthesized and copolymerized with the selected (meth)acrylates. The polymerization rate, degree of conversion, gel time, and compressive strength of the formed neat resins were investigated. The results show that in situ photo-polymerization of the synthesized dimethacrylamide with comonomers having an electron-withdrawing and/or acrylate group dramatically increased the polymerization rate, degree of conversion, and compressive strength. On the other hand, an electron-donating group on either carbon-carbon double bond or the ester linkage slowed down the polymerization. In contrast, the triethylene glycol dimethacrylate-based system did not show a clear pattern. Both strong hydrogen-bonding between (meth)acrylamide and organic acid groups may be responsible for higher compressive strengths. Within the limitation of this study, the photo-polymerization of dimethacrylamide can be greatly accelerated by copolymerization with monomers having electron-withdrawing and/or acrylate groups. The monomers with methacrylate group can significantly reduce the polymerization rate and degree of conversion.

Keywords: photopolymerization, dimethacrylamide, the degree of conversion, compressive strength

Procedia PDF Downloads 131
1046 The TiO2 Refraction Film for CsI Scintillator

Authors: C. C. Chen, C. W. Hun, C. J. Wang, C. Y. Chen, J. S. Lin, K. J. Huang

Abstract:

Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. When the incidence light irradiate from air (R=1.0) to CsI’s first surface (R=1.84) the first refraction happen, the first refraction continue into TiO2 film (R=2.88) and produces the low angle of the second refraction. Then the second refraction continue into AAO wall (R=1.78) and produces the third refraction after refractions between CsI and AAO wall (R=1.78) produce the fourth refraction. The incidence light after through CsI and TiO2 film refractions arrive to the CsI second surface. Therefore, the TiO2 film can has shorter refraction path of incidence light and increase the photo-electron conversion efficiency.

Keywords: cesium iodide, anodic aluminum oxide (AAO), TiO2, refraction, X-ray

Procedia PDF Downloads 400
1045 Nitrate Photoremoval in Water Using Nanocatalysts Based on Ag / Pt over TiO2

Authors: Ana M. Antolín, Sandra Contreras, Francesc Medina, Didier Tichit

Abstract:

Introduction: High levels of nitrates (> 50 ppm NO3-) in drinking water are potentially risky to human health. In the recent years, the trend of nitrate concentration in groundwater is rising in the EU and other countries. Conventional catalytic nitrate reduction processes into N2 and H2O lead to some toxic intermediates and by-products, such as NO2-, NH4+, and NOx gases. Alternatively, photocatalytic nitrate removal using solar irradiation and heterogeneous catalysts is a very promising and ecofriendly technique. It has been scarcely performed and more research on highly efficient catalysts is still needed. In this work, different nanocatalysts supported on Aeroxide Titania P25 (P25) have been prepared varying: 0.5-4 % wt. Ag); Pt (2, 4 % wt.); Pt precursor (H2PtCl6/K2PtCl6); and impregnation order of both metals. Pt was chosen in order to increase the selectivity to N2 and decrease that to NO2-. Catalysts were characterized by nitrogen physisorption, X-Ray diffraction, UV-visible spectroscopy, TEM and X Ray-Photoelectron Spectroscopy. The aim was to determine the influence of the composition and the preparation method of the catalysts on the conversion and selectivity in the nitrate reduction, as well as going through an overall and better understanding of the process. Nanocatalysts synthesis: For the mono and bimetallic catalysts preparation, wise-drop wetness impregnation of the precursors (AgNO3, H2PtCl6, K2PtCl6) followed by a reduction step (NaBH4) was used to obtain the metal colloids. Results and conclusions: Denitration experiments were performed in a 350 mL PTFE batch reactor under inert standard operational conditions, ultraviolet irradiations (λ=254 nm (UV-C); λ=365 nm (UV-A)), and presence/absence of hydrogen gas as a reducing agent, contrary to most studies using oxalic or formic acid. Samples were analyzed by Ionic Chromatography. Blank experiments using respectively P25 (dark conditions), hydrogen only and UV irradiations without hydrogen demonstrated a clear influence of the presence of hydrogen on nitrate reduction. Also, they demonstrated that UV irradiation increased the selectivity to N2. Interestingly, the best activity was obtained under ultraviolet lamps, especially at a closer wavelength to visible light irradiation (λ = 365 nm) and H2. 2% Ag/P25 leaded to the highest NO3- conversion among the monometallic catalysts. However, nitrite quantities have to be diminished. On the other hand, practically no nitrate conversion was observed with the monometallics based on Pt/P25. Therefore, the amount of 2% Ag was chosen for the bimetallic catalysts. Regarding the bimetallic catalysts, it is observed that the metal impregnation order, amount and Pt precursor highly affects the results. Higher selectivity to the desirable N2 gas is obtained when Pt was firstly added, especially with K2PtCl6 as Pt precursor. This suggests that when Pt is secondly added, it covers the Ag particles, which are the most active in this reaction. It could be concluded that Ag allows the nitrate reduction step to nitrite, and Pt the nitrite reduction step toward the desirable N2 gas.

Keywords: heterogeneous catalysis, hydrogenation, nanocatalyst, nitrate removal, photocatalysis

Procedia PDF Downloads 242
1044 Photocatalytic Packed‐Bed Flow Reactor for Continuous Room‐Temperature Hydrogen Release from Liquid Organic Carriers

Authors: Malek Y. S. Ibrahim, Jeffrey A. Bennett, Milad Abolhasani

Abstract:

Despite the potential of hydrogen (H2) storage in liquid organic carriers to achieve carbon neutrality, the energy required for H2 release and the cost of catalyst recycling has hindered its large-scale adoption. In response, a photo flow reactor packed with rhodium (Rh)/titania (TiO2) photocatalyst was reported for the continuous and selective acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline to H2 gas and quinoline under visible light irradiation at room temperature. The tradeoff between the reactor pressure drop and its photocatalytic surface area was resolved by selective in-situ photodeposition of Rh in the photo flow reactor post-packing on the outer surface of the TiO2 microparticles available to photon flux, thereby reducing the optimal Rh loading by 10 times compared to a batch reactor, while facilitating catalyst reuse and regeneration. An example of using quinoline as a hydrogen acceptor to lower the energy of the hydrogen production step was demonstrated via the water-gas shift reaction.

Keywords: hydrogen storage, flow chemistry, photocatalysis, solar hydrogen

Procedia PDF Downloads 69
1043 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet

Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia

Abstract:

Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical universal sync middle of low maintenance and operation costs is most wanted, but developing such a product and adapting it for various scenarios are a very sophisticated and continuous practice. The authors have been devising, applying, and optimizing a generic sync middleware system, named GSMS since 2006, holding the principles or advantages that the middleware must be SyncML-compliant and transparent to data application layer logic, need not refer to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence, of low cost. A series of ultimate experiments with GSMS sync performance were conducted for a persuasive example of a source relational database that underwent a broad range of write loads, say, from one thousand to one million intensive writes within a few minutes. The tests proved that GSMS has achieved an instant sync level of well below a fraction of millisecond per record sync, and GSMS’ smooth performances under ultimate write loads also showed it is feasible and competent.

Keywords: heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization

Procedia PDF Downloads 100
1042 A Comparative Study on Supercritical C02 and Water as Working Fluids in a Heterogeneous Geothermal Reservoir

Authors: Musa D. Aliyu, Ouahid Harireche, Colin D. Hills

Abstract:

The incapability of supercritical C02 to transport and dissolve mineral species from the geothermal reservoir to the fracture apertures and other important parameters in heat mining makes it an attractive substance for Heat extraction from hot dry rock. In other words, the thermodynamic efficiency of hot dry rock (HDR) reservoirs also increases if supercritical C02 is circulated at excess temperatures of 3740C without the drawbacks connected with silica dissolution. Studies have shown that circulation of supercritical C02 in homogenous geothermal reservoirs is quite encouraging; in comparison to that of the water. This paper aims at investigating the aforementioned processes in the case of the heterogeneous geothermal reservoir located at the Soultz site (France). The MultiPhysics finite element package COMSOL with an interface of coupling different processes encountered in the geothermal reservoir stimulation is used. A fully coupled numerical model is developed to study the thermal and hydraulic processes in order to predict the long-term operation of the basic reservoir parameters that give optimum energy production. The results reveal that the temperature of the SCC02 at the production outlet is higher than that of water in long-term stimulation; as the temperature is an essential ingredient in rating the energy production. It is also observed that the mass flow rate of the SCC02 is far more favourable compared to that of water.

Keywords: FEM, HDR, heterogeneous reservoir, stimulation, supercritical C02

Procedia PDF Downloads 354
1041 Polyphosphate Kinase 1 Active Site Characterization for the Identification of Novel Antimicrobial Targets

Authors: Sanaa Bardaweel

Abstract:

Inorganic polyphosphate (poly P) is present in all living forms tested to date, from each of the three kingdoms of life. Studied mainly in prokaryotes, poly P and its associated enzymes are vital in diverse basic metabolism, in at least some structural functions and, notably, in stress responses. These plentiful and unrelated roles for poly P are probably the consequence of its presence in life-forms early in evolution. The genomes of many bacterial species, including pathogens, encode a homologue of a major poly P synthetic enzyme, poly P kinase 1 (PPK1). Genetic deletion of ppk1 results in reduced poly P levels and loss of pathogens virulence towards protozoa and animals. Thus far, no PPK1 homologue has been identified in higher-order eukaryotes and, therefore, PPK1 represents a novel target for chemotherapy. The idea of the current study is to purify the PPK1 from Escherichia coli to homogeneity in order to study the effect of active site point mutations on PPK1 catalysis via the application of site-directed mutagenesis strategy. The knowledge obtained about the active site of PPK1 will be utilized to characterize the catalytic and kinetic mechanism of PPK1 with model substrates. Comprehensive understanding of the enzyme kinetic mechanism and catalysis will be used to design and screen a library of synthetic compounds for potential discovery of selective PPK1-inhibitors.

Keywords: antimicobial, Escherichia coli, inorganic polyphosphate, PPK1-inhibitors

Procedia PDF Downloads 249
1040 Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data

Authors: Stoyan Nedeltchev, Markus Schubert

Abstract:

By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities UG in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at UG=0.025 m/s and UG=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at UG=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column.

Keywords: bubble column, ultrafast X-ray tomography, information entropy, reconstruction entropy

Procedia PDF Downloads 366
1039 Investigation of Green Dye-Sensitized Solar Cells Based on Natural Dyes

Authors: M. Hosseinnezhad, K. Gharanjig

Abstract:

Natural dyes, extracted from black carrot and bramble, were utilized as photosensitizers to prepare dye-sensitized solar cells (DSSCs). Spectrophotometric studies of the natural dyes in solution and on a titanium dioxide substrate were carried out in order to assess changes in the status of the dyes. The results show that the bathochromic shift is seen on the photo-electrode substrate. The chemical binding of the natural dyes at the surface photo-electrode were increased by the chelating effect of the Ti(IV) ions. The cyclic voltammetry results showed that all extracts are suitable to be performed in DSSCs. Finally, photochemical performance and stability of DSSCs based on natural dyes were studied. The DSSCs sensitized by black carrot extract have been reported to achieve up to Jsc=1.17 mAcm-2, Voc= 0.55 V, FF= 0.52, η=0.34%, whereas Bramble extract can obtain up to Jsc=2.24 mAcm-2, Voc= 0.54 V, FF= 0.57, η=0.71%. The power conversion efficiency was obtained from the mixed dyes in DSSCs. The power conversion efficiency of dye-sensitized solar cells using mixed Black carrot and Bramble dye is the average of the their efficiency in single DSSCs.

Keywords: anthocyanin, dye-sensitized solar cells, green energy, optical materials

Procedia PDF Downloads 214
1038 Estimation and Comparison of Delay at Signalized Intersections Based on Existing Methods

Authors: Arpita Saha, Satish Chandra, Indrajit Ghosh

Abstract:

Delay implicates the time loss of a traveler while crossing an intersection. Efficiency of traffic operation at signalized intersections is assessed in terms of delay caused to an individual vehicle. Highway Capacity Manual (HCM) method and Webster’s method are the most widely used in India for delay estimation purpose. However, in India, traffic is highly heterogeneous in nature with extremely poor lane discipline. Therefore, to explore best delay estimation technique for Indian condition, a comparison was made. In this study, seven signalized intersections from three different cities where chosen. Data was collected for both during morning and evening peak hours. Only under saturated cycles were considered for this study. Delay was estimated based on the field data. With the help of Simpson’s 1/3 rd rule, delay of under saturated cycles was estimated by measuring the area under the curve of queue length and cycle time. Moreover, the field observed delay was compared with the delay estimated using HCM, Webster, Probabilistic, Taylor’s expansion and Regression methods. The drawbacks of the existing delay estimation methods to be use in Indian heterogeneous traffic conditions were figured out, and best method was proposed. It was observed that direct estimation of delay using field measured data is more accurate than existing conventional and modified methods.

Keywords: delay estimation technique, field delay, heterogeneous traffic, signalised intersection

Procedia PDF Downloads 273