Search results for: deceptive features
3713 Critical Evaluation of Key Performance Indicators in Procurement Management Information System: In Case of Bangladesh
Authors: Qazi Mahdia Ghyas
Abstract:
Electronic Government Procurement (e-GP) has implemented in Bangladesh to ensure the good Governance. e-GP has transformed Bangladesh's procurement process electronically. But, to our best knowledge, there is no study to understand the key features of e-GP in Bangladesh. So, this study tries to identify the features of performance improvement after implementing an e-GP system that will help for further improvements. Data was collected from the PROMIS Overall Report (Central Procurement Technical Unit website) for the financial year from Q1 _July- Sep 2015-16 to Q4 _Apr- Jun 2021-22. This study did component factor analysis on KPIs and found nineteen KPIs that are statistically significant and represent time savings, efficiency, accountability, anti-corruption and compliance key features in procurement activities of e-GP. Based on the analysis, some practical measures have been recommended for better improvement of e-GP. This study has some limitations. Because of having multicollinearity issues, all the 42 KPIs (except 19) did not show a good fit for component factor analysis.Keywords: public procurement, electronic government procurement, KPI, performance evaluation
Procedia PDF Downloads 953712 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography
Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw
Abstract:
Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.Keywords: cardiotocography, foetus, intrapartum, hypoxia
Procedia PDF Downloads 2163711 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 1383710 Cognitive Approach at the Epicenter of Creative Accounting in Cameroonian Companies: The Relevance of the Psycho-Sociological Approach and the Theory of Cognitive Dissonance
Authors: Romuald Temomo Wamba, Robert Wanda
Abstract:
The issue of creative accounting in the psychological and sociological framework has been a mixed subject for over 60 years. The objective of this article is to ensure the existence of creative accounting in Cameroonian entities on the one hand and to understand the strategies used by audit agents to detect errors, omissions, irregularities, or inadequacies in the financial state; optimization techniques used by account preparers to strategically bypass texts on the other hand. To achieve this, we conducted an exploratory study using a cognitive approach, and the data analysis was performed by the software 'decision explorer'. The results obtained challenge the authors' cognition (manifest latent and deceptive behavior). The tax inspectors stress that the entities in Cameroon do not derogate from the rules of piloting in the financial statements. Likewise, they claim a change in current income and net income through depreciation, provisions, inventories, and the spreading of charges over long periods. This suggests the suspicion or intention of manipulating the financial statements. As for the techniques, the account preparers manage the accruals at the end of the year as the basis of the practice of creative accounting. Likewise, management accounts are more favorable to results management.Keywords: creative accounting, sociocognitive approach, psychological and sociological approach, cognitive dissonance theory, cognitive mapping
Procedia PDF Downloads 1933709 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction
Procedia PDF Downloads 3803708 Testing Capabilities and Limitations of EBM Technology to Guide Design with a Test Artifact Design including Unique Features
Authors: Kadir Akkuş, Burcu A. Hamat, Kaan Ciloglu
Abstract:
Additive Manufacturing (AM) is the respectable improvement of this century in the field of manufacturing and regarded as a breakthrough that represents the third industrial revolution by the leading authorities such as Wohlers Associates Inc., The Economist, and MIT Technology Review. Thanks to the stacking and unifying methodology of AM, design of lighter but stiffer parts with really more complex shapes and geometrical features, which were not possible by traditional subtractive manufacturing methods, became achievable. Through analysis of the AM process must be performed and mechanical properties of manufactured test parts must be studied to provide input for design. Furthermore, process capabilities, constraints, limitations and challenges regarding AM must be examined so that the design must be compatible with the process to be able to take all the advantages of the AM. In this paper, capabilities and limitations of AM will be investigated through a test part including unique features and manufactured from Ti-6Al-4V by employing Electron Beam Melting (EBM) technology by comparing to the test parts introduced in literature.Keywords: additive manufacturing, DfAM, EBM, test artifact, Ti-6Al-4V
Procedia PDF Downloads 1113707 Musical Instruments Classification Using Machine Learning Techniques
Authors: Bhalke D. G., Bormane D. S., Kharate G. K.
Abstract:
This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.Keywords: feature extraction, SVM, KNN, musical instruments
Procedia PDF Downloads 4803706 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 3673705 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture
Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko
Abstract:
Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.Keywords: classification, feature selection, texture analysis, tree algorithms
Procedia PDF Downloads 1773704 AI Features in Netflix
Authors: Dona Abdulwassi, Dhaee Dahlawi, Yara Zainy, Leen Joharji
Abstract:
The relationship between Netflix and artificial intelligence is discussed in this paper. Netflix uses the most effective and efficient approaches to apply artificial intelligence, machine learning, and data science. Netflix employs the personalization tool for their users, recommending or suggesting shows based on what those users have already watched. The researchers conducted an experiment to learn more about how Netflix is used and how AI affects the user experience. The main conclusions of this study are that Netflix has a wide range of AI features, most users are happy with their Netflix subscriptions, and the majority prefer Netflix to alternative apps.Keywords: easy accessibility, recommends, accuracy, privacy
Procedia PDF Downloads 633703 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing
Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä
Abstract:
Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM
Procedia PDF Downloads 3543702 Exploring Multi-Feature Based Action Recognition Using Multi-Dimensional Dynamic Time Warping
Authors: Guoliang Lu, Changhou Lu, Xueyong Li
Abstract:
In action recognition, previous studies have demonstrated the effectiveness of using multiple features to improve the recognition performance. We focus on two practical issues: i) most studies use a direct way of concatenating/accumulating multi features to evaluate the similarity between two actions. This way could be too strong since each kind of feature can include different dimensions, quantities, etc; ii) in many studies, the employed classification methods lack of a flexible and effective mechanism to add new feature(s) into classification. In this paper, we explore an unified scheme based on recently-proposed multi-dimensional dynamic time warping (MD-DTW). Experiments demonstrated the scheme's effectiveness of combining multi-feature and the flexibility of adding new feature(s) to increase the recognition performance. In addition, the explored scheme also provides us an open architecture for using new advanced classification methods in the future to enhance action recognition.Keywords: action recognition, multi features, dynamic time warping, feature combination
Procedia PDF Downloads 4373701 Economics of Oil and Its Stability in the Gulf Region
Authors: Al Mutawa A. Amir, Liaqat Ali, Faisal Ali
Abstract:
After the World War II, the world economy was disrupted and changed due to oil and its prices. The research in this paper presents the basic statistical features and economic characteristics of the Gulf economy. The main features of the Gulf economies and its heavy dependence on oil exports, its dualism between modern and traditional sectors and its rapidly increasing affluences are particularly emphasized. In this context, the research in this paper discussed the problems of growth versus development and has attempted to draw the implications for the future economic development of this area.Keywords: oil prices, GCC, economic growth, gulf oil
Procedia PDF Downloads 3353700 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity
Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish
Abstract:
Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow
Procedia PDF Downloads 1323699 USA Commercial Pilots’ Views of Crew Resource Management, Social Desirability, and Safety Locus of Control
Authors: Stephen Vera, Tabitha Black, Charalambos Cleanthous, Ryan Sain
Abstract:
A gender comparison of USA commercial pilots’ demographics and views of CRM, social desirability and locus of control were surveyed. The Aviation safety locus of control (ASLOC) was used to measure external (ASLOC-E) or internal (ASLOC-I) aviation safety locus of control. The gender differences were explored using the ASLOC scores as a categorical variable. A differential comparison of crew resource management (CRM), based on the Federal Aviation Administration’s (FAA) guidelines was conducted. The results indicated that the proportion of female to male respondents matches the current ratio of USA commercial pilots. Moreover, there were no significant differences regarding overall education and the total number of communication classes one took. Regarding CRM issues, there were no significant differences on their views regarding the roles of the PIC, stress, time management, and managing a flight team. The females scored significantly lower on aeronautical decision making (ADM) and communications. There were no significant differences on either the Balanced Inventory of Desirable Responding (BIDR) impression management (IM) or self-deceptive enhancement (SDE). Although there were no overall significant differences on the ASLOC, the females did score higher on the internal subscale than did the males. An additional comparison of socially desirable responding indicates that all scores may be invalid, especially from the female respondents.Keywords: social desirability, safety locus of control, crew resource management, commercial pilots
Procedia PDF Downloads 2553698 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation
Procedia PDF Downloads 3253697 0.13-µm Complementary Metal-Oxide Semiconductor Vector Modulator for Beamforming System
Authors: J. S. Kim
Abstract:
This paper presents a 0.13-µm Complementary Metal-Oxide Semiconductor (CMOS) vector modulator for beamforming system. The vector modulator features a 360° phase and gain range of -10 dB to 10 dB with a root mean square phase and amplitude error of only 2.2° and 0.45 dB, respectively. These features make it a suitable for wireless backhaul system in the 5 GHz industrial, scientific, and medical (ISM) bands. It draws a current of 20.4 mA from a 1.2 V supply. The total chip size is 1.87x1.34 mm².Keywords: CMOS, vector modulator, beamforming, 802.11ac
Procedia PDF Downloads 2103696 The Effect of User Comments on Traffic Application Usage
Authors: I. Gokasar, G. Bakioglu
Abstract:
With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications.Keywords: traffic app, real–time information, traffic congestion, regression analysis, dummy variables
Procedia PDF Downloads 4293695 Profit and Nonprofit Sports Clubs, Financial and Organizational Comparison in Poland
Authors: Igor Perechuda, Wojciech Cieśliński
Abstract:
The paper identifies the features of Polish sports clubs in the particular organizational forms: profit and nonprofit. Identification and description of these features is carried out in terms of financial efficiency of the given organizational form. Under the terms of the efficiency the research allows you to specify the advantages of particular organizational sports club form and the following limitations. Paper considers features of sports clubs in range of Polish conditions as legal regulations. The sources of the functioning efficiency of sports clubs may lie in the organizational forms in which they operate. Each of the available forms can be considered either a for-profit or nonprofit enterprise. Depending on this classification there are different capabilities of increasing organizational and financial efficiency of a given sports club. Authors start with general classification and difference between for-profit and non-profit sport clubs. Next identifies specific financial and organizational conditions of both organizational form and then show examples of mixed activity forms and their efficiency effect.Keywords: financial efficiency, for-profit, non-profit, sports club
Procedia PDF Downloads 5473694 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 2653693 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis
Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar
Abstract:
Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated.Keywords: cement composite, mechanical properties, molecular dynamics, plasticizer additives
Procedia PDF Downloads 4543692 Reconstructed Phase Space Features for Estimating Post Traumatic Stress Disorder
Authors: Andre Wittenborn, Jarek Krajewski
Abstract:
Trauma-related sadness in speech can alter the voice in several ways. The generation of non-linear aerodynamic phenomena within the vocal tract is crucial when analyzing trauma-influenced speech production. They include non-laminar flow and formation of jets rather than well-behaved laminar flow aspects. Especially state-space reconstruction methods based on chaotic dynamics and fractal theory have been suggested to describe these aerodynamic turbulence-related phenomena of the speech production system. To extract the non-linear properties of the speech signal, we used the time delay embedding method to reconstruct from a scalar time series (reconstructed phase space, RPS). This approach results in the extraction of 7238 Features per .wav file (N= 47, 32 m, 15 f). The speech material was prompted by telling about autobiographical related sadness-inducing experiences (sampling rate 16 kHz, 8-bit resolution). After combining these features in a support vector machine based machine learning approach (leave-one-sample out validation), we achieved a correlation of r = .41 with the well-established, self-report ground truth measure (RATS) of post-traumatic stress disorder (PTSD).Keywords: non-linear dynamics features, post traumatic stress disorder, reconstructed phase space, support vector machine
Procedia PDF Downloads 1023691 A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences
Authors: Yuan-Jye Tseng, Ching-Yen Chen
Abstract:
In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers’ preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer’s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences.Keywords: cluster analysis, customer preferences, design evaluation, design for customer preferences, product design
Procedia PDF Downloads 1913690 Positive-Negative Asymmetry in the Evaluations of Political Candidates: The Mediating Role of Affect in the Relationship between Cognitive Evaluation and Voting Intention
Authors: Magdalena Jablonska, Andrzej Falkowski
Abstract:
The negativity effect is one of the most intriguing and well-studied psychological phenomena that can be observed in many areas of human life. The aim of the following study is to investigate how valence framing and positive and negative information about political candidates affect judgments about similarity to an ideal and bad politician. Based on the theoretical framework of features of similarity, it is hypothesized that negative features have a stronger effect on similarity judgments than positive features of comparable value. Furthermore, the mediating role of affect is tested. Method: One hundred sixty-one people took part in an experimental study. Participants were divided into 6 research conditions that differed in the reference point (positive vs negative framing) and the number of favourable and unfavourable information items about political candidates (a positive, neutral and negative candidate profile). In positive framing condition, the concept of an ideal politician was primed; in the negative condition, participants were to think about a bad politician. The effect of independent variables on similarity judgments, affective evaluation, and voting intention was tested. Results: In the positive condition, the analysis showed that the negative effect of additional unfavourable features was greater than the positive effect of additional favourable features in judgements about similarity to the ideal candidate. In negative framing condition, ANOVA was insignificant, showing that neither the addition of positive features nor additional negative information had a significant impact on the similarity to a bad political candidate. To explain this asymmetry, two mediational analyses were conducted that tested the mediating role of affect in the relationship between similarity judgments and voting intention. In both situations the mediating effect was significant, but the comparison of two models showed that the mediation was stronger for a negative framing. Discussion: The research supports the negativity effect and attempts to explain the psychological mechanism behind the positive-negative asymmetry. The results of mediation analyses point to a stronger mediating role of affect in the relationship between cognitive evaluation and voting intention. Such a result suggests that negative comparisons, leading to the activation of negative features, give rise to stronger emotions than positive features of comparable strength. The findings are in line with positive-negative asymmetry, however, by adopting Tversky’s framework of features of similarity, the study integrates the cognitive mechanism of the negativity effect delineated in the contrast model of similarity with its emotional component resulting from the asymmetrical effect of positive and negative emotions on decision-making.Keywords: affect, framing, negativity effect, positive-negative asymmetry, similarity judgements
Procedia PDF Downloads 1983689 Patients' Quality of Life and Caregivers' Burden of Parkinson's Disease
Authors: Kingston Rajiah, Mari Kannan Maharajan, Si Jen Yeen, Sara Lew
Abstract:
Parkinson’s disease (PD) is a progressive neurodegenerative disorder with evolving layers of complexity. Both motor and non-motor symptoms of PD may affect patients’ quality of life (QoL). Life expectancy for an individual with Parkinson’s disease depends on the level of care the individual has access to, can have a direct impact on length of life. Therefore, improvement of the QoL is a significant part of therapeutic plans. Patients with PD, especially those who are in advanced stages, are in great need of assistance, mostly from their family members or caregivers in terms of medical, emotional, and social support. The role of a caregiver becomes increasingly important with the progression of PD, the severity of motor impairment and increasing age of the patient. The nature and symptoms associated with PD can place significant stresses on the caregivers’ burden. As the prevalence of PD is estimated to more than double by 2030, it is important to recognize and alleviate the burden experienced by caregivers. This study focused on the impact of the clinical features on the QoL of PD patients, and of their caregivers. This study included PD patients along with their caregivers and was undertaken at the Malaysian Parkinson's Disease Association from June 2016 to November 2016. Clinical features of PD patients were assessed using the Movement Disorder Society revised Unified Parkinson Disease Rating Scale (MDS-UPDRS); the Hoehn and Yahr Staging of Parkinson's Disease were used to assess the severity and Parkinson's disease activities of daily living scale were used to assess the disability of Parkinson’s disease patients. QoL of PD patients was measured using the Parkinson's Disease Questionnaire-39 (PDQ-39). The revised version of the Zarit Burden Interview assessed caregiver burden. At least one of the clinical features affected PD patients’ QoL, and at least one of the QoL domains affected the caregivers’ burden. Clinical features ‘Saliva and Drooling’, and ‘Dyskinesia’ explained 29% of variance in QoL of PD patients. The QoL domains ‘stigma’, along with ‘emotional wellbeing’ explained 48.6% of variance in caregivers’ burden. Clinical features such as saliva, drooling and dyskinesia affected the QoL of PD patients. The PD patients’ QoL domains such as ‘stigma’ and ‘emotional well-being’ influenced their caregivers’ burden.Keywords: carers, quality of life, clinical features, Malaysia
Procedia PDF Downloads 2443688 Two Quasiparticle Rotor Model for Deformed Nuclei
Authors: Alpana Goel, Kawalpreet Kalra
Abstract:
The study of level structures of deformed nuclei is the most complex topic in nuclear physics. For the description of level structure, a simple model is good enough to bring out the basic features which may then be further refined. The low lying level structures of these nuclei can, therefore, be understood in terms of Two Quasiparticle plus axially symmetric Rotor Model (TQPRM). The formulation of TQPRM for deformed nuclei has been presented. The analysis of available experimental data on two quasiparticle rotational bands of deformed nuclei present unusual features like signature dependence, odd-even staggering, signature inversion and signature reversal in two quasiparticle rotational bands of deformed nuclei. These signature effects are well discussed within the framework of TQPRM. The model is well efficient in reproducing the large odd-even staggering and anomalous features observed in even-even and odd-odd deformed nuclei. The effect of particle-particle and the Coriolis coupling is well established from the model. Detailed description of the model with implications to deformed nuclei is presented in the paper.Keywords: deformed nuclei, signature effects, signature inversion, signature reversal
Procedia PDF Downloads 1583687 Discovering the Real Psyche of Human Beings
Authors: Sheetla Prasad
Abstract:
The objective of this study is ‘discovering the real psyche of human beings for prediction of mode, direction and strength of the potential of actions of the individual. The human face was taken as a source of central point to search for the route of real psyche. Analysis of the face architecture (shape and salient features of face) was done by three directional photographs ( 600 left and right and camera facing) of human beings. The shapes and features of the human face were scaled in 177 units on the basis of face–features locations (FFL). The mathematical analysis was done of FFLs by self developed and standardized formula. At this phase, 800 samples were taken from the population of students, teachers, advocates, administrative officers, and common persons. The finding shows that real psyche has two external rings (ER). These ER are itself generator of two independent psyches (manifested and manipulated). Prima-facie, it was proved that micro differences in FFLs have potential to predict the state of art of the human psyche. The potential of psyches was determined by the saving and distribution of mental energy. It was also mathematically proved.Keywords: face architecture, psyche, potential, face functional ratio, external rings
Procedia PDF Downloads 5053686 A Combined Feature Extraction and Thresholding Technique for Silence Removal in Percussive Sounds
Authors: B. Kishore Kumar, Pogula Rakesh, T. Kishore Kumar
Abstract:
The music analysis is a part of the audio content analysis used to analyze the music by using the different features of audio signal. In music analysis, the first step is to divide the music signal to different sections based on the feature profiles of the music signal. In this paper, we present a music segmentation technique that will effectively segmentize the signal and thresholding technique to remove silence from the percussive sounds produced by percussive instruments, which uses two features of music, namely signal energy and spectral centroid. The proposed method impose thresholds on both the features which will vary depends on the music signal. Depends on the threshold, silence part is removed and the segmentation is done. The effectiveness of the proposed method is analyzed using MATLAB.Keywords: percussive sounds, spectral centroid, spectral energy, silence removal, feature extraction
Procedia PDF Downloads 5933685 Comprehensive Evaluation of COVID-19 Through Chest Images
Authors: Parisa Mansour
Abstract:
The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT
Procedia PDF Downloads 573684 A Nonlinear Feature Selection Method for Hyperspectral Image Classification
Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo
Abstract:
For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine
Procedia PDF Downloads 263