Search results for: dataset generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4495

Search results for: dataset generation

4345 Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition

Authors: Jin-Woo Park, Sung-Soo Lee, Nong-Moon Hwang

Abstract:

The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR.

Keywords: chemical vapour deposition, charged cluster model, generation of charged nanoparticles, deposition behaviour, nanostructures, gan, charged transfer rate

Procedia PDF Downloads 439
4344 The Advancements of Transformer Models in Part-of-Speech Tagging System for Low-Resource Tigrinya Language

Authors: Shamm Kidane, Ibrahim Abdella, Fitsum Gaim, Simon Mulugeta, Sirak Asmerom, Natnael Ambasager, Yoel Ghebrihiwot

Abstract:

The call for natural language processing (NLP) systems for low-resource languages has become more apparent than ever in the past few years, with the arduous challenges still present in preparing such systems. This paper presents an improved dataset version of the Nagaoka Tigrinya Corpus for Parts-of-Speech (POS) classification system in the Tigrinya language. The size of the initial Nagaoka dataset was incremented, totaling the new tagged corpus to 118K tokens, which comprised the 12 basic POS annotations used previously. The additional content was also annotated manually in a stringent manner, followed similar rules to the former dataset and was formatted in CONLL format. The system made use of the novel approach in NLP tasks and use of the monolingually pre-trained TiELECTRA, TiBERT and TiRoBERTa transformer models. The highest achieved score is an impressive weighted F1-score of 94.2%, which surpassed the previous systems by a significant measure. The system will prove useful in the progress of NLP-related tasks for Tigrinya and similarly related low-resource languages with room for cross-referencing higher-resource languages.

Keywords: Tigrinya POS corpus, TiBERT, TiRoBERTa, conditional random fields

Procedia PDF Downloads 103
4343 Application of Machine Learning Techniques in Forest Cover-Type Prediction

Authors: Saba Ebrahimi, Hedieh Ashrafi

Abstract:

Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.

Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset

Procedia PDF Downloads 217
4342 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery

Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao

Abstract:

Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.

Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset

Procedia PDF Downloads 120
4341 Impact of Series Reactive Compensation on Increasing a Distribution Network Distributed Generation Hosting Capacity

Authors: Moataz Ammar, Ahdab Elmorshedy

Abstract:

The distributed generation hosting capacity of a distribution network is typically limited at a given connection point by the upper voltage limit that can be violated due to the injection of active power into the distribution network. The upper voltage limit violation concern becomes more important as the network equivalent resistance increases with respect to its equivalent reactance. This paper investigates the impact of modifying the distribution network equivalent reactance at the point of connection such that the upper voltage limit is violated at a higher distributed generation penetration, than it would without the addition of series reactive compensation. The results show that series reactive compensation proves efficient in certain situations (based on the ratio of equivalent network reactance to equivalent network resistance at the point of connection). As opposed to the conventional case of capacitive compensation of a distribution network to reduce voltage drop, inductive compensation is seen to be more appropriate for alleviation of distributed-generation-induced voltage rise.

Keywords: distributed generation, distribution networks, series compensation, voltage rise

Procedia PDF Downloads 395
4340 Nighttime Dehaze - Enhancement

Authors: Harshan Baskar, Anirudh S. Chakravarthy, Prateek Garg, Divyam Goel, Abhijith S. Raj, Kshitij Kumar, Lakshya, Ravichandra Parvatham, V. Sushant, Bijay Kumar Rout

Abstract:

In this paper, we introduce a new computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a new benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a new network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve SSIM of 0.8962 and PSNR of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task, particularly for autonomous navigation applications, and we hope that our work will open up new frontiers in research. Our dataset and code will be made publicly available upon acceptance of our paper.

Keywords: dehazing, image enhancement, nighttime, computer vision

Procedia PDF Downloads 157
4339 The Impact of Online Advertising on Generation Y’s Purchase Decision in Malaysia

Authors: Mui Joo Tang, Eang Teng Chan

Abstract:

Advertising is commonly used to foster sales and reputation of an institution. It is at first the growth of print advertising that has increased the population and number of periodicals of newspaper and its circulation. The rise of Internet and online media has somehow blurred the role of media and advertising though the intention is still to reach out to audience and to increase sales. The relationship between advertising and audience on a product purchase through persuasion has been developing from print media to online media. From the changing media environment and audience, it is the concern of this research to study the impact of online advertising to such a relationship cycle. The content of online advertisements is much of text, multimedia, photo, audio and video. The messages of such content format may indeed bring impacts to its audience and its credibility. This study is therefore reflecting the effectiveness of online advertisement and its influences on generation Y in their purchasing behavior. This study uses Media Dependency Theory to analyze the relationship between the impact of online advertisement and media usage pattern of generation Y. Hierarchy of Effectiveness Model is used as a marketing communication model to study the effectiveness of advertising and further to determine the impact of online advertisement on generation Y in their purchasing decision making. This research uses online survey to reach out the sample of generation Y. The results have shown that online advertisements do not affect much on purchase decision making even though generation Y relies much on the media content including online advertisement for its information and believing in its credibility. There are few other external factors that may interrupt the effectiveness of online advertising. The very obvious influence of purchasing behavior is actually derived from the peers.

Keywords: generation Y, purchase decision, print media, online advertising, persuasion

Procedia PDF Downloads 527
4338 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: deep learning, generative, knowledge, response generation, retrieval

Procedia PDF Downloads 134
4337 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
4336 Classification of Red, Green and Blue Values from Face Images Using k-NN Classifier to Predict the Skin or Non-Skin

Authors: Kemal Polat

Abstract:

In this study, it has been estimated whether there is skin by using RBG values obtained from the camera and k-nearest neighbor (k-NN) classifier. The dataset used in this study has an unbalanced distribution and a linearly non-separable structure. This problem can also be called a big data problem. The Skin dataset was taken from UCI machine learning repository. As the classifier, we have used the k-NN method to handle this big data problem. For k value of k-NN classifier, we have used as 1. To train and test the k-NN classifier, 50-50% training-testing partition has been used. As the performance metrics, TP rate, FP Rate, Precision, recall, f-measure and AUC values have been used to evaluate the performance of k-NN classifier. These obtained results are as follows: 0.999, 0.001, 0.999, 0.999, 0.999, and 1,00. As can be seen from the obtained results, this proposed method could be used to predict whether the image is skin or not.

Keywords: k-NN classifier, skin or non-skin classification, RGB values, classification

Procedia PDF Downloads 248
4335 The Readiness of Bodies Corporate in South Africa for Third Generation Sectional Title Legislation: An Accountancy Perspective

Authors: Leandi Steenkamp

Abstract:

After being in effect since the late 1970s, first generation sectional title legislation in South Africa was completely overhauled in recent years into what is now commonly referred to as third generation sectional title legislation. The original Sectional Titles Act was split into three separate statutes, namely the Sectional Titles Schemes Management Act No. 8 of 2011, the Sectional Titles Amendment Act No. 33 of 2013 and the Community Schemes Ombud Service Act No. 9 of 2011, with various Regulations detailing how the different acts should be applied in practice. Even though some of the changes effected by the new legislation is simply technical adjustments and replications of the original first generation legislation, the new acts introduce a number of significant changes that will have an effect on accountancy and financial management aspects of sectional title schemes in future. No academic research has been undertaken on third generation sectional title legislation in South Africa from an accountancy and financial management perspective as yet. The aim of this paper is threefold: Firstly, to discuss the findings of a literature review on the new third generation sectional title legislation, with specific reference to accountancy-related aspects. Secondly, the empirical findings of accountancy-related aspects from the results of a quantitative study on a sample of bodies corporate will be discussed. The sample of bodies corporate was selected from four different municipal areas in South Africa. Specific reference will be made to the readiness of bodies corporate regarding the provisions of the new legislation. Thirdly, practical recommendations will be made on how bodies corporate can prepare for the new legislative aspects, and further research opportunities in this regard will be discussed.

Keywords: accountancy, body corporate, sectional title, third generation sectional title legislation

Procedia PDF Downloads 303
4334 Stationary Gas Turbines in Power Generation: Past, Present and Future Challenges

Authors: Michel Moliere

Abstract:

In the next decades, the thermal power generation segment will survive only if it achieves deep mutations, including drastical abatements of CO2 emissions and strong efficiency gains. In this challenging perspective, stationary gas turbines appear as serious candidates to lead the energy transition. Indeed, during the past decades, these turbomachines have made brisk technological advances in terms of efficiency, reliability, fuel flex (including the combustion of hydrogen), and the ability to hybridize with regenrables. It is, therefore, timely to summarize the progresses achieved by gas turbines in the recent past and to examine what are their assets to face the challenges of the energy transition.

Keywords: energy transition, gas turbines, decarbonization, power generation

Procedia PDF Downloads 208
4333 Similar Script Character Recognition on Kannada and Telugu

Authors: Gurukiran Veerapur, Nytik Birudavolu, Seetharam U. N., Chandravva Hebbi, R. Praneeth Reddy

Abstract:

This work presents a robust approach for the recognition of characters in Telugu and Kannada, two South Indian scripts with structural similarities in characters. To recognize the characters exhaustive datasets are required, but there are only a few publicly available datasets. As a result, we decided to create a dataset for one language (source language),train the model with it, and then test it with the target language.Telugu is the target language in this work, whereas Kannada is the source language. The suggested method makes use of Canny edge features to increase character identification accuracy on pictures with noise and different lighting. A dataset of 45,150 images containing printed Kannada characters was created. The Nudi software was used to automatically generate printed Kannada characters with different writing styles and variations. Manual labelling was employed to ensure the accuracy of the character labels. The deep learning models like CNN (Convolutional Neural Network) and Visual Attention neural network (VAN) are used to experiment with the dataset. A Visual Attention neural network (VAN) architecture was adopted, incorporating additional channels for Canny edge features as the results obtained were good with this approach. The model's accuracy on the combined Telugu and Kannada test dataset was an outstanding 97.3%. Performance was better with Canny edge characteristics applied than with a model that solely used the original grayscale images. The accuracy of the model was found to be 80.11% for Telugu characters and 98.01% for Kannada words when it was tested with these languages. This model, which makes use of cutting-edge machine learning techniques, shows excellent accuracy when identifying and categorizing characters from these scripts.

Keywords: base characters, modifiers, guninthalu, aksharas, vattakshara, VAN

Procedia PDF Downloads 53
4332 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant

Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi

Abstract:

A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.

Keywords: energy saving, methanol, gas turbine, power generation

Procedia PDF Downloads 469
4331 Comparison of Microleakage of Composite Restorations Using Fifth and Seventh Generation of Bonding Agents

Authors: Karina Nabilla, Dedi Sumantri, Nurul T. Rizal, Siti H. Yavitha

Abstract:

Background: Composite resin is the most frequently used material for restoring teeth, but still failure cases are seen which leading to microleakage. Microleakage might be attributed to various factors, one of them is bonding agent. Various generations of bonding agents have been introduced to overcome the microleakage. The aim of this study was to evaluate the microleakage of composite restorations using the fifth and seventh bonding agent. Methods: Class I cavities (3X2X2 mm) were prepared on the occlusal surfaces of 32 human upper premolars. Teeth were classified into two groups according to the type of bonding agent used (n =16). Group I: Fifth Generation of Bonding Agent-Adper Single Bond2. Group II: Seventh Generation of Bonding Agent-Single Bond Universal. All cavities were restored with Filtek Z250 XT composite resin, stored in sterile aquades water at 370C for 24 h. The root apices were sealed with sticky wax, and all the surfaces, except for 2 mm from the margins, were coated with nail varnish. The teeth were immersed in a 1% methylene blue dye solution for 24 h, and then rinsed in running water, blot-dried and sectioned longitudinally through the center of restorations from the buccal to palatal surface. The sections were blindly assessed for microleakage of dye penetration by using a stereomicroscope. Dye penetration along margin was measured in µm then calculated into the percentage and classified into scoring system 1 to 3. Data were collected and statistically analyzed by Chi-Square test. Result: There was no significant difference (p > 0,05) between two groups. Conclusion: Fifth generation of bonding agent revealed less leakage compared to the seventh generation even statistically there was no significant difference.

Keywords: composite restoration, fifth generation of bonding agent, microleakage, seventh generation of bonding agent

Procedia PDF Downloads 268
4330 On-The-Fly Cross Sections Generation in Neutron Transport with Wide Energy Region

Authors: Rui Chen, Shu-min Zhou, Xiong-jie Zhang, Ren-bo Wang, Fan Huang, Bin Tang

Abstract:

During the temperature changes in reactor core, the nuclide cross section in reactor can vary with temperature, which eventually causes the changes of reactivity. To simulate the interaction between incident neutron and various materials at different temperatures on the nose, it is necessary to generate all the relevant reaction temperature-dependent cross section. Traditionally, the real time cross section generation method is used to avoid storing huge data but contains severe problems of low efficiency and adaptability for narrow energy region. Focused on the research on multi-temperature cross sections generation in real time during in neutron transport, this paper investigated the on-the-fly cross section generation method for resolved resonance region, thermal region and unresolved resonance region, and proposed the real time multi-temperature cross sections generation method based on double-exponential formula for resolved resonance region, as well as the Neville interpolation for thermal and unresolved resonance region. To prove the correctness and validity of multi-temperature cross sections generation based on wide energy region of incident neutron, the proposed method was applied in critical safety benchmark tests, which showed the capability for application in reactor multi-physical coupling simulation.

Keywords: cross section, neutron transport, numerical simulation, on-the-fly

Procedia PDF Downloads 197
4329 Feature Location Restoration for Under-Sampled Photoplethysmogram Using Spline Interpolation

Authors: Hangsik Shin

Abstract:

The purpose of this research is to restore the feature location of under-sampled photoplethysmogram using spline interpolation and to investigate feasibility for feature shape restoration. We obtained 10 kHz-sampled photoplethysmogram and decimated it to generate under-sampled dataset. Decimated dataset has 5 kHz, 2.5 k Hz, 1 kHz, 500 Hz, 250 Hz, 25 Hz and 10 Hz sampling frequency. To investigate the restoration performance, we interpolated under-sampled signals with 10 kHz, then compared feature locations with feature locations of 10 kHz sampled photoplethysmogram. Features were upper and lower peak of photplethysmography waveform. Result showed that time differences were dramatically decreased by interpolation. Location error was lesser than 1 ms in both feature types. In 10 Hz sampled cases, location error was also deceased a lot, however, they were still over 10 ms.

Keywords: peak detection, photoplethysmography, sampling, signal reconstruction

Procedia PDF Downloads 368
4328 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach

Authors: Jianli Jiang, Bai-Chen Xie

Abstract:

The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.

Keywords: spatial network DEA, environmental efficiency, sustainable development, power system

Procedia PDF Downloads 108
4327 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset

Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba

Abstract:

We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).

Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process

Procedia PDF Downloads 261
4326 Generation of Symmetric Key Using Randomness of Hash Function

Authors: Sai Charan Kamana, Harsha Vardhan Nakkina, B.R. Chandavarkar

Abstract:

In a highly secure and robust key generation process, a key role is played by randomness and random numbers when current real-world cryptosystems are observed. Most of the present-day cryptographic protocols depend upon the Random Number Generators (RNG), Pseudo-Random Number Generator (PRNG). These protocols often use noisy channels such as Disk seek time, CPU temperature, Mouse pointer movement, Fan noise to obtain true random values. Despite being cost-effective, these noisy channels may need additional hardware devices to continuously communicate with them. On the other hand, Hash functions are Pseudo-Random (because of their requirements). So, they are a good replacement for these noisy channels and have low hardware requirements. This paper discusses, some of the key generation methodologies, and their drawbacks. This paper explains how hash functions can be used in key generation, how to combine Key Derivation Functions with hash functions.

Keywords: key derivation, hash based key derivation, password based key derivation, symmetric key derivation

Procedia PDF Downloads 161
4325 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 436
4324 Gawa Gawa Lang ‘Yan: A Qualitative Study of the Perception of Mental Health between Generations X and Z in Metro Manila, Philippines

Authors: Pierre Angelo Alino, Rafael Alejandro Ang, Maria Carmela Espanol, Dominic Gerard Ferreol, Jendrietch Adrian Lopez

Abstract:

This study aims to explore the differences in perception between Generation X and Generation Z towards mental health and mental health illnesses. Through this study, the researchers seek to identify and explore the differences that exist in the generational perception and determine the possible factors that influence the difference in perception. In order to achieve this, we conducted two focus group discussions (FGD), one composed of Generation X and the other composed of Generation Z. Participants for both focus group discussions were recruited through purposive sampling and online recruitment methods. In these discussions, they were asked questions relating to their personal history, experiences with mental health, and related illnesses, as well as their opinions regarding the subject matter. Afterwhich, we analyzed our data through a thematic analysis. Our study’s findings indicate notable differences in the perception of mental health as well as mental illness between the members of Generations X and Z. Additionally, factors such as culture, personal history, and intimate relationships influence the perceptions of mental health between generation groups.

Keywords: generational difference, mental health, mental health illness, perception

Procedia PDF Downloads 210
4323 Second Generation Mozambican Migrant Youth’s Identity and Sense of Belonging: The Case of Hluvukani Village in Bushbuckridge, Mpumalanga

Authors: Betty Chiyangwa

Abstract:

This is a work in progress project focused on exploring the complexities surrounding the second generation Mozambican migrant youth’s experiences to construct their identity and develop a sense of belonging in post-apartheid, Bushbuckridge in South Africa. Established in 1884, Bushbuckridge is one of the earliest districts to accommodate Mozambicans who migrated to South Africa in the 1970s. Bushbuckridge as a destination for Mozambican migrants is crucial to their search for social freedom and space to “belong to.” The action of deliberately seeking freedom is known as an act of agency. Four major objectives govern the paper. The first objective observes how second-generation Mozambican migrant youth living in South Africa negotiate and construct their own identities. Secondly, it explores second-generation Mozambican migrant youth narratives regarding their sense of belonging in South Africa. Thirdly, the study intends to understand how social processes of identity and belonging influence second-generation Mozambican migrant youth experiences and future aspirations in South Africa. The last objective examines how Sen’s Capability approach is relevant in understanding second-generation Mozambican migrant youth identity and belonging in South Africa. This is a single case study informed by data from semi-structured interviews and narratives with youth between the ages of 18 and 34 who are born and raised in South Africa to at least one former Mozambican refugee parent living in Bushbuckridge. Drawing from Crenshaw’s Intersectionality and Sen’s Capability approaches, this study significantly contributes to the existing body of knowledge on South to South migration by demonstrating how both approaches can be operationalized towards understanding complex experiences and capabilities of the disadvantaged group simultaneously. The subject of second-generation migrants is often under-researched in South African migration; thus, their perspectives have been marginalized in Social Science research.

Keywords: second-generation, Mozambican, migrant, youth, bushbuckridge

Procedia PDF Downloads 220
4322 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York

Authors: Haowei Lu, Anaya Aaron

Abstract:

Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.

Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty

Procedia PDF Downloads 32
4321 Intelligent System for Diagnosis Heart Attack Using Neural Network

Authors: Oluwaponmile David Alao

Abstract:

Misdiagnosis has been the major problem in health sector. Heart attack has been one of diseases that have high level of misdiagnosis recorded on the part of physicians. In this paper, an intelligent system has been developed for diagnosis of heart attack in the health sector. Dataset of heart attack obtained from UCI repository has been used. This dataset is made up of thirteen attributes which are very vital in diagnosis of heart disease. The system is developed on the multilayer perceptron trained with back propagation neural network then simulated with feed forward neural network and a recognition rate of 87% was obtained which is a good result for diagnosis of heart attack in medical field.

Keywords: heart attack, artificial neural network, diagnosis, intelligent system

Procedia PDF Downloads 655
4320 Theoretical Performance of a Sustainable Clean Energy On-Site Generation Device to Convert Consumers into Producers and Its Possible Impact on Electrical National Grids

Authors: Eudes Vera

Abstract:

In this paper, a theoretical evaluation is carried out of the performance of a forthcoming fuel-less clean energy generation device, the Air Motor. The underlying physical principles that support this technology are succinctly described. Examples of the machine and theoretical values of input and output powers are also given. In addition, its main features like portability, on-site energy generation and delivery, miniaturization of generation plants, efficiency, and scaling down of the whole electric infrastructure are discussed. The main component of the Air Motor, the Thermal Air Turbine, generates useful power by converting in mechanical energy part of the thermal energy contained in a fan-produced airflow while leaving intact its kinetic energy. Due to this fact an air motor can contain a long succession of identical air turbines and the total power generated out of a single airflow can be very large, as well as its mechanical efficiency. It is found using the corresponding formulae that the mechanical efficiency of this device can be much greater than 100%, while its thermal efficiency is always less than 100%. On account of its multiple advantages, the Air Motor seems to be the perfect device to convert energy consumers into energy producers worldwide. If so, it would appear that current national electrical grids would no longer be necessary, because it does not seem practical or economical to bring the energy from far-away distances while it can be generated and consumed locally at the consumer’s premises using just the thermal energy contained in the ambient air.

Keywords: electrical grid, clean energy, renewable energy, in situ generation and delivery, generation efficiency

Procedia PDF Downloads 175
4319 Analysis of the Benefits of Motion Simulators in 5th Generation Fighter Pilots' Training

Authors: Ali Mithad Emre

Abstract:

In military aviation, the use of flight simulators has proliferated recently in order to train fifth generation fighter pilots. With these simulators, pilots can carry out real-time flights resulting in seeing their faults and can perform emergency drills prior to real flights. Since we cannot risk losing the aircraft and the pilot himself/herself in the flight training process, flight simulators are of great importance to adapt the fighter pilots competently to real flights aboard the fifth generation aircraft. The real flights are impossible to simulate thoroughly on the ground. To some extent, the fixed-based simulators may assist the pilot to steer aircraft technically and visually but flight simulators can’t trick the pilot’s vestibular, sensory, and perceptual systems without motion platforms. This paper discusses the benefits of motion simulators for fifth generation fighter pilots’ training in preference to the fixed-based counterparts by analyzing their pros and cons.

Keywords: military, pilot, sickness, simulator

Procedia PDF Downloads 468
4318 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — in the Case of Critical Dataset Size —

Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno

Abstract:

STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to realworld data.

Keywords: rule induction, decision table, missing data, noise

Procedia PDF Downloads 396
4317 Sentiment Classification Using Enhanced Contextual Valence Shifters

Authors: Vo Ngoc Phu, Phan Thi Tuoi

Abstract:

We have explored different methods of improving the accuracy of sentiment classification. The sentiment orientation of a document can be positive (+), negative (-), or neutral (0). We combine five dictionaries from [2, 3, 4, 5, 6] into the new one with 21137 entries. The new dictionary has many verbs, adverbs, phrases and idioms, that are not in five ones before. The paper shows that our proposed method based on the combination of Term-Counting method and Enhanced Contextual Valence Shifters method has improved the accuracy of sentiment classification. The combined method has accuracy 68.984% on the testing dataset, and 69.224% on the training dataset. All of these methods are implemented to classify the reviews based on our new dictionary and the Internet Movie data set.

Keywords: sentiment classification, sentiment orientation, valence shifters, contextual, valence shifters, term counting

Procedia PDF Downloads 504
4316 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status

Authors: Rosa Figueroa, Christopher Flores

Abstract:

Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).

Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm

Procedia PDF Downloads 297