Search results for: edge detector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1174

Search results for: edge detector

1024 Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia

Authors: Dhekra Khazri, Hakim Gabtni

Abstract:

Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia.

Keywords: aquifer geometry, geophysics, 3D gravity modeling, improved depths, source edge detector

Procedia PDF Downloads 258
1023 Ultrastructure of the Tongue of the African Beauty Snake Psammophis sibilans

Authors: Mohamed M. A. Abumandour, Neveen E. R. El-Bakary

Abstract:

The present work performed on the six tongues of African Beauty snake (Psammophis sibilans) that were obtained immediately after their catching, from agricultural fields, Desouk city, Kafrelsheikh Governorate, Egypt. These collected snakes should be from any oral abnormalities or injuries. The lingual surface of the Psammophis sibilans was studied by scanning electron microscopy (SEM). The surface of the bifurcated apex was smoother than the lingual body. The median lingual sulcus was deep and contained a number of the taste pores. By the high magnification of SEM of each part of a bifurcated area of the lingual apex have numerous taste buds and no lingual papillae were observed. A few numbers of papillae were observed in the lingual body. The microridges and microvilli distributed in the lingual body helped in spreading of mucus over the epithelial surface. Taste pores and papillae in the tongue indicate the presence of a direct chemo-sensory function for the tongue of these snakes as the chemicals dissolved in the mucus then transferred to Jacobson organ. To conclude, the bifurcation appearance of the snake lingual tip act as a chemical or edge detector help in the process named chemo-mechano-reception.

Keywords: African beauty snake, taste buds, taste pores, tongue, papillae

Procedia PDF Downloads 105
1022 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 81
1021 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology

Procedia PDF Downloads 190
1020 Experimental Study of Particle Deposition on Leading Edge of Turbine Blade

Authors: Yang Xiao-Jun, Yu Tian-Hao, Hu Ying-Qi

Abstract:

Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition.

Keywords: deposition, experiment, film cooling, leading edge, paraffin particles

Procedia PDF Downloads 126
1019 Mitigating Denial of Service Attacks in Information Centric Networking

Authors: Bander Alzahrani

Abstract:

Information-centric networking (ICN) using architectures such as Publish-Subscribe Internet Routing Paradigm (PSIRP) is one of the promising candidates for a future Internet, has recently been under the spotlight by the research community to investigate the possibility of redesigning the current Internet architecture to solve many issues such as routing scalability, security, and quality of services issues.. The Bloom filter-based forwarding is a source-routing approach that is used in the PSIRP architecture. This mechanism is vulnerable to brute force attacks which may lead to denial-of-service (DoS) attacks. In this work, we present a new forwarding approach that keeps the advantages of Bloom filter-based forwarding while mitigates attacks on the forwarding mechanism. In practice, we introduce a special type of forwarding nodes called Edge-FW to be placed at the edge of the network. The role of these node is to add an extra security layer by validating and inspecting packets at the edge of the network against brute-force attacks and check whether the packet contains a legitimate forwarding identifier (FId) or not. We leverage Certificateless Aggregate Signature (CLAS) scheme with a small size of 64-bit which is used to sign the FId. Hence, this signature becomes bound to a specific FId. Therefore, malicious nodes that inject packets with random FIds will be easily detected and dropped at the Edge-FW node when the signature verification fails. Our preliminary security analysis suggests that with the proposed approach, the forwarding plane is able to resist attacks such as DoS with very high probability.

Keywords: bloom filter, certificateless aggregate signature, denial-of-service, information centric network

Procedia PDF Downloads 178
1018 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial

Procedia PDF Downloads 596
1017 Simulation of Gamma Rays Attenuation Coefficient for Some common Shielding Materials Using Monte Carlo Program

Authors: Cherief Houria, Fouka Mourad

Abstract:

In this work, the simulation of the radiation attenuation is carried out in a photon detector consisting of different common shielding material using a Monte Carlo program called PTM. The aim of the study is to investigate the effect of atomic weight and the thickness of shielding materials on the gamma radiation attenuation ability. The linear attenuation coefficients of Aluminum (Al), Iron (Fe), and lead (Pb) elements were evaluated at photons energy of 661:7KeV that are considered to be emitted from a standard radioactive point source Cs 137. The experimental measurements have been performed for three materials to obtain these linear attenuation coefficients, using a Gamma NaI(Tl) scintillation detector. Our results have been compared with the simulation results of the linear attenuation coefficient using the XCOM database and Geant4 codes and reveal that they are well agreed with both simulation data.

Keywords: gamma photon, Monte Carlo program, radiation attenuation, shielding material, the linear attenuation coefficient

Procedia PDF Downloads 179
1016 A Novel Combination Method for Computing the Importance Map of Image

Authors: Ahmad Absetan, Mahdi Nooshyar

Abstract:

The importance map is an image-based measure and is a core part of the resizing algorithm. Importance measures include image gradients, saliency and entropy, as well as high level cues such as face detectors, motion detectors and more. In this work we proposed a new method to calculate the importance map, the importance map is generated automatically using a novel combination of image edge density and Harel saliency measurement. Experiments of different type images demonstrate that our method effectively detects prominent areas can be used in image resizing applications to aware important areas while preserving image quality.

Keywords: content-aware image resizing, visual saliency, edge density, image warping

Procedia PDF Downloads 552
1015 Bipolar Reduction and Lithic Miniaturization: Experimental Results and Archaeological Implications

Authors: Justin Pargeter, Metin Eren

Abstract:

Lithic miniaturization, the systematic production and use of small tools from small cores, was a consequential development in Pleistocene lithic technology. The bipolar reduction is an important, but often overlooked and misidentified, strategy for lithic miniaturization. This experiment addresses the role of axial bipolar reduction in processes of lithic miniaturization. The experiments answer two questions: what benefits does axial bipolar reduction provide, and can we distinguish axial bipolar reduction from freehand reduction? Our experiments demonstrate the numerous advantages of bipolar reduction in contexts of lithic miniaturization. Bipolar reduction produces more cutting edge per gram and is more economical than freehand reduction. Our cutting edge to mass values exceeds even those obtained with pressure blade production on high-quality obsidian. The experimental results show that bipolar reduction produces cutting edge quicker and is more efficient than freehand reduction. We show that bipolar reduction can be distinguished from freehand reduction with a high degree of confidence using the quantitative criteria in these experiments. These observations overturn long-held perceptions about bipolar reduction. We conclude by discussing the role of bipolar reduction in lithic miniaturization and Stone Age economics more broadly.

Keywords: lithic miniaturization, bipolar reduction, late Pleistocene, Southern Africa

Procedia PDF Downloads 693
1014 Optimization of Reliability and Communicability of a Random Two-Dimensional Point Patterns Using Delaunay Triangulation

Authors: Sopheak Sorn, Kwok Yip Szeto

Abstract:

Reliability is one of the important measures of how well the system meets its design objective, and mathematically is the probability that a complex system will perform satisfactorily. When the system is described by a network of N components (nodes) and their L connection (links), the reliability of the system becomes a network design problem that is an NP-hard combinatorial optimization problem. In this paper, we address the network design problem for a random point set’s pattern in two dimensions. We make use of a Voronoi construction with each cell containing exactly one point in the point pattern and compute the reliability of the Voronoi’s dual, i.e. the Delaunay graph. We further investigate the communicability of the Delaunay network. We find that there is a positive correlation and a negative correlation between the homogeneity of a Delaunay's degree distribution with its reliability and its communicability respectively. Based on the correlations, we alter the communicability and the reliability by performing random edge flips, which preserve the number of links and nodes in the network but can increase the communicability in a Delaunay network at the cost of its reliability. This transformation is later used to optimize a Delaunay network with the optimum geometric mean between communicability and reliability. We also discuss the importance of the edge flips in the evolution of real soap froth in two dimensions.

Keywords: Communicability, Delaunay triangulation, Edge Flip, Reliability, Two dimensional network, Voronio

Procedia PDF Downloads 390
1013 A Robust Digital Image Watermarking Against Geometrical Attack Based on Hybrid Scheme

Authors: M. Samadzadeh Mahabadi, J. Shanbehzadeh

Abstract:

This paper presents a hybrid digital image-watermarking scheme, which is robust against varieties of attacks and geometric distortions. The image content is represented by important feature points obtained by an image-texture-based adaptive Harris corner detector. These feature points are extracted from LL2 of 2-D discrete wavelet transform which are obtained by using the Harris-Laplacian detector. We calculate the Fourier transform of circular regions around these points. The amplitude of this transform is rotation invariant. The experimental results demonstrate the robustness of the proposed method against the geometric distortions and various common image processing operations such as JPEG compression, colour reduction, Gaussian filtering, median filtering, and rotation.

Keywords: digital watermarking, geometric distortions, geometrical attack, Harris Laplace, important feature points, rotation, scale invariant feature

Procedia PDF Downloads 479
1012 Experimental Investigation of S822 and S823 Wind Turbine Airfoils Wake

Authors: Amir B. Khoshnevis, Morteza Mirhosseini

Abstract:

The paper deals with a sub-part of an extensive research program on the wake survey method in various Reynolds numbers and angles of attack. This research experimentally investigates the wake flow characteristics behind S823 and S822 airfoils in which designed for small wind turbines. Velocity measurements determined by using hot-wire anemometer. Data acquired in the wake of the airfoil at locations(c is the chord length): 0.01c - 3c. Reynolds number increased due to increase of free stream velocity. Results showed that mean velocity profiles depend on the angle of attack and location of data collections. Data acquired at the low Reynolds numbers (smaller than 10^5). Effects of Reynolds numbers on the mean velocity profiles are more significant in near locations the trailing edge and these effects decrease by taking distance from trailing edge toward downstream. Mean velocity profiles region increased by increasing the angle of attack, except for 7°, and also the maximum velocity deficit (velocity defect) increased. The difference of mean velocity in and out of the wake decreased by taking distance from trailing edge, and mean velocity profile become wider and more uniform.

Keywords: angle of attack, Reynolds number, velocity deficit, separation

Procedia PDF Downloads 355
1011 Effect of Al on Glancing Angle Deposition Synthesized In₂O₃ Nanocolumn for Photodetector Application

Authors: Chitralekha Ngangbam, Aniruddha Mondal, Naorem Khelchand Singh

Abstract:

Aluminium (Al) doped In2O3 (Indium Oxide) nanocolumn array was synthesized by glancing angle deposition (GLAD) technique on Si (n-type) substrate for photodetector application. The sample was characterized by scanning electron microscopy (SEM). The average diameter of the nanocolumn was calculated from the top view of the SEM image and found to be ∼80 nm. The length of the nanocolumn (~500 nm) was calculated from cross sectional SEM image and it shows that the nanocolumns are perpendicular to the substrate. The EDX analysis confirmed the presence of Al (Aluminium), In (Indium), O (Oxygen) elements in the samples. The XRD patterns of the Al-doped In2O3 nanocolumn show the presence of different phases of the Al doped In2O3 nanocolumn i.e. (222) and (622). Three different peaks were observed from the PL analysis of Al doped In2O3 nanocolumn at 365 nm, 415 nm and 435 nm respectively. The peak at PL emission at 365 nm can be attributed to the near band gap transition of In2O3 whereas the peaks at 415 nm and 435 nm can be attributed to the trap state emissions due to oxygen vacancies and oxygen–indium vacancy centre in Al doped In2O3 nanocolumn. The current-voltage (I–V) characteristics of the Al doped In2O3 nanocolumn based detector was measured through the Au Schottky contact. The devices were then examined under the halogen light (20 W) illumination for photocurrent measurement. The Al-doped In2O3 nanocolumn based optical detector showed high conductivity and low turn on voltage at 0.69 V under white light illumination. A maximum photoresponsivity of 82 A/W at 380 nm was observed for the device. The device shows a high internal gain of ~267 at UV region (380 nm) and ∼127 at visible region (760 nm). Also the rise time and fall time for the device at 650 nm is 0.15 and 0.16 sec respectively which makes it suitable for fast response detector.

Keywords: glancing angle deposition, nanocolumn, semiconductor, photodetector, indium oxide

Procedia PDF Downloads 160
1010 Heat Transfer Analysis of Helical Grooved Passages near the Leading Edge Region in Gas Turbine Blade

Authors: Harishkumar Kamath, Chandrakant R. Kini, N. Yagnesh Sharma

Abstract:

Gas turbines are highly effective engineered prime movers for converting energy from thermal form (combustion stage) to mechanical form – are widely used for propulsion and power generation systems. One method of increasing both the power output and thermal efficiency is to increase the temperature of the gas entering the turbine. In the advanced gas turbines of today, the turbine inlet temperature can be as high as 1500°C; however, this temperature exceeds the melting temperature of the metal blade. With modern gas turbines operating at extremely high temperatures, it is necessary to implement various cooling methods, so the turbine blades and vanes endure in the path of the hot gases. Merely passing coolant air through the blade does not provide adequate cooling; therefore, it is necessary to implement techniques that will further enhance the heat transfer from the blade walls. It is seen that by incorporating helical grooved passages into the leading edge built on turbulence and higher flow rates through the passages, the blade can be cooled effectively. It seen from the analysis helical grooved passages with diameter 5 mm, helical pitch of 50 mm and 8 starts results in better cooling of turbine blade and gives the best thermal performance.

Keywords: blade cooling, helical grooves, leading edge, numerical analysis

Procedia PDF Downloads 237
1009 Structural Morphing on High Performance Composite Hydrofoil to Postpone Cavitation

Authors: Fatiha Mohammed Arab, Benoit Augier, Francois Deniset, Pascal Casari, Jacques Andre Astolfi

Abstract:

For the top high performance foiling yachts, cavitation is often a limiting factor for take-off and top speed. This work investigates solutions to delay the onset of cavitation thanks to structural morphing. The structural morphing is based on compliant leading and trailing edge, with effect similar to flaps. It is shown here that the commonly accepted effect of flaps regarding the control of lift and drag forces can also be used to postpone the inception of cavitation. A numerical and experimental study is conducted in order to assess the effect of the geometric parameters of hydrofoil on their hydrodynamic performances and in cavitation inception. The effect of a 70% trailing edge and a 30% leading edge of NACA 0012 is investigated using Xfoil software at a constant Reynolds number 106. The simulations carried out for a range flaps deflections and various angles of attack. So, the result showed that the lift coefficient increase with the increase of flap deflection, but also with the increase of angle of attack and enlarged the bucket cavitation. To evaluate the efficiency of the Xfoil software, a 2D analysis flow over a NACA 0012 with leading and trailing edge flap was studied using Fluent software. The results of the two methods are in a good agreement. To validate the numerical approach, a passive adaptive composite model is built and tested in the hydrodynamic tunnel at the Research Institute of French Naval Academy. The model shows the ability to simulate the effect of flap by a LE and TE structural morphing due to hydrodynamic loading.

Keywords: cavitation, flaps, hydrofoil, panel method, xfoil

Procedia PDF Downloads 153
1008 Design Of High Sensitivity Transceiver for WSN

Authors: A. Anitha, M. Aishwariya

Abstract:

The realization of truly ubiquitous wireless sensor networks (WSN) demands Ultra-low power wireless communication capability. Because the radio transceiver in a wireless sensor node consumes more power when compared to the computation part it is necessary to reduce the power consumption. Hence, a low power transceiver is designed and implemented in a 120 nm CMOS technology for wireless sensor nodes. The power consumption of the transceiver is reduced still by maintaining the sensitivity. The transceiver designed combines the blocks including differential oscillator, mixer, envelope detector, power amplifiers, and LNA. RF signal modulation and demodulation is carried by On-Off keying method at 2.4 GHz which is said as ISM band. The transmitter demonstrates an output power of 2.075 mW while consuming a supply voltage of range 1.2 V-5.0 V. Here the comparison of LNA and power amplifier is done to obtain an amplifier which produces a high gain of 1.608 dB at receiver which is suitable to produce a desired sensitivity. The multistage RF amplifier is used to improve the gain at the receiver side. The power dissipation of the circuit is in the range of 0.183-0.323 mW. The receiver achieves a sensitivity of about -95 dBm with data rate of 1 Mbps.

Keywords: CMOS, envelope detector, ISM band, LNA, low power electronics, PA, wireless transceiver

Procedia PDF Downloads 485
1007 Study the Effect of Leading-Edge Serration at Owl Wing Feathers on Flow-Induced Noise Generation

Authors: Suprabha Islam, Sifat Ullah Tanzil

Abstract:

During past few decades, being amazed by the excellent silent flight of owl, scientists have been trying to demystify the unique features of its wing feathers. Our present study is dedicated to taking our understanding further on this phenomenon. In this present study, a numerical investigation was performed to analyze how the shape of the leading-edge serration at owl wing feathers effects the flow-induced noise generation. For the analysis, an owl inspired single feather wing model was prepared for both with and without serrations at the leading edge. The serration profiles were taken at different positions of the vane length for a single feather. The broadband noise was studied to quantify the local contribution to the total acoustic power generated by the flow, where the results clearly showed the effect of serrations in reducing the noise generation. It was also clearly visible that the shape of the serration has a very strong influence on noise generation. The frequency spectrum of noise was also analyzed and a strong relation was found between the shape of the serration and the noise generation. It showed that the noise suppression is strongly influenced by the height to length ratio of the serration. With the increase in height to length ratio, the noise suppression is enhanced further.

Keywords: aeroacoustics, aerodynamic, biomimetics, serrations

Procedia PDF Downloads 144
1006 Miniaturized Wideband Single-Feed Shorted-Edge Stacked Patch Antenna for C-Band Applications

Authors: Abdelheq Boukarkar, Omar Guermoua

Abstract:

In this paper, we propose a miniaturized and wideband patch antenna for C-band applications. The antenna miniaturization is obtained by loading shorting vias along one patch edge. At the same time, the wideband performance is achieved by combining two resonances using one feed line. The measured results reveal that the antenna covers the frequency band 4.32 GHz to 6.52 GHz (41%) with a peak gain and a peak efficiency of 5.5 dBi and 87%, respectively. The antenna occupies a relatively small size of only 26 x 22 x 5.6 mm3, making it suitable for compact wireless devices requiring a stable unidirectional gain over a wide frequency range.

Keywords: miniaturized antennas, patch antennas, stable gain, wideband antennas

Procedia PDF Downloads 184
1005 Recovery of Copper from Edge Trims of Printed Circuit Boards Using Acidithiobacillus Ferrooxidans: Bioleaching

Authors: Shashi Arya, Nand L. Singh, Samiksha Singh, Pradeep K. Mishra, Siddh N. Upadhyay

Abstract:

The enormous generation of E- waste and its recycling have greater environmental concern especially in developing countries like India. A major part of this waste comprises printed circuit boards (PCBs). Edge trims of PCBs have high copper content ranging between 25-60%. The extraction of various metals out of these PCBs is more or less a proven technology, wherein various hazardous chemicals are being used in the resource recovery, resulting into secondary pollution. The current trend of extracting of valuable metals is the utilization of microbial strains to eliminate the problem of a secondary pollutant. Keeping the above context in mind, this work aims at the enhanced recovery of copper from edge trims, through bioleaching using bacterial strain Acidithiobacillus ferrooxidans. The raw material such as motherboards, hard drives, floppy drives and DVD drives were obtained from the warehouse of the University. More than 90% copper could be extracted through bioleaching using Acidithiobacillus ferrooxidans. Inoculate concentration has merely insignificant effect over copper recovery above 20% inoculate concentration. Higher concentration of inoculation has the only initial advantage up to 2-4 days. The complete recovery has been obtained between 14- 24 days.

Keywords: acidithiobacillus ferrooxidans, bioleaching, e-waste, printed circuit boards

Procedia PDF Downloads 300
1004 A Machining Method of Cross-Shape Nano Channel and Experiments for Silicon Substrate

Authors: Zone-Ching Lin, Hao-Yuan Jheng, Zih-Wun Jhang

Abstract:

The paper innovatively proposes using the concept of specific down force energy (SDFE) and AFM machine to establish a machining method of cross-shape nanochannel on single-crystal silicon substrate. As for machining a cross-shape nanochannel by AFM machine, the paper develop a method of machining cross-shape nanochannel groove at a fixed down force by using SDFE theory and combining the planned cutting path of cross-shape nanochannel up to 5th machining layer it finally achieves a cross-shape nanochannel at a cutting depth of around 20nm. Since there may be standing burr at the machined cross-shape nanochannel edge, the paper uses a smaller down force to cut the edge of the cross-shape nanochannel in order to lower the height of standing burr and converge the height of standing burr at the edge to below 0.54nm as set by the paper. Finally, the paper conducts experiments of machining cross-shape nanochannel groove on single-crystal silicon by AFM probe, and compares the simulation and experimental results. It is proved that this proposed machining method of cross-shape nanochannel is feasible.

Keywords: atomic force microscopy (AFM), cross-shape nanochannel, silicon substrate, specific down force energy (SDFE)

Procedia PDF Downloads 345
1003 Similar Script Character Recognition on Kannada and Telugu

Authors: Gurukiran Veerapur, Nytik Birudavolu, Seetharam U. N., Chandravva Hebbi, R. Praneeth Reddy

Abstract:

This work presents a robust approach for the recognition of characters in Telugu and Kannada, two South Indian scripts with structural similarities in characters. To recognize the characters exhaustive datasets are required, but there are only a few publicly available datasets. As a result, we decided to create a dataset for one language (source language),train the model with it, and then test it with the target language.Telugu is the target language in this work, whereas Kannada is the source language. The suggested method makes use of Canny edge features to increase character identification accuracy on pictures with noise and different lighting. A dataset of 45,150 images containing printed Kannada characters was created. The Nudi software was used to automatically generate printed Kannada characters with different writing styles and variations. Manual labelling was employed to ensure the accuracy of the character labels. The deep learning models like CNN (Convolutional Neural Network) and Visual Attention neural network (VAN) are used to experiment with the dataset. A Visual Attention neural network (VAN) architecture was adopted, incorporating additional channels for Canny edge features as the results obtained were good with this approach. The model's accuracy on the combined Telugu and Kannada test dataset was an outstanding 97.3%. Performance was better with Canny edge characteristics applied than with a model that solely used the original grayscale images. The accuracy of the model was found to be 80.11% for Telugu characters and 98.01% for Kannada words when it was tested with these languages. This model, which makes use of cutting-edge machine learning techniques, shows excellent accuracy when identifying and categorizing characters from these scripts.

Keywords: base characters, modifiers, guninthalu, aksharas, vattakshara, VAN

Procedia PDF Downloads 28
1002 Design and Numerical Study on Aerodynamics Performance for F16 Leading Edge Extension

Authors: San-Yih Lin, Hsien-Hao Teng

Abstract:

In this research, we use commercial software, ANSYS CFX, to carry on the simulation the F16 aerodynamics performance flow field. The flight with a modified Leading Edge Extension (LEX) is proposed to increase the lift/drag ratio. The Shear Stress Transport turbulent model is used. The unstructured grid system is generated by the ICEM CFD. The prism grid around the wall surface is generated to simulate boundary layer viscosity flow field and Tetrahedron Mesh is used for the other computation domain. The lift, drag, and pitch moment are computed. The strong vortex structures upper the wing and vortex bursts under different sweep angle of LEX are investigated.

Keywords: LEX, lift/drag ratio, pitch moment, vortex burst

Procedia PDF Downloads 301
1001 Cooperative AF Scheme for Multi Source and Terminal in Edge of Cell Coverage

Authors: Myoung-Jin Kim, Chang-Bin Ha, Yeong-Seop Ahn, Hyoung-Kyu Song

Abstract:

This paper proposes a cooperative communication scheme for improve wireless communication performance. When the receiver is located in the edge of coverage, the signal from the transmitter is distorted for various reasons such as inter-cell interference (ICI), power reduction, incorrect channel estimation. In order to improve communication performance, the proposed scheme adds the relay. By the relay, the receiver has diversity gain. In this paper, two base stations, one relay and one destination are considered. The two base stations transmit same time to relay and destination. The relay forwarding to destination and the destination detects signals.

Keywords: cooperative communication, diversity gain, OFDM, MMSE

Procedia PDF Downloads 370
1000 Numerical Aeroacoustics Investigation of Eroded and Coated Leading Edge of NACA 64- 618 Airfoil

Authors: Zeinab Gharibi, B. Stoevesandt, J. Peinke

Abstract:

Long term surface erosion of wind turbine blades, especially at the leading edge, impairs aerodynamic performance; therefore, lowers efficiency of the blades mostly in the high-speed rotor tip regions. Blade protection provides significant improvements in annual energy production, reduces costly downtime, and protects the integrity of the blades. However, this protection still influences the aerodynamic behavior, and broadband noise caused by interaction between the impinging turbulence and blade’s leading edge. This paper presents an extensive numerical aeroacoustics approach by investigating the sound power spectra of the eroded and coated NACA 64-618 wind turbine airfoil and evaluates aeroacoustics improvements after the protection procedure. Using computational fluid dynamics (CFD), different quasi 2D numerical grids were implemented and special attention was paid to the refinement of the boundary layers. The noise sources were captured and decoupled with acoustic propagation via the derived formulation of Curle’s analogy implemented in OpenFOAM. Therefore, the noise spectra were compared for clean, coated and eroded profiles in the range of chord-based Reynolds number (1.6e6 ≤ Re ≤ 11.5e6). Angle of attack was zero in all cases. Verifications were conducted for the clean profile using available experimental data. Sensitivity studies for the far-field were done on different observational positions. Furthermore, beamforming studies were done simulating an Archimedean spiral microphone array for far-field noise directivity patterns. Comparing the noise spectra of the coated and eroded geometries, results show that, coating clearly improves aerodynamic and acoustic performance of the eroded airfoil.

Keywords: computational fluid dynamics, computational aeroacoustics, leading edge, OpenFOAM

Procedia PDF Downloads 198
999 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts

Authors: Lin Cheng, Zijiang Yang

Abstract:

Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.

Keywords: program synthesis, flow chart, specification, graph recognition, CNN

Procedia PDF Downloads 99
998 Secondary Charged Fragments Tracking for On-Line Beam Range Monitoring in Particle Therapy

Authors: G. Traini, G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, S. M. Valle, C. Voena, V. Patera

Abstract:

In Particle Therapy (PT) treatments a large amount of secondary particles, whose emission point is correlated to the dose released in the crossed tissues, is produced. The measurement of the secondary charged fragments component could represent a valid technique to monitor the beam range during the PT treatments, that is a still missing item in the clinical practice. A sub-millimetrical precision on the beam range measurement is required to significantly optimise the technique and to improve the treatment quality. In this contribution, a detector, named Dose Profiler (DP), is presented. It is specifically planned to monitor on-line the beam range exploiting the secondary charged particles produced in PT Carbon ions treatment. In particular, the DP is designed to track the secondary fragments emitted at large angles with respect to the beam direction (mainly protons), with the aim to reconstruct the spatial coordinates of the fragment emission point extrapolating the measured track toward the beam axis. The DP is currently under development within of the INSIDE collaboration (Innovative Solutions for In-beam Dosimetry in hadrontherapy). The tracker is made by six layers (20 × 20 cm²) of BCF-12 square scintillating fibres (500 μm) coupled to Silicon Photo-Multipliers, followed by two plastic scintillator layers of 6 mm thickness. A system of front-end boards based on FPGAs arranged around the detector provides the data acquisition. The detector characterization with cosmic rays is currently undergoing, and a data taking campaign with protons will take place in May 2017. The DP design and the performances measured with using MIPs and protons beam will be reviewed.

Keywords: fragmentation, monitoring, particle therapy, tracking

Procedia PDF Downloads 204
997 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm

Authors: Annalakshmi G., Sakthivel Murugan S.

Abstract:

This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.

Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization

Procedia PDF Downloads 140
996 Characterization of Mg/Sc System for X-Ray Spectroscopy in the Water Window Range

Authors: Hina Verma, Karine Le Guen, Mohammed H. Modi, Rajnish Dhawan, Philippe Jonnard

Abstract:

Periodic multilayer mirrors have potential application as optical components in X-ray microscopy, particularly working in the water window region. The water window range, located between the absorption edges of carbon (285 eV) and oxygen (530eV), along with the presence of nitrogen K absorption edge (395 eV), makes it a powerful method for imaging biological samples due to the natural optical contrast between water and carbon. We characterized bilayer, trilayer, quadrilayer, and multilayer systems of Mg/Sc with ZrC thin layers introduced as a barrier layer and capping layer prepared by ion beam sputtering. The introduction of ZrC as a barrier layer is expected to improve the structure of the Mg/Sc system. The ZrC capping layer also prevents the stack from oxidation. The structural analysis of the Mg/Sc systems was carried out by using grazing incidence X-ray reflectivity (GIXRR) to obtain non-destructively a first description of the structural parameters, thickness, roughness, and density of the layers. Resonant soft X-ray reflectivity measurements in the vicinity of Sc L-absorption edge were performed to investigate and quantify the atomic distribution of deposited layers. Near absorption edge, the atomic scattering factor of an element changes sharply depending on its chemical environment inside the structure.

Keywords: buried interfaces, resonant soft X-ray reflectivity, X-ray optics, X-ray reflectivity

Procedia PDF Downloads 138
995 Omni-Relay (OR) Scheme-Aided LTE-A Communication Systems

Authors: Hassan Mahasneh, Abu Sesay

Abstract:

We propose the use of relay terminals at the cell edge of an LTE-based cellar system. Each relay terminal is equipped with an omni-directional antenna. We refer to this scheme as the Omni-Relay (OR) scheme. The OR scheme coordinates the inter-cell interference (ICI) stemming from adjacent cells and increases the desired signal level at cell-edge regions. To validate the performance of the OR scheme, we derive the average signal-to-interference plus noise ratio (SINR) and the average capacity and compare it with the conventional universal frequency reuse factor (UFRF). The results show that the proposed OR scheme provides higher average SINR and average capacity compared to the UFRF due to the assistance of the distributed relay nodes.

Keywords: the UFRF scheme, the OR scheme, ICI, relay terminals, SINR, spectral efficiency

Procedia PDF Downloads 314