Search results for: spintronic applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6278

Search results for: spintronic applications

4538 Study of Mechanical Properties of Large Scale Flexible Silicon Solar Modules on the Various Substrates

Authors: M. Maleczek, Leszek Bogdan, Kazimierz Drabczyk, Agnieszka Iwan

Abstract:

Crystalline silicon (Si) solar cells are the main product in the market among the various photovoltaic technologies concerning such advantages as: material richness, high carrier mobilities, broad spectral absorption range and established technology. However, photovoltaic technology on the stiff substrates are heavier, more fragile and less cost-effective than devices on the flexible substrates to be applied in special applications. The main goal of our work was to incorporate silicon solar cells into various fabric, without any change of the electrical and mechanical parameters of devices. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. In our work, the polyamide or polyester fabrics were used as a flexible substrate in the created devices. Applied fabrics differ in tensile and tear strength. All investigated polyamide fabrics are resistant to weathering and UV, while polyester ones is resistant to ozone, water and ageing. The examined fabrics are tight at 100 cm water per 2 hours. In our work, commercial silicon solar cells with the size 156 × 156 mm were cut into nine parts (called single solar cells) by diamond saw and laser. Gap and edge after cutting of solar cells were checked by transmission electron microscope (TEM) to study morphology and quality of the prepared single solar cells. Modules with the size of 160 × 70 cm (containing about 80 single solar cells) were created and investigated by electrical and mechanical methods. Weight of constructed module is about 1.9 kg. Three types of solar cell architectures such as: -fabric/EVA/Si solar cell/EVA/film for lamination, -backsheet PET/EVA/Si solar cell/EVA/film for lamination, -fabric/EVA/Si solar cell/EVA/tempered glass, were investigated taking into consideration type of fabric and lamination process together with the size of solar cells. In investigated devices EVA, it is ethylene-vinyl acetate, while PET - polyethylene terephthalate. Depend on the lamination process and compatibility of textile with solar cell an efficiency of investigated flexible silicon solar cells was in the range of 9.44-16.64 %. Multi folding and unfolding of flexible module has no impact on its efficiency as was detected by Instron equipment. Power (P) of constructed solar module is 30 W, while voltage about 36 V. Finally, solar panel contains five modules with the polyamide fabric and tempered glass will be produced commercially for different applications (dual use).

Keywords: flexible devices, mechanical properties, silicon solar cells, textiles

Procedia PDF Downloads 170
4537 Effects of Asphalt Modification with Nanomaterials on Fresh and Stored Bitumen

Authors: Ahmed W. Oda, Ahmed El-Desouky, Hassan Mahdy, Osama M. Moussa

Abstract:

Nanomaterials have many applications in the field of asphalt paving. Two locally produced nanomaterials were used in the asphalt binder modification. The nanomaterials used are Nanosilica (NS), and Nanoclay (NC). The virgin asphalt binder was characterized by the conventional tests. The bitumen was modified by 3%, 5% and 7% of NS and NC. The penetration index(PI), and the retaining penetration (RP) was calculated based on the results of the penetration and the softening point tests. The results show that the RP becomes 95.35% at 5%NS modified bitumen and reaches 97.56% when bitumen is modified with 3% NC. The results show significant improvement in the bitumen stiffness when modified by the two types of nanomaterials, either fresh or aged (stored).

Keywords: bitumen, modified bitumen, aged, stored, nanomaterials

Procedia PDF Downloads 184
4536 AI Applications in Accounting: Transforming Finance with Technology

Authors: Alireza Karimi

Abstract:

Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.

Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance

Procedia PDF Downloads 57
4535 Practical Simulation Model of Floating-Gate MOS Transistor in Sub 100 nm Technologies

Authors: Zina Saheb, Ezz El-Masry

Abstract:

As CMOS technology scaling down, Silicon oxide thickness (SiO2) become very thin (few Nano meters). When SiO2 is less than 3nm, gate direct tunneling (DT) leakage current becomes a dormant problem that impacts the transistor performance. Floating gate MOSFET (FGMOSFET) has been used in many low-voltage and low-power applications. Most of the available simulation models of FGMOSFET for analog circuit design does not account for gate DT current and there is no accurate analysis for the gate DT. It is a crucial to use an accurate mode in order to get a realistic simulation result that account for that DT impact on FGMOSFET performance effectively.

Keywords: CMOS transistor, direct-tunneling current, floating-gate, gate-leakage current, simulation model

Procedia PDF Downloads 521
4534 Full-Wave Analysis of Magnetic Meta-Surfaces for Microwave Component Applications

Authors: Christopher Hardly Joseph, Nicola Pelagalli, Davide Mencarelli, Luca Pierantoni

Abstract:

In this contribution, we report the electromagnetic response of a split ring resonator (SRR) based magnetic metamaterial unit cell in free space nature by means of a full-wave electromagnetic simulation. The effective parameters of these designed structures have been analyzed. The structures have been specifically designed to work at high frequency considering the development of many microwave and lower mm-wave devices. In addition to that, the application of the designed metamaterial structures is also proposed, namely metamaterial loaded planar transmission lines, potentially useful to optimize size and quality factor of circuit components and radiating elements.

Keywords: CPW, Microwave Components, Negative Permeability, Split Ring Resonator (SRR)

Procedia PDF Downloads 167
4533 Solving Momentum and Energy Equation by Using Differential Transform Techniques

Authors: Mustafa Ekici

Abstract:

Natural convection is a basic process which is important in a wide variety of practical applications. In essence, a heated fluid expands and rises from buoyancy due to decreased density. Numerous papers have been written on natural or mixed convection in vertical ducts heated on the side. These equations have been proved to be valuable tools for the modelling of many phenomena such as fluid dynamics. Finding solutions to such equations or system of equations are in general not an easy task. We propose a method, which is called differential transform method, of solving a non-linear equations and compare the results with some of the other techniques. Illustrative examples shows that the results are in good agreement.

Keywords: differential transform method, momentum, energy equation, boundry value problem

Procedia PDF Downloads 450
4532 Genetic Algorithm for Solving the Flexible Job-Shop Scheduling Problem

Authors: Guilherme Baldo Carlos

Abstract:

The flexible job-shop scheduling problem (FJSP) is an NP-hard combinatorial optimization problem, which can be applied to model several applications in a wide array of industries. This problem will have its importance increase due to the shift in the production mode that modern society is going through. The demands are increasing and for products personalized and customized. This work aims to apply a meta-heuristic called a genetic algorithm (GA) to solve this problem. A GA is a meta-heuristic inspired by the natural selection of Charles Darwin; it produces a population of individuals (solutions) and selects, mutates, and mates the individuals through generations in order to find a good solution for the problem. The results found indicate that the GA is suitable for FJSP solving.

Keywords: genetic algorithm, evolutionary algorithm, scheduling, flexible job-shop scheduling

Procedia PDF Downloads 144
4531 On Estimating the Headcount Index by Using the Logistic Regression Estimator

Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz, Francisco J. Blanco-Encomienda

Abstract:

The problem of estimating a proportion has important applications in the field of economics, and in general, in many areas such as social sciences. A common application in economics is the estimation of the headcount index. In this paper, we define the general headcount index as a proportion. Furthermore, we introduce a new quantitative method for estimating the headcount index. In particular, we suggest to use the logistic regression estimator for the problem of estimating the headcount index. Assuming a real data set, results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the traditional estimator of the headcount index.

Keywords: poverty line, poor, risk of poverty, Monte Carlo simulations, sample

Procedia PDF Downloads 416
4530 Robust Barcode Detection with Synthetic-to-Real Data Augmentation

Authors: Xiaoyan Dai, Hsieh Yisan

Abstract:

Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.

Keywords: barcode detection, data augmentation, deep learning, image-based processing

Procedia PDF Downloads 159
4529 Aerodynamic Analysis of Vehicles in the Wind Tunnel and Water Tunnel

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The simulation in wind tunnel is used thoroughly to model real situations of drainages of air. Besides the automotive industry, a great number of applications can be numbered: dispersion of pollutant, studies of pedestrians comfort and dispersion of particles. This work had the objective of visualizing the characteristics aerodynamics of two automobiles in different ways. To accomplish that drainage of air a fan that generated a speed exists (measured with anemometer of hot thread) of 4,1m/s and 4,95m/s. To visualize the path of the air through the cars, in the wind tunnel, smoke was used, obtained with it burns of vegetable oil. For “to do smoke” vegetable oil was used, that was burned for a tension of 20 V generated by a thread of 2,5 mm. The cars were placed inside of the wind tunnel with the drainage of “air-smoke” and photographed, registering like this the path lines around them, in the 3 different speeds.

Keywords: aerodynamics, vehicle drag, vegetable oil, wind tunnel

Procedia PDF Downloads 593
4528 Comparative Analysis between Corn and Ramon (Brosimum alicastrum) Starches to Be Used as Sustainable Bio-Based Plastics

Authors: C. R. Ríos-Soberanis, V. M. Moo-Huchin, R. J. Estrada-Leon, E. Perez-Pacheco

Abstract:

Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons: firstly environmental concerns, and secondly the realization that our petroleum resources are finite. Finding new uses for agricultural commodities is also an important area of research. Therefore, it is crucial to get new sources of natural materials that can be used in different applications. Ramon tree (Brosimum alicastrum) is a tropical plant that grows freely in Yucatan countryside. This paper focuses on the seeds recollection, processing and starch extraction and characterization in order to find out about its suitability as biomaterial. Results demonstrated that it has a high content of qualities to be used not only as comestible but also as an important component in polymeric blends.

Keywords: biomaterials, characterization techniques, natural resource, starch

Procedia PDF Downloads 317
4527 Recovery of Heavy Metals by Ion Exchange on the Zeolite Materials

Authors: K. Menad, A. Faddeg

Abstract:

Zeolites are a family of mineral compounds. With special properties that have led to several important industrial applications. Ion exchange has enabled the first industrial application in the field of water treatment. The exchange by aqueous pathway is the method most used in the case of such microporous materials and this technique will be used in this work. The objective of this work is to find performance materials for the recovery of heavy metals such as cadmium. The study is to compare the properties of different ion exchange zeolite Na-X, Na-A, their physical mixture and the composite A (LTA) / X (FAU). After the synthesis of various zeolites X and A, it was designed a model Core-Shell to form a composite zeolite A on zeolite X. Finally, ion exchange studies were performed on these zeolite materials. The cation is exclusively tested for cadmium, a toxic element and is harmful to health and the environment.

Keywords: zeolite A, zeolite X, ion exchange, water treatment

Procedia PDF Downloads 424
4526 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 346
4525 Autonomous Quantum Competitive Learning

Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally

Abstract:

Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.

Keywords: competitive learning, quantum gates, quantum gates, winner-take-all

Procedia PDF Downloads 462
4524 Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery

Authors: Smita Krishnan, Krittika Chandran, Chandra Mohan Sinnathambi

Abstract:

Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects.

Keywords: advanced oxidation process, photochemical processes, degradation, organic contaminants

Procedia PDF Downloads 498
4523 Demonstrating the Efficacy of a Low-Cost Carbon Dioxide-Based Cryoablation Device in Veterinary Medicine for Translation to Third World Medical Applications

Authors: Grace C. Kuroki, Yixin Hu, Bailey Surtees, Rebecca Krimins, Nicholas J. Durr, Dara L. Kraitchman

Abstract:

The purpose of this study was to perform a Phase I veterinary clinical trial with a low-cost, carbon-dioxide-based, passive thaw cryoablation device as proof-of-principle for application in pets and translation to third-world treatment of breast cancer. This study was approved by the institutional animal care and use committee. Client-owned dogs with subcutaneous masses, primarily lipomas or mammary cancers, were recruited for the study. Inclusion was based on clinical history, lesion location, preanesthetic blood work, and fine needle aspirate or biopsy confirmation of mass. Informed consent was obtained from the owners for dogs that met inclusion criteria. Ultrasound assessment of mass extent was performed immediately prior to mass cryoablation. Dogs were placed under general anesthesia and sterilely prepared. A stab incision was created to insert a custom 4.19 OD x 55.9 mm length cryoablation probe (Kubanda Cryotherapy) into the mass. Originally designed for treating breast cancer in low resource settings, this device has demonstrated potential in effectively necrosing subcutaneous masses. A dose escalation study of increasing freeze-thaw cycles (5/4/5, 7/5/7, and 10/7/10 min) was performed to assess the size of the iceball/necrotic extent of cryoablation. Each dog was allowed to recover for ~1-2 weeks before surgical removal of the mass. A single mass was treated in seven dogs (2 mammary masses, a sarcoma, 4 lipomas, and 1 adnexal mass) with most masses exceeding 2 cm in any dimension. Mass involution was most evident in the malignant mammary and adnexal mass. Lipomas showed minimal shrinkage prior to surgical removal, but an area of necrosis was evident along the cryoablation probe path. Gross assessment indicated a clear margin of cryoablation along the cryoprobe independent of tumor type. Detailed histopathology is pending, but complete involution of large lipomas appeared to be unlikely with a 10/7/10 protocol. The low-cost, carbon dioxide-based cryotherapy device permits a minimally invasive technique that may be useful for veterinary applications but is also informative of the unlikely resolution of benign adipose breast masses that may be encountered in third world countries.

Keywords: cryoablation, cryotherapy, interventional oncology, veterinary technology

Procedia PDF Downloads 128
4522 Emerging Technology for 6G Networks

Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily

Abstract:

Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and the year 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.

Keywords: 6G networks, artificial intelligence (AI), Li-Fi technology, Terahertz (THz) communication, visible light communication (VLC)

Procedia PDF Downloads 85
4521 Electronic and Computer-Assisted Refreshable Braille Display Developed for Visually Impaired Individuals

Authors: Ayşe Eldem, Fatih Başçiftçi

Abstract:

Braille alphabet is an important tool that enables visually impaired individuals to have a comfortable life like those who have normal vision. For this reason, new applications related to the Braille alphabet are being developed. In this study, a new Refreshable Braille Display was developed to help visually impaired individuals learn the Braille alphabet easier. By means of this system, any text downloaded on a computer can be read by the visually impaired individual at that moment by feeling it by his/her hands. Through this electronic device, it was aimed to make learning the Braille alphabet easier for visually impaired individuals with whom the necessary tests were conducted.

Keywords: visually impaired individual, Braille, Braille display, refreshable Braille display, USB

Procedia PDF Downloads 343
4520 Optimization of Human Hair Concentration for a Natural Rubber Based Composite

Authors: Richu J. Babu, Sony Mathew, Sharon Rony Jacob, Soney C. George, Jibin C. Jacob

Abstract:

Human hair is a non-biodegradable waste available in plenty throughout the world but is rarely explored for applications in engineering fields. Tensile strength of human hair ranges from 170 to 220 MPa. This property of human hair can be made use in the field of making bio-composites[1]. The composite is prepared by commixing the human hair and natural rubber in a two roll mill along with additives followed by vulcanization. Here the concentration of the human hair is varied by fine-tuning the fiber length as 20 mm and sundry tests like tensile, abrasion, tear and hardness were conducted. While incrementing the fiber length up to a certain range the mechanical properties shows superior amendments.

Keywords: human hair, natural rubber, composite, vulcanization, fiber loading

Procedia PDF Downloads 377
4519 On Musical Information Geometry with Applications to Sonified Image Analysis

Authors: Shannon Steinmetz, Ellen Gethner

Abstract:

In this paper, a theoretical foundation is developed for patterned segmentation of audio using the geometry of music and statistical manifold. We demonstrate image content clustering using conic space sonification. The algorithm takes a geodesic curve as a model estimator of the three-parameter Gamma distribution. The random variable is parameterized by musical centricity and centric velocity. Model parameters predict audio segmentation in the form of duration and frame count based on the likelihood of musical geometry transition. We provide an example using a database of randomly selected images, resulting in statistically significant clusters of similar image content.

Keywords: sonification, musical information geometry, image, content extraction, automated quantification, audio segmentation, pattern recognition

Procedia PDF Downloads 218
4518 Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration

Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi

Abstract:

Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.

Keywords: additive manufacturing, orthopaedic implants, osteointegration, trabecular structures

Procedia PDF Downloads 313
4517 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems

Authors: Baris Can Yalcin

Abstract:

Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.

Keywords: design, mechatronics, motion sensor, data acquisition

Procedia PDF Downloads 580
4516 Hysteresis Behavior and Microstructure in Nanostructured Alloys Cu-Fe and Cu-Fe-Co

Authors: Laslouni Warda, M. Azzaz

Abstract:

The intermetallic-based on transition metal compounds present interesting magnetic properties for the technological applications (permanent magnets, magnetic recording…). Cu70 Fe18Co12 and Cu70 Fe30 nanostructured with crystallite size vary from 10 a 12 nanometers have been developed by a mechanical milling method. For Cu-Fe samples, the iron and copper distribution was clear. The distribution showed a homogeneous distribution of iron and copper in a Cu-Fe obtained after 36 h milling. The structural properties have been performed with X-ray diffraction. With increasing milling times, Fe and Co diffuse into the Cu matrix, which accelerates the formation of the magnetic nanostructure Cu- Fe-Co and Cu-Fe alloys. The magnetic behavior is investigated using Vibrating Sample Magnetometer (VSM). The two alloys nanocrystals possess ferromagnetic character at room temperature

Keywords: Cu-Fe-Co, Cu-Fe, nanocrystals, SEM, hysteresis loops, VSM, anisotropy theory

Procedia PDF Downloads 327
4515 Parallel Computing: Offloading Matrix Multiplication to GPU

Authors: Bharath R., Tharun Sai N., Bhuvan G.

Abstract:

This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.

Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks

Procedia PDF Downloads 45
4514 3D Mesh Coarsening via Uniform Clustering

Authors: Shuhua Lai, Kairui Chen

Abstract:

In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.

Keywords: coarsening, mesh clustering, shape approximation, mesh simplification

Procedia PDF Downloads 369
4513 A Single Switch High Step-Up DC/DC Converter with Zero Current Switching Condition

Authors: Rahil Samani, Saeed Soleimani, Ehsan Adib, Majid Pahlevani

Abstract:

This paper presents an inverting high step-up DC/DC converter. Basically, this high step-up DC/DC converter is an appealing interface for solar applications. The proposed topology takes advantage of using coupled inductors. Due to the leakage inductances of these coupled inductors, the power MOSFET has the zero current switching (ZCS) condition, which results in decreased switching losses. This will substantially improve the overall efficiency of the power converter. Furthermore, employing coupled inductors has led to a higher voltage gain. Theoretical analysis and experimental results of a 100W 20V/220V prototype are presented to verify the superior performance of the proposed DC/DC converter.

Keywords: coupled inductors, high step-up DC/DC converter, zero-current switching, Cuk converter, SEPIC converter

Procedia PDF Downloads 707
4512 Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads

Authors: Şafak Aksoy, Ali Kurşun, Erhan Çetin, Mustafa Reşit Haboğlu

Abstract:

In this study, thermo elastic stress analysis is performed on a cylinder made of laminated isotropic materials under thermomechanical loads. Laminated cylinders have many applications such as aerospace, automotive and nuclear plant in the industry. These cylinders generally performed under thermomechanical loads. Stress and displacement distribution of the laminated cylinders are determined using by analytical method both thermal and mechanical loads. Based on the results, materials combination plays an important role on the stresses distribution along the radius. Variation of the stresses and displacements along the radius are presented as graphs. Calculations program are prepared using MATLAB® by authors.

Keywords: isotropic materials, laminated cylinders, thermoelastic stress, thermomechanical load

Procedia PDF Downloads 404
4511 Synthesis and Characterizations of Lead-free BaO-Doped TeZnCaB Glass Systems for Radiation Shielding Applications

Authors: Rezaul K. Sk., Mohammad Ashiq, Avinash K. Srivastava

Abstract:

The use of radiation shielding technology ranging from EMI to high energy gamma rays in various areas such as devices, medical science, defense, nuclear power plants, medical diagnostics etc. is increasing all over the world. However, exposure to different radiations such as X-ray, gamma ray, neutrons and EMI above the permissible limits is harmful to living beings, the environment and sensitive laboratory equipment. In order to solve this problem, there is a need to develop effective radiation shielding materials. Conventionally, lead and lead-based materials are used in making shielding materials, as lead is cheap, dense and provides very effective shielding to radiation. However, the problem associated with the use of lead is its toxic nature and carcinogenic. So, to overcome these drawbacks, there is a great need for lead-free radiation shielding materials and that should also be economically sustainable. Therefore, it is necessary to look for the synthesis of radiation-shielding glass by using other heavy metal oxides (HMO) instead of lead. The lead-free BaO-doped TeZnCaB glass systems have been synthesized by the traditional melt-quenching method. X-ray diffraction analysis confirmed the glassy nature of the synthesized samples. The densities of the developed glass samples were increased by doping the BaO concentration, ranging from 4.292 to 4.725 g/cm3. The vibrational and bending modes of the BaO-doped glass samples were analyzed by Raman spectroscopy, and FTIR (Fourier-transform infrared spectroscopy) was performed to study the functional group present in the samples. UV-visible characterization revealed the significance of optical parameters such as Urbach’s energy, refractive index and optical energy band gap. The indirect and direct energy band gaps were decreased with the BaO concentration whereas the refractive index was increased. X-ray attenuation measurements were performed to determine the radiation shielding parameters such as linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half value layer (HVL), tenth value layer (TVL), mean free path (MFP), attenuation factor (Att%) and lead equivalent thickness of the lead-free BaO-doped TeZnCaB glass system. It was observed that the radiation shielding characteristics were enhanced with the addition of BaO content in the TeZnCaB glass samples. The glass samples with higher contents of BaO have the best attenuation performance. So, it could be concluded that the addition of BaO into TeZnCaB glass samples is a significant technique to improve the radiation shielding performance of the glass samples. The best lead equivalent thickness was 2.626 mm, and these glasses could be good materials for medical diagnostics applications.

Keywords: heavy metal oxides, lead-free, melt-quenching method, x-ray attenuation

Procedia PDF Downloads 21
4510 Investigation of Optical Requirements for Power System Assets Monitoring with Unmanned Aerial Vehicles

Authors: Ioana Pisica, Dimitrios Gkritzapis

Abstract:

The significance of UAS in scientific applications has been amply demonstrated in recent years. The combinations of portability and quasi-static positioning by means of flying in close loop path make them versatile and efficient in the inspection of power systems infrastructure. In this paper, we critically assess several platforms and sensor capabilities to identify their pros and cons in relation to the power systems assets to be monitored. In this respect, it is paramount the flights to be conducted by using UAS which bear certain suitable features, such as responsive and easy control, video capturing in real time, autonomous routing of pre-planned flight programming with differentiating payloads. The outcome of this research is a set of optimal requirements for power system assets monitoring with UAS.

Keywords: platforms, power system, sensors, UAVs

Procedia PDF Downloads 280
4509 Improved Particle Swarm Optimization with Cellular Automata and Fuzzy Cellular Automata

Authors: Ramin Javadzadeh

Abstract:

The particle swarm optimization are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Particle swarm optimization is introduced for the first time to overcome its problems. The fuzzy cellular automata is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the Particle swarm optimization algorithms.

Keywords: cellular automata, cellular learning automata, local search, optimization, particle swarm optimization

Procedia PDF Downloads 597