Search results for: accidents predictions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1146

Search results for: accidents predictions

996 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection

Authors: K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.

Keywords: wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model (HMM).

Procedia PDF Downloads 183
995 Evaluation Methods for Question Decomposition Formalism

Authors: Aviv Yaniv, Ron Ben Arosh, Nadav Gasner, Michael Konviser, Arbel Yaniv

Abstract:

This paper introduces two methods for the evaluation of Question Decomposition Meaning Representation (QDMR) as predicted by sequence-to-sequence model and COPYNET parser for natural language questions processing, motivated by the fact that previous evaluation metrics used for this task do not take into account some characteristics of the representation, such as partial ordering structure. To this end, several heuristics to extract such partial dependencies are formulated, followed by the hereby proposed evaluation methods denoted as Proportional Graph Matcher (PGM) and Conversion to Normal String Representation (Nor-Str), designed to better capture the accuracy level of QDMR predictions. Experiments are conducted to demonstrate the efficacy of the proposed evaluation methods and show the added value suggested by one of them- the Nor-Str, for better distinguishing between high and low-quality QDMR when predicted by models such as COPYNET. This work represents an important step forward in the development of better evaluation methods for QDMR predictions, which will be critical for improving the accuracy and reliability of natural language question-answering systems.

Keywords: NLP, question answering, question decomposition meaning representation, QDMR evaluation metrics

Procedia PDF Downloads 78
994 Accidents Involving Pedestrians Walking along with/against Traffic: An Evaluation of Crash Characteristics and Injuries

Authors: Chih-Wei Pai, Rong-Chang Jou

Abstract:

Using A1 A2 police-reported accident data for years 2003–2010 in Taiwan, the paper examines anatomic injuries and crash characteristics specific to pedestrians in “facing traffic” and “back to traffic” crashes. There were 2768 and 7558 accidents involving pedestrians walking along with/against traffic respectively. Injuries sustained by pedestrians and crash characteristics in these two crash types were compared with those in other crash types (nearside crash, nearside dart-out crash, offside crash, offside dart-out crash). Main findings include that “back to traffic” crashes resulted in more severe injuries, and pedestrians in “back to traffic” crashes had increased head, neck, and spine injuries than those in other crash types; and there was an elevated risk of head injuries in unlit darkness and NBU (non-built-up) roadways. Several crash features (e.g. unlit darkness, overtaking maneuvers, phone use by pedestrians and drivers, intoxicated drivers) appear to be over-involved in “back to traffic” crashes. The implications of the research findings regarding pedestrian/driver education, enforcement, and remedial engineering design are discussed.

Keywords: pedestrian accident, crash characteristics, injury, facing traffic, back to traffic

Procedia PDF Downloads 377
993 Prioritizing Roads Safety Based on the Quasi-Induced Exposure Method and Utilization of the Analytical Hierarchy Process

Authors: Hamed Nafar, Sajad Rezaei, Hamid Behbahani

Abstract:

Safety analysis of the roads through the accident rates which is one of the widely used tools has been resulted from the direct exposure method which is based on the ratio of the vehicle-kilometers traveled and vehicle-travel time. However, due to some fundamental flaws in its theories and difficulties in gaining access to the data required such as traffic volume, distance and duration of the trip, and various problems in determining the exposure in a specific time, place, and individual categories, there is a need for an algorithm for prioritizing the road safety so that with a new exposure method, the problems of the previous approaches would be resolved. In this way, an efficient application may lead to have more realistic comparisons and the new method would be applicable to a wider range of time, place, and individual categories. Therefore, an algorithm was introduced to prioritize the safety of roads using the quasi-induced exposure method and utilizing the analytical hierarchy process. For this research, 11 provinces of Iran were chosen as case study locations. A rural accidents database was created for these provinces, the validity of quasi-induced exposure method for Iran’s accidents database was explored, and the involvement ratio for different characteristics of the drivers and the vehicles was measured. Results showed that the quasi-induced exposure method was valid in determining the real exposure in the provinces under study. Results also showed a significant difference in the prioritization based on the new and traditional approaches. This difference mostly would stem from the perspective of the quasi-induced exposure method in determining the exposure, opinion of experts, and the quantity of accidents data. Overall, the results for this research showed that prioritization based on the new approach is more comprehensive and reliable compared to the prioritization in the traditional approach which is dependent on various parameters including the driver-vehicle characteristics.

Keywords: road safety, prioritizing, Quasi-induced exposure, Analytical Hierarchy Process

Procedia PDF Downloads 337
992 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 57
991 The Role of Arousal in Time Perception: Implications for Emotional Driving

Authors: Ewa Siedlecka

Abstract:

Emotional stress is an important risk factor in the rate and severity of traffic accidents. Moreover, incorrect time perception is implicated in the increase of traffic violations, such as running red lights or collisions. While the role of emotional arousal on perceived time is well-established, the role of physiological arousal in time perception remains unexamined. Specific emotions can be, however, associated with distinct physiological responses. In the current research, two studies examined the role of physiological arousal in time perception. In the first experiment, 41 participants engaged in a cold pressor task and had their time perception measured throughout the experiment. In the second study, 138 participants engaged in either isometric or deep breathing exercises. These activities were designed to simulate the sympathetic and parasympathetic nervous systems, respectively. Participants completed a bisection task to measure time perception in both studies, as well as a physiological response via an Electrocardiography (ECG). Results found that activation of the parasympathetic nervous system is associated with greater time perception. These findings are discussed with reference to models of time perception, as well as implications for emotional driving and misperceptions of speed. It is important to consider the role of physiology in the misperception of time, as these factors can lead to increases in driving accidents.

Keywords: emotions, nervous system, physiology, time perception

Procedia PDF Downloads 323
990 Assessment of Human Factors Analysis and Classification System in Construction Accident Prevention

Authors: Zakari Mustapha, Clinton Aigbavboa, Wellington Didi Thwala

Abstract:

Majority of the incidents and accidents in complex high-risk systems that exist in the construction industry and other sectors have been attributed to unsafe acts of workers. The purpose of this paper was to asses Human Factors Analysis and Classification System (HFACS) in construction accident prevention. The study was conducted through the use of secondary data from journals, books and internet to achieve the objective of the study. The review of literature looked into details of different views from different scholars about HFACS framework in accidents investigations. It further highlighted on various sections or disciplines of accident occurrences in human performance within the construction. The findings from literature review showed that unsafe acts of a worker and unsafe working conditions are the two major causes of accident in the construction industry.Most significant factor in the cause of site accident in the construction industry is unsafe acts of a worker. The findings also show how the application of HFACS framework in the investigation of accident will lead to the identification of common trends. Further findings show that provision for the prevention of accident will be made based on past accident records to identify and prioritize where intervention is needed within the construction industry.

Keywords: accident, construction, HFACS, unsafe acts

Procedia PDF Downloads 321
989 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation

Procedia PDF Downloads 291
988 The Development of Traffic Devices Using Natural Rubber in Thailand

Authors: Weeradej Cheewapattananuwong, Keeree Srivichian, Godchamon Somchai, Wasin Phusanong, Nontawat Yoddamnern

Abstract:

Natural rubber used for traffic devices in Thailand has been developed and researched for several years. When compared with Dry Rubber Content (DRC), the quality of Rib Smoked Sheet (RSS) is better. However, the cost of admixtures, especially CaCO₃ and sulphur, is higher than the cost of RSS itself. In this research, Flexible Guideposts and Rubber Fender Barriers (RFB) are taken into consideration. In case of flexible guideposts, the materials used are both RSS and DRC60%, but for RFB, only RSS is used due to the controlled performance tests. The objective of flexible guideposts and RFB is to decrease a number of accidents, fatal rates, and serious injuries. Functions of both devices are to save road users and vehicles as well as to absorb impact forces from vehicles so as to decrease of serious road accidents. This leads to the mitigation methods to remedy the injury of motorists, form severity to moderate one. The solution is to find the best practice of traffic devices using natural rubber under the engineering concepts. In addition, the performances of materials, such as tensile strength and durability, are calculated for the modulus of elasticity and properties. In the laboratory, the simulation of crashes, finite element of materials, LRFD, and concrete technology methods are taken into account. After calculation, the trials' compositions of materials are mixed and tested in the laboratory. The tensile test, compressive test, and weathering or durability test are followed and based on ASTM. Furthermore, the Cycle-Repetition Test of Flexible Guideposts will be taken into consideration. The final decision is to fabricate all materials and have a real test section in the field. In RFB test, there will be 13 crash tests, 7 Pickup Truck tests, and 6 Motorcycle Tests. The test of vehicular crashes happens for the first time in Thailand, applying the trial and error methods; for example, the road crash test under the standard of NCHRP-TL3 (100 kph) is changed to the MASH 2016. This is owing to the fact that MASH 2016 is better than NCHRP in terms of speed, types, and weight of vehicles and the angle of crash. In the processes of MASH, Test Level 6 (TL-6), which is composed of 2,270 kg Pickup Truck, 100 kph, and 25 degree of crash-angle is selected. The final test for real crash will be done, and the whole system will be evaluated again in Korea. The researchers hope that the number of road accidents will decrease, and Thailand will be no more in the top tenth ranking of road accidents in the world.

Keywords: LRFD, load and resistance factor design, ASTM, american society for testing and materials, NCHRP, national cooperation highway research program, MASH, manual for assessing safety hardware

Procedia PDF Downloads 128
987 Improve Safety Performance of Un-Signalized Intersections in Oman

Authors: Siham G. Farag

Abstract:

The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T- intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.

Keywords: accidents prediction models (APMs), generalized linear model (GLM), T-intersections, Oman

Procedia PDF Downloads 273
986 Approaches to Estimating the Radiation and Socio-Economic Consequences of the Fukushima Daiichi Nuclear Power Plant Accident Using the Data Available in the Public Domain

Authors: Dmitry Aron

Abstract:

Major radiation accidents carry not only the potential risks of negative consequences for public health due to exposure but also because of large-scale emergency measures were taken by authorities to protect the population, which can lead to unreasonable social and economic damage. It is technically difficult, as a rule, to assess the possible costs and damages from decisions on evacuation or resettlement of residents in the shortest possible time, since it requires specially prepared information systems containing relevant information on demographic, economic parameters and incoming data on radiation conditions. Foreign observers also face the difficulties in assessing the consequences of an accident in a foreign territory, since they usually do not have official and detailed statistical data on the territory of foreign state beforehand. Also, they can suppose the application of unofficial data from open Internet sources is an unreliable and overly labor-consuming procedure. This paper describes an approach to prompt creation of relational database that contains detailed actual data on economics, demographics and radiation situation at the Fukushima Prefecture during the Fukushima Daiichi NPP accident, received by the author from open Internet sources. This database was developed and used to assess the number of evacuated population, radiation doses, expected financial losses and other parameters of the affected areas. The costs for the areas with temporarily evacuated and long-term resettled population were investigated, and the radiological and economic effectiveness of the measures taken to protect the population was estimated. Some of the results are presented in the article. The study showed that such a tool for analyzing the consequences of radiation accidents can be prepared in a short space of time for the entire territory of Japan, and it can serve for the modeling of social and economic consequences for hypothetical accidents for any nuclear power plant in its territory.

Keywords: Fukushima, radiation accident, emergency measures, database

Procedia PDF Downloads 191
985 Creep Analysis and Rupture Evaluation of High Temperature Materials

Authors: Yuexi Xiong, Jingwu He

Abstract:

The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.

Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines

Procedia PDF Downloads 290
984 Study on Safety Management of Deep Foundation Pit Construction Site Based on Building Information Modeling

Authors: Xuewei Li, Jingfeng Yuan, Jianliang Zhou

Abstract:

The 21st century has been called the century of human exploitation of underground space. Due to the characteristics of large quantity, tight schedule, low safety reserve and high uncertainty of deep foundation pit engineering, accidents frequently occur in deep foundation pit engineering, causing huge economic losses and casualties. With the successful application of information technology in the construction industry, building information modeling has become a research hotspot in the field of architectural engineering. Therefore, the application of building information modeling (BIM) and other information communication technologies (ICTs) in construction safety management is of great significance to improve the level of safety management. This research summed up the mechanism of the deep foundation pit engineering accident through the fault tree analysis to find the control factors of deep foundation pit engineering safety management, the deficiency existing in the traditional deep foundation pit construction site safety management. According to the accident cause mechanism and the specific process of deep foundation pit construction, the hazard information of deep foundation pit engineering construction site was identified, and the hazard list was obtained, including early warning information. After that, the system framework was constructed by analyzing the early warning information demand and early warning function demand of the safety management system of deep foundation pit. Finally, the safety management system of deep foundation pit construction site based on BIM through combing the database and Web-BIM technology was developed, so as to realize the three functions of real-time positioning of construction site personnel, automatic warning of entering a dangerous area, real-time monitoring of deep foundation pit structure deformation and automatic warning. This study can initially improve the current situation of safety management in the construction site of deep foundation pit. Additionally, the active control before the occurrence of deep foundation pit accidents and the whole process dynamic control in the construction process can be realized so as to prevent and control the occurrence of safety accidents in the construction of deep foundation pit engineering.

Keywords: Web-BIM, safety management, deep foundation pit, construction

Procedia PDF Downloads 153
983 In-Depth Investigations on the Sequences of Accidents of Powered Two Wheelers Based on Police Crash Reports of Medan, North Sumatera Province Indonesia, Using Decision Aiding Processes

Authors: Bangun F., Crevits B., Bellet T., Banet A., Boy G. A., Katili I.

Abstract:

This paper seeks the incoherencies in cognitive process during an accident of Powered Two Wheelers (PTW) by understanding the factual sequences of events and causal relations for each case of accident. The principle of this approach is undertaking in-depth investigations on case per case of PTW accidents based on elaborate data acquisitions on accident sites that officially stamped in Police Crash Report (PCRs) 2012 of Medan with criteria, involved at least one PTW and resulted in serious injury and fatalities. The analysis takes into account four modules: accident chronologies, perpetrator, and victims, injury surveillance, vehicles and road infrastructures, comprising of traffic facilities, road geometry, road alignments and weather. The proposal for improvement could have provided a favorable influence on the chain of functional processes and events leading to collision. Decision Aiding Processes (DAP) assists in structuring different entities at different decisional levels, as each of these entities has its own objectives and constraints. The entities (A) are classified into 6 groups of accidents: solo PTW accidents; PTW vs. PTW; PTW vs. pedestrian; PTW vs. motor-trishaw; and PTW vs. other vehicles and consecutive crashes. The entities are also distinguished into 4 decisional levels: level of road users and street systems; operational level (crash-attended police officers or CAPO and road engineers), tactical level (Regional Traffic Police, Department of Transportation, and Department of Public Work), and strategic level (Traffic Police Headquarters (TCPHI)), parliament, Ministry of Transportation and Ministry of Public Work). These classifications will lead to conceptualization of Problem Situations (P) and Problem Formulations (I) in DAP context. The DAP concerns the sequences process of the incidents until the time the accident occurs, which can be modelled in terms of five activities of procedural rationality: identification on initial human features (IHF), investigation on proponents attributes (PrAT), on Injury Surveillance (IS), on the interaction between IHF and PrAt and IS (intercorrelation), then unravel the sequences of incidents; filtering and disclosure, which include: what needs to activate, modify or change or remove, what is new and what is priority. These can relate to the activation or modification or new establishment of law. The PrAt encompasses the problems of environmental, road infrastructure, road and traffic facilities, and road geometry. The evaluation model (MP) is generated to bridge P and I since MP is produced by the intercorrelations among IHF, PrAT and IS extracted from the PCRs 2012 of Medan. There are 7 findings of incoherences: lack of knowledge and awareness on the traffic regulations and the risks of accidents, especially when riding between 0 < x < 10 km from house, riding between 22 p.m.–05.30 a.m.; lack of engagements on procurement of IHF Data by CAPO; lack of competency of CAPO on data procurement in accident-sites; no intercorrelation among IHF and PrAt and IS in the database systems of PCRs; lack of maintenance and supervision on the availabilities and the capacities of traffic facilities and road infrastructure; instrumental bias with wash-back impacts towards the TCPHI; technical robustness with wash-back impacts towards the CAPO and TCPHI.

Keywords: decision aiding processes, evaluation model, PTW accidents, police crash reports

Procedia PDF Downloads 158
982 Working Title: Estimating the Power Output of Photovoltaics in Kuwait Using a Monte Carlo Approach

Authors: Mohammad Alshawaf, Rahmat Poudineh, Nawaf Alhajeri

Abstract:

The power generated from photovoltaic (PV) modules is non-dispatchable on demand due to the stochastic nature of solar radiation. The random variations in the measured intensity of solar irradiance are due to clouds and, in the case of arid regions, dust storms which decrease the intensity of intensity of solar irradiance. Therefore, modeling PV power output using average, maximum, or minimum solar irradiance values is inefficient to predict power generation reliably. The overall objective of this paper is to predict the power output of PV modules using Monte Carlo approach based the weather and solar conditions measured in Kuwait. Given the 250 Wp PV module used in study, the average daily power output is 1021 Wh/day. The maximum power was generated in April and the minimum power was generated in January 1187 Wh/day and 823 Wh/day respectively. The certainty of the daily predictions varies seasonally and according to the weather conditions. The output predictions were far more certain in the summer months, for example, the 80% certainty range for August is 89 Wh/day, whereas the 80% certainty range for April is 250 Wh/day.

Keywords: Monte Carlo, solar energy, variable renewable energy, Kuwait

Procedia PDF Downloads 131
981 Long- and Short-Term Impacts of COVID-19 and Gold Price on Price Volatility: A Comparative Study of MIDAS and GARCH-MIDAS Models for USA Crude Oil

Authors: Samir K. Safi

Abstract:

The purpose of this study was to compare the performance of two types of models, namely MIDAS and MIDAS-GARCH, in predicting the volatility of crude oil returns based on gold price returns and the COVID-19 pandemic. The study aimed to identify which model would provide more accurate short-term and long-term predictions and which model would perform better in handling the increased volatility caused by the pandemic. The findings of the study revealed that the MIDAS model performed better in predicting short-term and long-term volatility before the pandemic, while the MIDAS-GARCH model performed significantly better in handling the increased volatility caused by the pandemic. The study highlights the importance of selecting appropriate models to handle the complexities of real-world data and shows that the choice of model can significantly impact the accuracy of predictions. The practical implications of model selection and exploring potential methodological adjustments for future research will be highlighted and discussed.

Keywords: GARCH-MIDAS, MIDAS, crude oil, gold, COVID-19, volatility

Procedia PDF Downloads 65
980 An Analytical Wall Function for 2-D Shock Wave/Turbulent Boundary Layer Interactions

Authors: X. Wang, T. J. Craft, H. Iacovides

Abstract:

When handling the near-wall regions of turbulent flows, it is necessary to account for the viscous effects which are important over the thin near-wall layers. Low-Reynolds- number turbulence models do this by including explicit viscous and also damping terms which become active in the near-wall regions, and using very fine near-wall grids to properly resolve the steep gradients present. In order to overcome the cost associated with the low-Re turbulence models, a more advanced wall function approach has been implemented within OpenFoam and tested together with a standard log-law based wall function in the prediction of flows which involve 2-D shock wave/turbulent boundary layer interactions (SWTBLIs). On the whole, from the calculation of the impinging shock interaction, the three turbulence modelling strategies, the Lauder-Sharma k-ε model with Yap correction (LS), the high-Re k-ε model with standard wall function (SWF) and analytical wall function (AWF), display good predictions of wall-pressure. However, the SWF approach tends to underestimate the tendency of the flow to separate as a result of the SWTBLI. The analytical wall function, on the other hand, is able to reproduce the shock-induced flow separation and returns predictions similar to those of the low-Re model, using a much coarser mesh.

Keywords: SWTBLIs, skin-friction, turbulence modeling, wall function

Procedia PDF Downloads 346
979 The Analysis of Increment of Road Traffic Accidents in Libya: Case Study City of Tripoli

Authors: Fares Elturki, Shaban Ismael Albrka Ali Zangena, H. A. M. Yahia

Abstract:

Safety is an important consideration in the design and operation of streets and highways. Traffic and highway engineers working with law enforcement officials are constantly seeking for better methods to ensure safety for motorists and pedestrians. Also, a highway safety improvement process involves planning, implementation, and evaluation. The planning process requires that engineers collect and maintain traffic safety data, identify the hazards location, conduct studies and establish project priorities. Unfortunately, in Libya, the increase in demand for private transportation in recent years, due to poor or lack of public transportation led to some traffic problems especially in the capital (Tripoli). Also, the growth of private transportation has significant influences on the society regarding road traffic accidents (RTAs). This study investigates the most critical factors affect RTAs in Tripoli the capital city of Libya. Four main classifications were chosen to build the questionnaire, namely; human factors, road factors, vehicle factors and environmental factors. Moreover, a quantitative method was used to collect the data from the field, the targeted sample size 400 respondents include; drivers, pedestrian and passengers and relative importance index (RII) were used to rank the factors of one group and between all groups. The results show that the human factors have the most significant impacts compared with other factors. Also, 84% of respondents considered the over speeding as the most significant factor cusses of RTAs while 81% considered the disobedience to driving regulations as the second most influential factor in human factors. Also, the results showed that poor brakes or brake failure factor a great impact on the RTAs among the vehicle factors with nearly 74%, while 79% categorized poor or no street lighting factor as one of the most effective factors on RTAs in road factors and third effecting factor concerning all factors. The environmental factors have the slights influences compared with other factors.

Keywords: road traffic accidents, Libya, vehicle factors, human factors, relative importance index

Procedia PDF Downloads 279
978 Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios

Authors: Philip Feig, Klaus Gschwendtner, Julian Schatz, Frank Diermeyer

Abstract:

Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.

Keywords: accident research, accident scenarios, ADAS, effectiveness, property damage analysis

Procedia PDF Downloads 340
977 Retrospective Analysis of Injuries to Flight Attendants in a Commercial Airliner

Authors: B. K. Umesh Kumar, Waleed Al Shukaili

Abstract:

Air travel is one of the safest modes of travel. Inflight injuries occur due to various factors such as air turbulence, spillage of hot liquids, and fall of improperly stowed overhead baggage. Injuries occur not only to passengers but also to the flight attendants who are handling the passengers throughout the flight. A retrospective study of all records of crew safety report by the captain of the aircraft for all the flights from 01 Mar 2015 to 31 Mar 2019 in a National Carrier of Middle Eastern country, were analyzed. There was one injury to Flight attendant every 1200 flights. Commonest aircraft involved was Boeing. Inflight phase had 82% of all injuries. 63% of accidents involved female Attendants. Commonest age group involved was from 25-30 years. Cart and container injuries were the commonest and accounted for nearly 62% of the total injuries followed by turbulence. Back injuries were the commonest injuries followed by ankle, shoulder, and burns. Mean days of absence from work seen in shoulder injuries 40 days followed by injuries to back, which accounted for 38 Days. Reduction in injuries to flight attendants can be brought about by proper selection of crew, reduction in cart load. Proper maintenance of cart and container plays a major role in prevention of occupational accidents.

Keywords: flight attendants, in-flight injuries, types of injuries, work related injury prevention

Procedia PDF Downloads 124
976 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle

Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine

Abstract:

Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.

Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty

Procedia PDF Downloads 137
975 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 169
974 The Use of Continuous Improvement Methods to Empower the Osh MS With Leading Key Performance Indicators

Authors: Maha Rashid Al-Azib, Almuzn Qasem Alqathradi, Amal Munir Alshahrani, Bilqis Mohammed Assiri, Ali Almuflih

Abstract:

The Occupational Safety and Health Management System in one of the largest Saudi companies has been experiencing in the last 10 years extensive direct and indirect expenses due to lack of proactive leading indicators and safety leadership effective procedures. And since there are no studies that are associated with this department of safety in the company, this research has been conducted. In this study we used a mixed method approach containing a literature review and experts input, then a qualitative questionnaire provided by Institute for Work and Health related to determining the company’s occupational safety and health management system level out from three levels (Compliance - Improvement - Continuous Learning) and the output regarding the company’s level was in Continuous Learning. After that Deming cycle was employed to create a set of proactive leading indicators and analyzed using the SMART method to make sure of its effectiveness and suitability to the company. The objective of this research is to provide a set of proactive indicators to contribute in making an efficient occupational safety and health management system that has less accidents which results in less expenses. Therefore, we provided the company with a prototype of an APP, designed and empowered with our final results to contribute in supporting decisions making processes.

Keywords: proactive leading indicators, OSH MS, safety leadership, accidents reduction

Procedia PDF Downloads 80
973 Improving the Performance of Road Salt on Anti-Icing

Authors: Mohsen Abotalebi Esfahani, Amin Rahimi

Abstract:

Maintenance and management of route and roads infrastructure is one of the most important and the most fundamental principles of the countries. Several methods have been under investigation as preventive proceedings for the maintenance of asphalt pavements for many years. Using a mixture of salt, sand and gravel is the most common method of deicing, which could have numerous harmful consequences. Icy or snow-covered road is one of the major reasons of accidents in rainy seasons, which causes substantial damages such as loss of time and energy, environmental pollution, destruction of buildings, traffic congestion and rising possibility of accidents. Regarding this, every year the government incurred enormous costs to secure traverses. In this study, asphalt pavements have been cured, in terms of compressive strength, tensile strength and resilient modulus of asphalt samples, under the influence of Magnesium Chloride, Calcium Chloride, Sodium Chloride, Urea and pure water; and showed that de-icing with the calcium chloride solution and urea have the minimum negative effect and de-icing with pure water has most negative effect on laboratory specimens. Hence some simple techniques and new equipment and less use of sand and salt, can reduce significantly the risks and harmful effects of excessive use of salt, sand and gravel and at the same time use the safer roads.

Keywords: maintenance, sodium chloride, icyroad, calcium chloride

Procedia PDF Downloads 283
972 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer

Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner

Abstract:

Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.

Keywords: calculation of risk factor, fuzzy logic, fuzzy programming for ship, safety navigation of ships

Procedia PDF Downloads 189
971 Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy

Authors: Irsa Ejaz, Siyang He, Wei Li, Naiyue Hu, Chaochen Tang, Songbo Li, Meng Li, Boubacar Diallo, Guanghui Xie, Kang Yu

Abstract:

Background: Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to measure the grain quality of different cereals. Previously reported NIR model calibrations using the whole grain spectra had moderate accuracy. Improved predictions are achievable by using the spectra of whole grains, when compared with the use of spectra collected from the flour samples. However, the feasibility for determining the critical biochemicals, related to the classifications for food, feed, and fuel products are not adequately investigated. Objectives: To evaluate the feasibility of using NIRS and the influence of four sample types (whole grains, flours, hulled grain flours, and hull-less grain flours) on the prediction of chemical components to improve the grain sorting efficiency for human food, animal feed, and biofuel. Methods: NIR was applied in this study to determine the eight biochemicals in four types of sorghum samples: hulled grain flours, hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum grains were selected from the two locations in China. Followed by NIR spectral and wet-chemically measured biochemical data, partial least squares regression (PLSR) was used to construct the prediction models. Results: The results showed that sorghum grain morphology and sample format affected the prediction of biochemicals. Using NIR data of grain flours generally improved the prediction compared with the use of NIR data of whole grains. In addition, using the spectra of whole grains enabled comparable predictions, which are recommended when a non-destructive and rapid analysis is required. Compared with the hulled grain flours, hull-less grain flours allowed for improved predictions for tannin, cellulose, and hemicellulose using NIR data. Conclusion: The established PLSR models could enable food, feed, and fuel producers to efficiently evaluate a large number of samples by predicting the required biochemical components in sorghum grains without destruction.

Keywords: FT-NIR, sorghum grains, biochemical composition, food, feed, fuel, PLSR

Procedia PDF Downloads 69
970 Using Soil Texture Field Observations as Ordinal Qualitative Variables for Digital Soil Mapping

Authors: Anne C. Richer-De-Forges, Dominique Arrouays, Songchao Chen, Mercedes Roman Dobarco

Abstract:

Most of the digital soil mapping (DSM) products rely on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs. However, many other observations (often qualitative, nominal, or ordinal) could be used as proxies of lab measurements or as input data for ML of PTF predictions. DSM and ML are briefly described with some examples taken from the literature. Then, we explore the potential of an ordinal qualitative variable, i.e., the hand-feel soil texture (HFST) estimating the mineral particle distribution (PSD): % of clay (0-2µm), silt (2-50µm) and sand (50-2000µm) in 15 classes. The PSD can also be measured by lab measurements (LAST) to determine the exact proportion of these particle-sizes. However, due to cost constraints, HFST are much more numerous and spatially dense than LAST. Soil texture (ST) is a very important soil parameter to map as it is controlling many of the soil properties and functions. Therefore, comes an essential question: is it possible to use HFST as a proxy of LAST for calibration and/or validation of DSM predictions of ST? To answer this question, the first step is to compare HFST with LAST on a representative set where both information are available. This comparison was made on ca 17,400 samples representative of a French region (34,000 km2). The accuracy of HFST was assessed, and each HFST class was characterized by a probability distribution function (PDF) of its LAST values. This enables to randomly replace HFST observations by LAST values while respecting the PDF previously calculated and results in a very large increase of observations available for the calibration or validation of PTF and ML predictions. Some preliminary results are shown. First, the comparison between HFST classes and LAST analyses showed that accuracies could be considered very good when compared to other studies. The causes of some inconsistencies were explored and most of them were well explained by other soil characteristics. Then we show some examples applying these relationships and the increase of data to several issues related to DSM. The first issue is: do the PDF functions that were established enable to use HSFT class observations to improve the LAST soil texture prediction? For this objective, we replaced all HFST for topsoil by values from the PDF 100 time replicates). Results were promising for the PTF we tested (a PTF predicting soil water holding capacity). For the question related to the ML prediction of LAST soil texture on the region, we did the same kind of replacement, but we implemented a 10-fold cross-validation using points where we had LAST values. We obtained only preliminary results but they were rather promising. Then we show another example illustrating the potential of using HFST as validation data. As in numerous countries, the HFST observations are very numerous; these promising results pave the way to an important improvement of DSM products in all the countries of the world.

Keywords: digital soil mapping, improvement of digital soil mapping predictions, potential of using hand-feel soil texture, soil texture prediction

Procedia PDF Downloads 223
969 safeRoute: Information Safety System for Professional Road Driving

Authors: Francisco Toledo-Castillo, Pilar Peiró-Torres, María Josefa Sospedra-Baeza, Sergio Hidalgo-Fuentes

Abstract:

The communication presented is about tasks that are been developed in the research project “safeRoute”, “Information safety system for professional road driving” (IPT-2012-110-370000). This R&D project was proposed by the consortium formed by Fagor Electronica la SEU 3 and the University of Valencia to the Ministry of Economy and Competitiveness, which approved it inside the INNPACTO subprogramme grants. Through this type of calls, the Ministry promote the innovative capacity of the Spanish companies and turn on the mechanism for competing internationally. With this kind of calls, private investments for technological and industrial development join their R & D resources with public entities to implement innovative project that could have an international exposure. Thus INNPACTO subprogramme promotes the creation of research projects with public-private partnerships that create exploitable final products. The “safeRoute” Project pretends develop a tool to help to make more safety the travels of commercial transport vehicles of goods and passengers. To achieve its objectives, the project is focused in three main lines of research: vehicle safety, the safety of the roads that they are using, and the safety which drivers do their job, their behaviour while they are driving. To improve safety, the project gives information about these three factors to all people that are involved in the safety of the professional transport. These three factors have influence to the occurrence of traffic accidents, thanks to the information provided and treated about these factors, we can achieve a significant reduction in occupational accidents in the transport sector. SafeRoute provide information about routes, vehicles, and driver behaviours, and in this manner pretends provide to transport companies a tool which could result in a safer driving results and could reduce their costs related to traffic accidents of their vehicles, in that way, this tool could help them to be more competitive, and give a more reliable service. This paper will focus mainly on the information about routes that drivers use to travel in their professional work, and how the researchers of this project have catalogued and evaluated these routes, and finally how that information will be provided to users.

Keywords: driver support systems, professional drivers, road safety, safeRoute

Procedia PDF Downloads 403
968 Numerical Predictions of Trajectory Stability of a High-Speed Water-Entry and Water-Exit Projectile

Authors: Lin Lu, Qiang Li, Tao Cai, Pengjun Zhang

Abstract:

In this study, a detailed analysis of trajectory stability and flow characteristics of a high-speed projectile during the water-entry and water-exit process has been investigated numerically. The Zwart-Gerber-Belamri (Z-G-B) cavitation model and the SST k-ω turbulence model based on the Reynolds Averaged Navier-Stokes (RANS) method are employed. The numerical methodology is validated by comparing the experimental photograph of cavitation shape and the experimental underwater velocity with the numerical simulation results. Based on the numerical methodology, the influences of rotational speed, water-entry and water-exit angle of the projectile on the trajectory stability and flow characteristics have been carried out in detail. The variation features of projectile trajectory and total resistance have been conducted, respectively. In addition, the cavitation characteristics of water-entry and water-exit have been presented and analyzed. Results show that it may not be applicable for the water-entry and water-exit to achieve the projectile stability through the rotation of projectile. Furthermore, there ought to be a critical water-entry angle for the water-entry stability of practical projectile. The impact of water-exit angle on the trajectory stability and cavity phenomenon is not as remarkable as that of the water-entry angle.

Keywords: cavitation characteristics, high-speed projectile, numerical predictions, trajectory stability, water-entry, water-exit

Procedia PDF Downloads 135
967 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 273