Search results for: carbon dioxide partial pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7947

Search results for: carbon dioxide partial pressure

7797 Extraction of the Volatile Oils of Dictyopteris Membranacea by Focused Microwave Assisted Hydrodistillation and Supercritical Carbon Dioxide: Chemical Composition and Kinetic Data

Authors: Mohamed El Hattab

Abstract:

The Supercritical carbon dioxide (SFE) and the focused microwave-assisted hydrodistillation (FMAHD) were employed to isolate the volatile fraction of the brown alga Dictyopteris membranacea from the crude extract. The volatiles fractions obtained were analyzed by GC/MS. The major compounds in this case: dictyopterene A, 6-butylcyclohepta-1,4-diene, Undec-1-en-3-one, Undeca-1,4-dien-3-one, (3-oxoundec-4-enyl) sulphur, tetradecanoic acid, hexadecanoic acid, 3-hexyl-4,5-dithia-cycloheptanone and albicanol (this later is present only in the FMAHD oil) are identified by comparing their mass spectra with those reported on the commercial MS data base and also on our previously work. A kinetic study realized on both extraction processes and followed by an external standard quantification has allowed the study of the mass percent evolution of the major compounds in the two oils, an empirical mathematical modelling was used to describe their kinetic extraction.

Keywords: dictyopteris membranacea, extraction techniques, mathematical modeling, volatile oils

Procedia PDF Downloads 404
7796 Hydrogenation of CO2 to Methanol over Copper-Zinc Oxide-Based Catalyst

Authors: S. F. H. Tasfy, N. A. M. Zabidi, M. S. Shaharun

Abstract:

Carbon dioxide is highly thermochemical stable molecules where it is very difficult to activate the molecule and achieve higher catalytic conversion into alcohols or other hydrocarbon compounds. In this paper, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were systematically prepared via impregnation technique with different Cu: Zn ratio for hydrogenation of CO2 to methanol. The synthesized catalysts were characterized by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and surface area determination was also performed. All catalysts were tested with respect to the hydrogenation of CO2 to methanol in microactivity fixed-bed reactor at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the ratio between Cu: Zn, Where higher catalytic activity of 14 % and methanol selectivity of 92 % was obtained over Cu/ZnO-SBA-15 catalyst with Cu:Zn ratio of 7:3 wt. %. Comparing with the single catalyst, the synergetic between Cu and Zn provides additional active sites to adsorb more H2 and CO2 and accelerate the CO2 conversion, resulting in higher methanol production under mild reaction conditions.

Keywords: hydrogenation of carbon dioxide, methanol synthesis, Cu/ZnO-based catalyst, mesoporous silica (SBA-15), metal ratio

Procedia PDF Downloads 224
7795 Performance Investigation of Silica Gel Fluidized Bed

Authors: Sih-Li Chen, Chih-Hao Chen, Chi-Tong Chan

Abstract:

Poor ventilation and high carbon dioxide (CO2) concentrations lead to the formation of sick buildings. This problem cannot simply be resolved by introducing fresh air from outdoor environments because this creates extra loads on indoor air-conditioning systems. Desiccants are widely used in air conditioning systems in tropical and subtropical regions with high humidity to reduce the latent heat load from fresh air. Desiccants are usually used as a packed-bed type, which is low cost, to combine with air-conditioning systems. Nevertheless, the pressure drop of a packed bed is too high, and the heat of adsorption caused by the adsorption process lets the temperature of the outlet air increase, bringing about an extra heat load, so the high pressure drop and the increased temperature of the outlet air are energy consumption sources needing to be resolved. For this reason, the gas-solid fluidised beds that have high heat and mass transfer rates, uniform properties and low pressure drops are very suitable for use in air-conditioning systems.This study experimentally investigates the performance of silica gel fluidized bed device which applying to an air conditioning system. In the experiments, commercial silica gel particles were filled in the two beds and to form a fixed packed bed and a fluidized bed. The results indicated that compared to the fixed packed bed device, the total adsorption and desorption by amounts of fluidized bed for 40 minutes increased 20.6% and 19.9% respectively when the bed height was 10 cm and superficial velocity was set to 2 m/s. In addition, under this condition, the pressure drop and outlet air temperature raise were reduced by 36.0% and 30.0%. Given the above results, application of the silica gel fluidized bed to air conditioning systems has great energy-saving potential.

Keywords: fluidized bed, packed bed, silica gel, adsorption, desorption, pressure drop

Procedia PDF Downloads 505
7794 Capture of Co₂ From Natural Gas Using Modified Imidazolium Ionic Liquids

Authors: Alaa A. Ghanem, S. E. M. Desouky

Abstract:

Natural gas (NG) is considered one of the most essential global energy sources. NG fields are often far away from the market, and a long-distance transporting pipeline usually is required. Production of NG with high content of CO₂ leads to severe problems such as equipment corrosion along with the production line until refinery.in addition to a high level of toxicity and decreasing in calorific value of the NG. So it is recommended to remove or decrease the CO₂ percent to meet transport specifications. This can be reached using different removal techniques such as physical and chemical absorption, pressure swing adsorption, membrane separation, or low-temperature separation. Many solvents and chemicals are being used to capture carbon dioxide on a large scale; among them, Ionic liquids have great potential due to their tunable properties; low vapour pressure, low melting point, and sensible thermal stability. In this research, three modifiedimidazolium ionic liquids will be synthesized and characterized using different tools of analysis such as FT-IR, 1H NMR. Thermal stability and surface activity will be studied. The synthesized compounds will be evaluated as selective solvents for CO₂ removal from natural gas using PVT cell.

Keywords: natural gas, CO₂ capture, imidazolium ionic liquid, PVT cell

Procedia PDF Downloads 153
7793 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 345
7792 Ionic Liquids as Corrosion Inhibitors in CO2 Capture Systems

Authors: A. Acidi, A. Abbaci

Abstract:

We present the viability of using thermally stable, practically non-volatile ionic liquids as corrosion inhibitors in aqueous monoethanolamine system. Carbon steel 1020, which widely used as construction material in CO2 capture plants, has been taken as a test material. Corrosion inhibition capacities of typical room-temperature ionic liquids constituting imidazolium cation in concentration range ≤ 3% by weight in CO2 capture applications were investigated. Electrochemical corrosion experiments using the potentiodynamic polarization technique for measuring corrosion current were carried out. The results show that ionic liquids possess ability to suppressing severe operational problems of corrosion in typical CO2 capture plants.

Keywords: carbon dioxide, carbon steel, monoethanolamine, corrosion rate, ionic liquids, tafel fit

Procedia PDF Downloads 296
7791 Carbon Credits in Voluntary Carbon Markets: A Proposal for Iran

Authors: Saeed Mohammadirad

Abstract:

During the first commitment period of the Kyoto Protocol, many developed countries were forced to restrict carbon emissions. Although Iran was one of the countries of Kyoto protocol, due to some special conditions, it was not required to restrict its carbon emissions. Flexible mechanisms were developed to assist countries responsible for reducing their carbon emissions, and regulated carbon markets were introduced. Carbon credits which are provided by organizations in countries with no responsibility to restrict their carbon emissions are traded in voluntary markets. This study focuses on how to measure and report the carbon allowances and carbon credits from accounting view point under both regulated and voluntary markets.

Keywords: carbon credits, carbon markets, accounting, flexible mechanisms

Procedia PDF Downloads 372
7790 Quality Assessment of Some Selected Locally Produced and Marketed Soft Drinks

Authors: Gerardette Darkwah, Gloria Ankar Brewoo, John Barimah, Gilbert Owiah Sampson, Vincent Abe-Inge

Abstract:

Soft drinks which are widely consumed in Ghana have been reported in other countries to contain toxic heavy metals beyond the acceptable limits in other countries. Therefore, the objective of this study was to assess the quality characteristics of selected locally produced and marketed soft drinks. Three (3) different batches of 23 soft drinks were sampled from the Takoradi markets. The samples were prescreened for the presence of reducing sugars, phosphates, alcohol and carbon dioxide. The heavy metal contents and physicochemical properties were also determined with AOAC methods. The results indicated the presence of reducing sugars, carbon dioxide and the absence of alcohol in all the selected soft drink samples. The pH, total sugars, moisture, total soluble solids (TSS) and titratable acidity ranged from 2.42 – 3.44, 3.30 – 10.44%, 85.63 – 94.85%, 5.00 – 13.33°Brix, and 0.21 – 1.99% respectively. The concentration of heavy metals were also below detection limits in all samples. The quality of the selected were within specifications prescribed by regulatory bodies.

Keywords: heavy metal contamination, locally manufactured, quality, soft drinks

Procedia PDF Downloads 121
7789 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump

Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado

Abstract:

Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.

Keywords: water mass flow rate, R-744, heat pump, solar evaporator, water heater

Procedia PDF Downloads 150
7788 On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations

Authors: Teoman Ozer, Ozlem Orhan

Abstract:

This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions.

Keywords: λ-symmetry, μ-symmetry, classification, invariant solution

Procedia PDF Downloads 287
7787 The Cost of Solar-Centric Renewable Portfolio

Authors: Timothy J. Considine, Edward J. M. Manderson

Abstract:

This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices).

Keywords: electricity demand, renewable portfolio standard, solar, carbon dioxide

Procedia PDF Downloads 460
7786 Carbon Nanotubes and Novel Applications for Textile

Authors: Ezgi Ismar

Abstract:

Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products.

Keywords: carbon nanotubes, conductive textiles, nanotechnology, nanotextiles

Procedia PDF Downloads 351
7785 Energy Options and Environmental Impacts of Carbon Dioxide Utilization Pathways

Authors: Evar C. Umeozor, Experience I. Nduagu, Ian D. Gates

Abstract:

The energy requirements of carbon dioxide utilization (CDU) technologies/processes are diverse, so also are their environmental footprints. This paper explores the energy and environmental impacts of systems for CO₂ conversion to fuels, chemicals, and materials. Energy needs of the technologies and processes deployable in CO₂ conversion systems are met by one or combinations of hydrogen (chemical), electricity, heat, and light. Likewise, the environmental footprint of any CO₂ utilization pathway depends on the systems involved. So far, evaluation of CDU systems has been constrained to particular energy source/type or a subset of the overall system needed to make CDU possible. This introduces limitations to the general understanding of the energy and environmental implications of CDU, which has led to various pitfalls in past studies. A CDU system has an energy source, CO₂ supply, and conversion units. We apply a holistic approach to consider the impacts of all components in the process, including various sources of energy, CO₂ feedstock, and conversion technologies. The electricity sources include nuclear power, renewables (wind and solar PV), gas turbine, and coal. Heat is supplied from either electricity or natural gas, and hydrogen is produced from either steam methane reforming or electrolysis. The CO₂ capture unit uses either direct air capture or post-combustion capture via amine scrubbing, where applicable, integrated configurations of the CDU system are explored. We demonstrate how the overall energy and environmental impacts of each utilization pathway are obtained by aggregating the values for all components involved. Proper accounting of the energy and emission intensities of CDU must incorporate total balances for the utilization process and differences in timescales between alternative conversion pathways. Our results highlight opportunities for the use of clean energy sources, direct air capture, and a number of promising CO₂ conversion pathways for producing methanol, ethanol, synfuel, urea, and polymer materials.

Keywords: carbon dioxide utilization, processes, energy options, environmental impacts

Procedia PDF Downloads 117
7784 Modification of Carbon-Based Gas Sensors for Boosting Selectivity

Authors: D. Zhao, Y. Wang, G. Chen

Abstract:

Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced.

Keywords: gas sensors, carbon, CNT, MEMS/NEMS, VOC, VIC, high selectivity, modification of sensing materials

Procedia PDF Downloads 96
7783 The Extraction of Sage Essential Oil and the Improvement of Sleeping Quality for Female Menopause by Sage Essential Oil

Authors: Bei Shan Lin, Tzu Yu Huang, Ya Ping Chen, Chun Mel Lu

Abstract:

This research is divided into two parts. The first part is to adopt the method of supercritical carbon dioxide fluid extraction to extract sage essential oil (Salvia officinalis) and to find out the differences when the procedure is under different pressure conditions. Meanwhile, this research is going to probe into the composition of the extracted sage essential oil. The second part will talk about the effect of the aromatherapy with extracted sage essential oil to improve the sleeping quality for women in menopause. The extracted sage substance is tested by inhibiting DPPH radical to identify its antioxidant capacity, and the extracted component was analyzed by gas chromatography-mass spectrometer. Under two different pressure conditions, the extracted experiment gets different results. By 3000 psi, the extracted substance is IC50 180.94mg/L, which is higher than IC50 657.43mg/L by 1800 psi. By 3000 psi, the extracted yield is 1.05%, which is higher than 0.68% by 1800 psi. Through the experimental data, the researcher also can conclude that the extracted substance with 3000psi contains more materials than the one with 1800 psi. The main overlapped materials are the compounds of cyclic ether, flavonoid, and terpenes. Cyclic ether and flavonoids have the function of soothing and calming. They can be applied to relieve cramps and to eliminate menopause disorders. The second part of the research is to apply extracted sage essential oil to aromatherapy for women who are in menopause and to discuss the effect of the improvement for the sleeping quality. This research adopts the approaching of Swedish upper back massage, evaluates the sleeping quality with the Pittsburgh Sleep Quality Index, and detects the changes with heart rate variability apparatus. The experimental group intervenes with extracted sage essential oil to the aromatherapy. The average heart beats detected by the apparatus has a better result in SDNN, low frequency, and high frequency. The performance is better than the control group. According to the statistical analysis of the Pittsburgh Sleep Quality Index, this research has reached the effect of sleep quality improvement. It proves that extracted sage essential oil has a significant effect on increasing the activities of parasympathetic nerves. It is able to improve the sleeping quality for women in menopause

Keywords: supercritical carbon dioxide fluid extraction, Salvia officinalis, aromatherapy, Swedish massage, Pittsburgh sleep quality index, heart rate variability, parasympathetic nerves

Procedia PDF Downloads 97
7782 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique

Authors: Yogish Huchaiah, Chandrashekara Krishnappa

Abstract:

This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.

Keywords: COME, IP, MFCT, optimization, PI, PN, PV

Procedia PDF Downloads 189
7781 Renewable Natural Gas Production from Biomass and Applications in Industry

Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis

Abstract:

For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.

Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel

Procedia PDF Downloads 79
7780 Findings on Modelling Carbon Dioxide Concentration Scenarios in the Nairobi Metropolitan Region before and during COVID-19

Authors: John Okanda Okwaro

Abstract:

Carbon (IV) oxide (CO₂) is emitted majorly from fossil fuel combustion and industrial production. The sources of interest of carbon (IV) oxide in the study area are mining activities, transport systems, and industrial processes. This study is aimed at building models that will help in monitoring the emissions within the study area. Three scenarios were discussed, namely: pessimistic scenario, business-as-usual scenario, and optimistic scenario. The result showed that there was a reduction in carbon dioxide concentration by approximately 50.5 ppm between March 2020 and January 2021 inclusive. This is majorly due to reduced human activities that led to decreased consumption of energy. Also, the CO₂ concentration trend follows the business-as-usual scenario (BAU) path. From the models, the pessimistic, business-as-usual, and optimistic scenarios give CO₂ concentration of about 545.9 ppm, 408.1 ppm, and 360.1 ppm, respectively, on December 31st, 2021. This research helps paint the picture to the policymakers of the relationship between energy sources and CO₂ emissions. Since the reduction in CO₂ emission was due to decreased use of fossil fuel as there was a decrease in economic activities, then if Kenya relies more on green energy than fossil fuel in the post-COVID-19 period, there will be more CO₂ emission reduction. That is, the CO₂ concentration trend is likely to follow the optimistic scenario path, hence a reduction in CO₂ concentration of about 48 ppm by the end of the year 2021. This research recommends investment in solar energy by energy-intensive companies, mine machinery and equipment maintenance, investment in electric vehicles, and doubling tree planting efforts to achieve the 10% cover.

Keywords: forecasting, greenhouse gas, green energy, hierarchical data format

Procedia PDF Downloads 138
7779 Solar-Plasma Reactors for a Zero-Emission Economy

Authors: Dassou Nagassou

Abstract:

Recent increase in frequency and severity of climatic impacts throughout the world has put a particular emphasis on the urgency to address the anthropogenic greenhouse gas emissions. The latter, mainly composed of carbon dioxide are responsible for the global warming of planet earth. Despite efforts to transition towards a zero-emission economy, manufacturing industries, electricity generation power plants, and transportation sectors continue to encounter challenges which hinder their progress towards a full decarbonization. The growing energy demand from both developed and under-developed economies exacerbates the situation and as a result, more carbon dioxide is discharged into the atmosphere. This situation imposes a lot of constraints on industries which are involved i.e., manufacturing industries, transportation, and electricity generation which must navigate the stringent environmental regulations in order to remain profitable. Existing solutions such as energy efficiencies, green materials (life cycle analysis), and many more have fallen short to address the problem due to their inadaptation to existing infrastructures, low efficiencies, and prohibitive costs. The proposed technology exploits the synergistic interaction between solar radiation and plasma to boost a direct decomposition of the molecules of carbon dioxide while producing alternative fuels which can be used to sustain on-site high-temperature processes via 100% solar energy harvesting in the form of photons and electricity. The advantages of this technology and its ability to be easily integrated into existing systems make it appealing for the industry which can now afford to fast track on the path towards full decarbonization, thanks to the solar plasma reactor. Despite the promising experimental results which proved the viability of this concept, solar-plasma reactors require further investigations to understand the synergistic interactions between plasma and solar radiation for a potential technology scale-up.

Keywords: solar, non-equilibrium, plasma, reactor, greenhouse-gases, solar-fuels

Procedia PDF Downloads 38
7778 Oil Recovery Study by Low Temperature Carbon Dioxide Injection in High-Pressure High-Temperature Micromodels

Authors: Zakaria Hamdi, Mariyamni Awang

Abstract:

For the past decades, CO2 flooding has been used as a successful method for enhanced oil recovery (EOR). However, high mobility ratio and fingering effect are considered as important drawbacka of this process. Low temperature injection of CO2 into high temperature reservoirs may improve the oil recovery, but simulating multiphase flow in the non-isothermal medium is difficult, and commercial simulators are very unstable in these conditions. Furthermore, to best of authors’ knowledge, no experimental work was done to verify the results of the simulations and to understand the pore-scale process. In this paper, we present results of investigations on injection of low temperature CO2 into a high-pressure high-temperature micromodel with injection temperature range from 34 to 75 °F. Effect of temperature and saturation changes of different fluids are measured in each case. The results prove the proposed method. The injection of CO2 at low temperatures increased the oil recovery in high temperature reservoirs significantly. Also, CO2 rich phases available in the high temperature system can affect the oil recovery through the better sweep of the oil which is initially caused by penetration of LCO2 inside the system. Furthermore, no unfavorable effect was detected using this method. Low temperature CO2 is proposed to be used as early as secondary recovery.

Keywords: enhanced oil recovery, CO₂ flooding, micromodel studies, miscible flooding

Procedia PDF Downloads 321
7777 Investigation of Light Transmission Characteristics and CO2 Capture Potential of Microalgae Panel Bioreactors for Building Façade Applications

Authors: E. S. Umdu, Ilker Kahraman, Nurdan Yildirim, Levent Bilir

Abstract:

Algae-culture offers new applications in sustainable architecture with its continuous productive cycle, and a potential for high carbon dioxide capture. Microalgae itself has multiple functions such as carbon dioxide fixation, biomass production, oxygen generation and waste water treatment. Incorporating microalgae cultivation processes and systems to building design to utilize this potential is promising. Microalgae cultivation systems, especially closed photo bioreactors can be implemented as components in buildings. And these systems be accommodated in the façade of a building, or in other urban infrastructure in the future. Application microalgae bio-reactors of on building’s façade has the added benefit of acting as an effective insulation system, keeping out the heat of the summer and the chill of the winter. Furthermore, microalgae can give a dynamic appearance with a liquid façade that also works as an adaptive sunshade. Recently, potential of microalgae to use as a building component to reduce net energy demand in buildings becomes a popular topic and innovative design proposals and a handful of pilot applications appeared. Yet there is only a handful of examples in application and even less information on how these systems affect building energy behavior. Further studies on microalgae mostly focused on single application approach targeting either carbon dioxide utilization through biomass production or biofuel production. The main objective of this study is to investigate effects of design parameters of microalgae panel bio-reactors on light transmission characteristics and CO2 capture potential during growth of Nannochloropsis occulata sp. A maximum reduction of 18 ppm in CO2 levels of input air during the experiments with a % light transmission of 14.10, was achieved in 6 day growth cycles. Heat transfer behavior during these cycles was also inspected for possible façade applications.

Keywords: building façade, CO2 capture, light transmittance, microalgae

Procedia PDF Downloads 161
7776 Synthesis of Liposomal Vesicles by a Novel Supercritical Fluid Process

Authors: Wen-Chyan Tsai, Syed S. H. Rizvi

Abstract:

Organic solvent residues are always associated with liposomes produced by the traditional techniques like the thin film hydration and reverse phase evaporation methods, which limit the applications of these vesicles in the pharmaceutical, food and cosmetic industries. Our objective was to develop a novel and benign process of liposomal microencapsulation by using supercritical carbon dioxide (SC-CO2) as the sole phospholipid-dissolving medium and a green substitute for organic solvents. This process consists of supercritical fluid extraction followed by rapid expansion via a nozzle and automatic cargo suction. Lecithin and cholesterol mixed in 10:1 mass ratio were dissolved in SC-CO2 at 20 ± 0.5 MPa and 60 oC. After at least two hours of equilibrium, the lecithin/cholesterol-laden SC-CO2 was passed through a 1000-micron nozzle and immediately mixed with the cargo solution to form liposomes. Liposomal micro-encapsulation was conducted at three pressures (8.27, 12.41, 16.55 MPa), three temperatures (75, 83 and 90 oC) and two flow rates (0.25 ml/sec and 0.5 ml/sec). Liposome size, zeta potential and encapsulation efficiency were characterized as functions of the operating parameters. The average liposomal size varied from 400-500 nm to 1000-1200 nm when the pressure was increased from 8.27 to 16.55 MPa. At 12.41 MPa, 90 oC and 0.25 ml per second of 0.2 M glucose cargo loading rate, the highest encapsulation efficiency of 31.65 % was achieved. Under a confocal laser scanning microscope, large unilamellar vesicles and multivesicular vesicles were observed to make up a majority of the liposomal emulsion. This new approach is a rapid and continuous process for bulk production of liposomes using a green solvent. Based on the results to date, it is feasible to apply this technique to encapsulate hydrophilic compounds inside the aqueous core as well as lipophilic compounds in the phospholipid bilayers of the liposomes for controlled release, solubility improvement and targeted therapy of bioactive compounds.

Keywords: liposome, micro encapsulation, supercritical carbon dioxide, non-toxic process

Procedia PDF Downloads 410
7775 Impact of Nitrogenous Wastewater and Seawater Acidification on Algae

Authors: Pei Luen Jiang

Abstract:

Oysters (Ostreidae) and hard clams (Meretrix lusoria) are important shallow sea-cultured shellfish in Taiwan, and are mainly farmed in Changhua, Yunlin, Chiayi and Tainan. As these shellfish are fed primarily on natural plankton, the artificial feed is not required, leading to high economic value in aquatic farming. However, in recent years, though mariculture production areas have expanded steadily, large-scale deaths of farmed shellfish have also become increasingly common due to climate change and human factors. Through studies over the past few years, our research team has determined the impact of nitrogen deprivation on growth and morphological variations in algae and sea anemones (Actiniaria) and identified the target genes affected by adverse environmental factors. In mariculture, high-density farming is commonly adopted, which results in elevated concentrations of nitrogenous waste in the water. In addition, excessive carbon dioxide from the atmosphere also dissolves in seawater, causing a steady decrease in the pH of seawater, leading to acidification. This study to observe the impact of high concentrations of nitrogen sources and carbon dioxide on algae.

Keywords: algae, shellfish, nitrogen, acidification

Procedia PDF Downloads 151
7774 Life Cycle Carbon Dioxide Emissions from the Construction Phase of Highway Sector in China

Authors: Yuanyuan Liu, Yuanqing Wang, Di Li

Abstract:

Carbon dioxide (CO2) emissions mitigation from road construction activities is one of the potential pathways to deal with climate change due to its higher use of materials, machinery energy consumption, and high quantity of vehicle and equipment fuels for transportation and on-site construction activities. Aiming to assess the environmental impact of the road infrastructure construction activities and to identify hotspots of emissions sources, this study developed a life-cycle CO2 emissions assessment framework covering three stages of material production, to-site and on-site transportation under the guidance of the principle of LCA ISO14040. Then streamlined inventory analysis on sub-processes of each stage was conducted based on the budget files from cases of highway projects in China. The calculation results were normalized into functional unit represented as ton per km per lane. Then a comparison between the amount of emissions from each stage, and sub-process was made to identify the major contributor in the whole highway lifecycle. In addition, the calculating results were used to be compared with results in other countries for understanding the level of CO2 emissions associated with Chinese road infrastructure in the world. The results showed that materials production stage produces the most of the CO2 emissions (for more than 80%), and the production of cement and steel accounts for large quantities of carbon emissions. Life cycle CO2 emissions of fuel and electric energy associated with to-site and on-site transportation vehicle and equipment are a minor component of total life cycle CO2 emissions from highway project construction activities. Bridges and tunnels are dominant large carbon contributor compared to the road segments. The life cycle CO2 emissions of road segment in highway project in China are slightly higher than the estimation results of highways in European countries and USA, about 1500 ton per km per lane. In particularly, the life cycle CO2 emissions of road pavement in majority cities all over the world are about 500 ton per km per lane. However, there is obvious difference between the cities when the estimation on life cycle CO2 emissions of highway projects included bridge and tunnel. The findings of the study could offer decision makers a more comprehensive reference to understand the contribution of road infrastructure to climate change, especially understand the contribution from road infrastructure construction activities in China. In addition, the identified hotspots of emissions sources provide the insights of how to reduce road carbon emissions for development of sustainable transportation.

Keywords: carbon dioxide emissions, construction activities, highway, life cycle assessment

Procedia PDF Downloads 239
7773 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding

Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng

Abstract:

Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.

Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding

Procedia PDF Downloads 280
7772 Gas Separation by Water-Swollen Membrane

Authors: Lenka Morávková, Zuzana Sedláková, Jiří Vejražka, Věra Jandová, Pavel Izák

Abstract:

The need to minimize the costs of biogas upgrading leads to a continuous search for new and more effective membrane materials. The improvement of biogas combustion efficiency is connected with polar gases removal from a feed stream. One of the possibilities is the use of water–swollen polyamide layer of thin film composite reverse osmosis membrane for simultaneous carbon dioxide and hydrogen sulphide removal. Transport properties and basic characteristics of a thin film composite membrane were compared in the term of appropriate water-swollen membrane choice for biogas upgrading. SEM analysis showed that the surface of the best performing composites changed significantly upon swelling by water. The surface changes were found to be a proof that the selective skin polyamide layer was swollen well. Further, the presence of a sufficient number of associative centers, namely amido groups, inside the upper layer of the hydrophilic thin composite membrane can play an important role in the polar gas separation from a non-polar gas. The next key factor is a high porosity of the membrane support.

Keywords: biogas upgrading, carbon dioxide separation, hydrogen sulphide separation, water-swollen membrane

Procedia PDF Downloads 321
7771 Benefits of High Power Impulse Magnetron Sputtering (HiPIMS) Method for Preparation of Transparent Indium Gallium Zinc Oxide (IGZO) Thin Films

Authors: Pavel Baroch, Jiri Rezek, Michal Prochazka, Tomas Kozak, Jiri Houska

Abstract:

Transparent semiconducting amorphous IGZO films have attracted great attention due to their excellent electrical properties and possible utilization in thin film transistors or in photovoltaic applications as they show 20-50 times higher mobility than that of amorphous silicon. It is also known that the properties of IGZO films are highly sensitive to process parameters, especially to oxygen partial pressure. In this study we have focused on the comparison of properties of transparent semiconducting amorphous indium gallium zinc oxide (IGZO) thin films prepared by conventional sputtering methods and those prepared by high power impulse magnetron sputtering (HiPIMS) method. Furthermore we tried to optimize electrical and optical properties of the IGZO thin films and to investigate possibility to apply these coatings on thermally sensitive flexible substrates. We employed dc, pulsed dc, mid frequency sine wave and HiPIMS power supplies for magnetron deposition. Magnetrons were equipped with sintered ceramic InGaZnO targets. As oxygen vacancies are considered to be the main source of the carriers in IGZO films, it is expected that with the increase of oxygen partial pressure number of oxygen vacancies decreases which results in the increase of film resistivity. Therefore in all experiments we focused on the effect of oxygen partial pressure, discharge power and pulsed power mode on the electrical, optical and mechanical properties of IGZO thin films and also on the thermal load deposited to the substrate. As expected, we have observed a very fast transition between low- and high-resistivity films depending on oxygen partial pressure when deposition using conventional sputtering methods/power supplies have been utilized. Therefore we established and utilized HiPIMS sputtering system for enlargement of operation window for better control of IGZO thin film properties. It is shown that with this system we are able to effectively eliminate steep transition between low and high resistivity films exhibited by DC mode of sputtering and the electrical resistivity can be effectively controlled in the wide resistivity range of 10-² to 10⁵ Ω.cm. The highest mobility of charge carriers (up to 50 cm2/V.s) was obtained at very low oxygen partial pressures. Utilization of HiPIMS also led to significant decrease in thermal load deposited to the substrate which is beneficial for deposition on the thermally sensitive and flexible polymer substrates. Deposition rate as a function of discharge power and oxygen partial pressure was also systematically investigated and the results from optical, electrical and structure analysis will be discussed in detail. Most important result which we have obtained demonstrates almost linear control of IGZO thin films resistivity with increasing of oxygen partial pressure utilizing HiPIMS mode of sputtering and highly transparent films with low resistivity were prepared already at low pO2. It was also found that utilization of HiPIMS technique resulted in significant improvement of surface smoothness in reactive mode of sputtering (with increasing of oxygen partial pressure).

Keywords: charge carrier mobility, HiPIMS, IGZO, resistivity

Procedia PDF Downloads 272
7770 Waterless Fracking: An Alternative to Conventional Fracking

Authors: Shubham Damke, Md Imtiaz, Sanchita Dei

Abstract:

To stimulate the well and to enhance the production from the shaly formations, fracturing is essential. Presently the chiefly employed technology is Hydraulic Fracturing. However Hydraulic Fracturing accompanies itself with problems like disposing large volumes of fracturing wastewater, removal of water from the pores, formation damage due to injection of large amount of chemicals into underground formations and many more. Therefore embarking on the path of innovation new techniques have been developed which uses different gases such as Nitrogen, Carbon dioxide, Frac Oil, LPG, etc. are used as a base fluid for fracturing formation. However LPG proves to be the most favorable of them which eliminates the use of water and chemicals. When using it as a fracturing fluid, within the surface equipment, it is stored, gelled, and proppant blended at a constant pressure. It is then pressurized with high pressure pumps to the required surface injection pressure With lowering the total cost and increasing the productivity, LPG is also very noteworthy for fracturing shale, where if the hydraulic fracturing is done the water ‘swells’ the formation and creates surface tension, both of which inhibit the flow of oil and gas. Also fracturing with LPG increases the effective fracture length and since propane, butane and pentane is used which are already present in the natural gas therefore there is no problem of back flow because these gases get mixed with the natural gas. LPG Fracturing technology can be a promising substitute of the Hydraulic Fracturing, which could substantially reduce the capital cost of fracturing shale and will also restrict the problems with the disposal of water and on the same hand increasing the fracture length and the productivity from the shale.

Keywords: Fracking, Shale, Surface Tension, Viscosity

Procedia PDF Downloads 404
7769 Morphological Characterization and Gas Permeation of Commercially Available Alumina Membrane

Authors: Ifeyinwa Orakwe, Ngozi Nwogu, Edward Gobina

Abstract:

This work presents experimental results relating to the structural characterization of a commercially available alumina membrane. A γ-alumina mesoporous tubular membrane has been used. Nitrogen adsorption-desorption, scanning electron microscopy and gas permeability test has been carried out on the alumina membrane to characterize its structural features. Scanning electron microscopy (SEM) was used to determine the pore size distribution of the membrane. Pore size, specific surface area and pore size distribution were also determined with the use of the Nitrogen adsorption-desorption instrument. Gas permeation tests were carried out on the membrane using a variety of single and mixed gases. The permeabilities at different pressure between 0.05-1 bar and temperature range of 25-200oC were used for the single and mixed gases: nitrogen (N2), helium (He), oxygen (O2), carbon dioxide (CO2), 14%CO₂/N₂, 60%CO₂/N₂, 30%CO₂/CH4 and 21%O₂/N₂. Plots of flow rate verses pressure were obtained. Results got showed the effect of temperature on the permeation rate of the various gases. At 0.5 bar for example, the flow rate for N2 was relatively constant before decreasing with an increase in temperature, while for O2, it continuously decreased with an increase in temperature. In the case of 30%CO₂/CH4 and 14%CO₂/N₂, the flow rate showed an increase then a decrease with increase in temperature. The effect of temperature on the membrane performance of the various gases is presented and the influence of the trans membrane pressure drop will be discussed in this paper.

Keywords: alumina membrane, Nitrogen adsorption-desorption, scanning electron microscopy, gas permeation, temperature

Procedia PDF Downloads 295
7768 Photo-Enhanced Catalytic Dry Reforming of Methane on Ni@SiO2 with High Resistance to Carbon

Authors: Jinrui Zhang, Tianlong Yang, Ying Pan

Abstract:

Methane and carbon dioxide are major greenhouse gases contributor. CO₂ dry reforming of methane (DRM) for syngas production is a promising approach to reducing global CO₂ emission and extensive utilization of natural gas. However, the reported catalysts endured rapid deactivation due to severe carbon deposition at high temperature. Here, CO₂ reduction by CH4 on hexagonal nano-nickel flakes packed by porous SiO₂ (Ni@SiO₂) catalysts driven by thermal and solar light are tested. High resistance to carbon deposition and higher reactive activity are demonstrated under focused solar light at moderate temperature (400-500 ℃). Furthermore, the photocatalytic DRM under different wavelength is investigated, and even IR irradiation can enhance the catalytic activity. The mechanism of light-enhanced reaction reactivity and equilibrium is investigated by Infrared and Raman spectroscopy, and the unique reaction pathway with light is depicted. The photo-enhanced DRM provides a promising method of renewable solar energy conversion and CO₂ emission reduction due to the excellent activity and durability.

Keywords: CO₂ emission reduction, methane, photocatalytic DRM, resistance to carbon deposition, syngas

Procedia PDF Downloads 79