Search results for: binary logistic regression
2180 Linking Disgust and Misophonia: The Role of Mental Contamination
Authors: Laurisa Peters, Usha Barahmand, Maria Stalias-Mantzikos, Naila Shamsina, Kerry Aguero
Abstract:
In the current study, the authors sought to examine whether the links between moral and sexual disgust and misophonia are mediated by mental contamination. An internationally diverse sample of 283 adults (193 females, 76 males, and 14 non-binary individuals) ranging in age from 18 to 60 years old was recruited from online social media platforms and survey recruitment sites. The sample completed an online battery of scales that consisted of the New York Misophonia Scale, State Mental Contamination Scale, and the Three-Domain Disgust Scale. The hypotheses were evaluated using a series of mediations performed using the PROCESS add-on in SPSS. Correlations were found between emotional and aggressive-avoidant reactions in misophonia, mental contamination, pathogen disgust, and sexual disgust. Moral disgust and non-aggressive reactions in misophonia failed to correlate significantly with any of the other constructs. Sexual disgust had direct and indirect effects, while pathogen disgust had only direct effects on aspects of misophonia. These findings partially support our hypothesis that mental contamination mediates the link between disgust propensity and misophonia while also confirming that pathogen-based disgust is not associated with mental contamination. Findings imply that misophonia is distinct from obsessive-compulsive disorder. Further research into the conceptualization of moral disgust is warranted.Keywords: misophonia, moral disgust, pathogen disgust, sexual disgust, mental contamination
Procedia PDF Downloads 972179 Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective
Authors: Pallavi Gajjar, Vinayak Malhotra
Abstract:
Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety.Keywords: combustion, acoustic energy, external energy sources, regression rate
Procedia PDF Downloads 1412178 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph
Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction
Procedia PDF Downloads 4252177 Physical Activity and Mental Health: A Cross-Sectional Investigation into the Relationship of Specific Physical Activity Domains and Mental Well-Being
Authors: Katja Siefken, Astrid Junge
Abstract:
Background: Research indicates that physical activity (PA) protects us from developing mental disorders. The knowledge regarding optimal domain, intensity, type, context, and amount of PA promotion for the prevention of mental disorders is sparse and incoherent. The objective of this study is to determine the relationship between PA domains and mental well-being, and whether associations vary by domain, amount, context, intensity, and type of PA. Methods: 310 individuals (age: 25 yrs., SD 7; 73% female) completed a questionnaire on personal patterns of their PA behaviour (IPQA) and their mental health (Centre of Epidemiologic Studies Depression Scale (CES-D), Generalized Anxiety Disorder (GAD-7) scale, the subjective physical well-being (FEW-16)). Linear and multiple regression were used for analysis. Findings: Individuals who met the PA recommendation (N=269) reported higher scores on subjective physical well-being than those who did not meet the PA recommendations (N=41). Whilst vigorous intensity PA predicts subjective well-being (β = .122, p = .028), it also correlates with depression. The more vigorously physically active a person is, the higher the depression score (β = .127, p = .026). The strongest impact of PA on mental well-being can be seen in the transport domain. A positive linear correlation on subjective physical well-being (β =.175, p = .002), and a negative linear correlation for anxiety (β =-.142, p = .011) and depression (β = -.164, p = .004) was found. Multiple regression analysis indicates similar results: Time spent in active transport on the bicycle significantly lowers anxiety and depression scores and enhances subjective physical well-being. The more time a participant spends using the bicycle for transport, the lower the depression (β = -.143, p = .013) and anxiety scores (β = -.111,p = .050). Conclusions: Meeting the PA recommendations enhances subjective physical well-being. Active transport has a substantial impact on mental well-being. Findings have implications for policymakers, employers, public health experts and civil society. A stronger focus on the promotion and protection of health through active transport is recommended. Inter-sectoral exchange, outside the health sector, is required. Health systems must engage other sectors in adopting policies that maximize possible health gains.Keywords: active transport, mental well-being, health promotion, psychological disorders
Procedia PDF Downloads 3212176 Fuel Quality of Biodiesel from Chlorella protothecoides Microalgae Species
Authors: Mukesh Kumar, Mahendra Pal Sharma
Abstract:
Depleting fossil fuel resources coupled with serious environmental degradation has led to the search for alternative resources for biodiesel production as a substitute of Petro-diesel. Currently, edible, non-edible oils and microalgal plant species are cultivated for biodiesel production. Looking at the demerits of edible and non-edible oil resources, the focus is being given to grow microalgal species having high oil productivities, less maturity time and less land requirement. Out of various microalgal species, Chlorella protothecoides is considered as the most promising species for biodiesel production owing to high oil content (58 %), faster growth rate (24–48 h) and high biomass productivity (1214 mg/l/day). The present paper reports the results of optimization of reaction parameters of transesterification process as well as the kinetics of transesterification with 97% yield of biodiesel. The measurement of fuel quality of microalgal biodiesel shows that the biodiesel exhibit very good oxidation stability (O.S) of 7 hrs, more than ASTM D6751 (3 hrs) and EN 14112 (6 hrs) specifications. The CP and PP of 0 and -3 °C are finding as per ASTM D 2500-11 and ASTM D 97-12 standards. These results show that the microalgal biodiesel does not need any enhancement in O.S & CFP and hence can be recommended to be directly used as MB100 or its blends into diesel engine operation. Further, scope is available for the production of binary blends using poor quality biodiesel for engine operation.Keywords: fuel quality, methyl ester yield, microalgae, transesterification
Procedia PDF Downloads 2152175 Principal Component Analysis in Drug-Excipient Interactions
Authors: Farzad Khajavi
Abstract:
Studies about the interaction between active pharmaceutical ingredients (API) and excipients are so important in the pre-formulation stage of development of all dosage forms. Analytical techniques such as differential scanning calorimetry (DSC), Thermal gravimetry (TG), and Furrier transform infrared spectroscopy (FTIR) are commonly used tools for investigating regarding compatibility and incompatibility of APIs with excipients. Sometimes the interpretation of data obtained from these techniques is difficult because of severe overlapping of API spectrum with excipients in their mixtures. Principal component analysis (PCA) as a powerful factor analytical method is used in these situations to resolve data matrices acquired from these analytical techniques. Binary mixtures of API and interested excipients are considered and produced. Peaks of FTIR, DSC, or TG of pure API and excipient and their mixtures at different mole ratios will construct the rows of the data matrix. By applying PCA on the data matrix, the number of principal components (PCs) is determined so that it contains the total variance of the data matrix. By plotting PCs or factors obtained from the score of the matrix in two-dimensional spaces if the pure API and its mixture with the excipient at the high amount of API and the 1:1mixture form a separate cluster and the other cluster comprise of the pure excipient and its blend with the API at the high amount of excipient. This confirms the existence of compatibility between API and the interested excipient. Otherwise, the incompatibility will overcome a mixture of API and excipient.Keywords: API, compatibility, DSC, TG, interactions
Procedia PDF Downloads 1332174 Effect of pH-Dependent Surface Charge on the Electroosmotic Flow through Nanochannel
Authors: Partha P. Gopmandal, Somnath Bhattacharyya, Naren Bag
Abstract:
In this article, we have studied the effect of pH-regulated surface charge on the electroosmotic flow (EOF) through nanochannel filled with binary symmetric electrolyte solution. The channel wall possesses either an acidic or a basic functional group. Going beyond the widely employed Debye-Huckel linearization, we develop a mathematical model based on Nernst-Planck equation for the charged species, Poisson equation for the induced potential, Stokes equation for fluid flow. A finite volume based numerical algorithm is adopted to study the effect of key parameters on the EOF. We have computed the coupled governing equations through the finite volume method and our results found to be in good agreement with the analytical solution obtained from the corresponding linear model based on low surface charge condition or strong electrolyte solution. The influence of the surface charge density, reaction constant of the functional groups, bulk pH, and concentration of the electrolyte solution on the overall flow rate is studied extensively. We find the effect of surface charge diminishes with the increase in electrolyte concentration. In addition for strong electrolyte, the surface charge becomes independent of pH due to complete dissociation of the functional groups.Keywords: electroosmosis, finite volume method, functional group, surface charge
Procedia PDF Downloads 4192173 Hydrochemical Assessment and Quality Classification of Water in Torogh and Kardeh Dam Reservoirs, North-East Iran
Authors: Mojtaba Heydarizad
Abstract:
Khorasan Razavi is the second most important province in north-east of Iran, which faces a water shortage crisis due to recent droughts and huge water consummation. Kardeh and Torogh dam reservoirs in this province provide a notable part of Mashhad metropolitan (with more than 4.5 million inhabitants) potable water needs. Hydrochemical analyses on these dam reservoirs samples demonstrate that MgHCO3 in Kardeh and CaHCO3 and to lower extent MgHCO3 water types in Torogh dam reservoir are dominant. On the other hand, Gibbs binary diagram demonstrates that rock weathering is the main factor controlling water quality in dam reservoirs. Plotting dam reservoir samples on Mg2+/Na+ and HCO3-/Na+ vs. Ca2+/ Na+ diagrams demonstrate evaporative and carbonate mineral dissolution is the dominant rock weathering ion sources in these dam reservoirs. Cluster Analyses (CA) also demonstrate intense role of rock weathering mainly (carbonate and evaporative minerals dissolution) in water quality of these dam reservoirs. Studying water quality by the U.S. National Sanitation Foundation (NSF) WQI index NSF-WQI, Oregon Water Quality Index (OWQI) and Canadian Water Quality Index DWQI index show moderate and good quality.Keywords: hydrochemistry, water quality classification, water quality indexes, Torogh and Kardeh dam reservoir
Procedia PDF Downloads 2552172 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data
Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan
Abstract:
Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data
Procedia PDF Downloads 4412171 Measures of Corporate Governance Efficiency on the Quality Level of Value Relevance Using IFRS and Corporate Governance Acts: Evidence from African Stock Exchanges
Authors: Tchapo Tchaga Sophia, Cai Chun
Abstract:
This study measures the efficiency level of corporate governance to improve the quality level of value relevance in the resolution of market value efficiency increase issues, transparency problems, risk frauds, agency problems, investors' confidence, and decision-making issues using IFRS and Corporate Governance Acts (CGA). The final sample of this study contains 3660 firms from ten countries' stock markets from 2010 to 2020. Based on the efficiency market theory and the positive accounting theory, this paper uses multiple econometrical methods (DID method, multivariate and univariate regression methods) and models (Ohlson model and compliance index model) regression to see the incidence results of corporate governance mechanisms on the value relevance level under the influence of IFRS and corporate governance regulations act framework in Africa's stock exchanges for non-financial firms. The results on value relevance show that the corporate governance system, strengthened by the adoption of IFRS and enforcement of new corporate governance regulations, produces better financial statement information when its compliance level is high. And that is both value-relevant and comparable to results in more developed markets. Similar positive and significant results were obtained when predicting future book value per share and earnings per share through the determination of stock price and stock return. The findings of this study have important implications for regulators, academics, investors, and other users regarding the effects of IFRS and the Corporate Governance Act (CGA) on the relationship between corporate governance and accounting information relevance in the African stock market. The contributions of this paper are also based on the uniqueness of the data used in this study. The unique data is from Africa, and not all existing findings provide evidence for Africa and of the DID method used to examine the relationship between corporate governance and value relevance on African stock exchanges.Keywords: corporate governance value, market efficiency value, value relevance, African stock market, stock return-stock price
Procedia PDF Downloads 572170 Roots of Terror in Pakistan: Analyzing the Effects of Education and Economic Deprivation on Incidences of Terrorism
Authors: Laraib Niaz
Abstract:
This paper analyzes the ways in which education and economic deprivation are linked to terrorism in Pakistan using data for terrorist incidents from the Global Terrorism Database (GTD). It employs the technique of negative binomial regression for the years between 1990 and 2013, presenting evidence for a positive association between education and terrorism. Conversely, a negative correlation with economic deprivation is signified in the results. The study highlights the element of radicalization as witnessed in the curriculum and textbooks of public schools as a possible reason for extremism, which in turn may lead to terrorism.Keywords: education, Pakistan, terrorism, poverty
Procedia PDF Downloads 3882169 Separation of Oryzanol from Rice Bran Oil Using Silica: Equilibrium of Batch Adsorption
Authors: A. D. Susanti, W. B. Sediawan, S. K. Wirawan, Budhijanto, Ritmaleni
Abstract:
Rice bran oil contains significant amounts of oryzanol, a natural antioxidant that considered has higher antioxidant activity than vitamin E (tocopherol). Oryzanol reviewed has several health properties and interested in pharmacy, nutrition, and cosmetics. For practical usage, isolation and purification would be necessary due to the low concentration of oryzanol in crude rice bran oil (0.9-2.9%). Batch chromatography has proved as a promising process for the oryzanol recovery, but productivity was still low and scale-up processes of industrial interest have not yet been described. In order to improve productivity of batch chromatography, a continuous chromatography design namely Simulated Moving Bed (SMB) concept have been proposed. The SMB concept has interested for continuous commercial scale separation of binary system (oryzanol and rice bran oil), and rice bran oil still obtained as side product. Design of SMB chromatography for oryzanol separation requires quantification of its equilibrium. In this study, equilibrium of oryzanol separation conducted in batch adsorption using silica as the adsorbent and n-hexane/acetone (9:1) as the eluent. Three isotherm models, namely the Henry, Langmuir, and Freundlich equations, have been applied and modified for the experimental data to establish appropriate correlation for each sample. It turned out that the model quantitatively describe the equilibrium experimental data and will directed for design of SMB chromatography.Keywords: adsorption, equilibrium, oryzanol, rice bran oil, simulated moving bed
Procedia PDF Downloads 2832168 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 382167 The Effect of Peer Support on Adaptation to University Life in First Year Students of the University
Authors: Bilgen Ozluk, Ayfer Karaaslan
Abstract:
Introduction: Adaptation to university life is a difficult process for students. In peer support, students are expected to help other students or sometimes adults using their helping skills. Therefore, it is expected that peer support will have significant effect on students’ adaptation to university life. Aim: This study was conducted with the aim of determining the effect of peer support on adaptation to university life in the first year students of the faculty of health sciences. Methods: The population consists of 340 first year university students receiving education in the departments of nursing, health management, social services, nutrition and dietetics, physiotherapy and rehabilitation at an university located in the province of Konya. The sample of the study consisted of 274 students who voluntarily participated in the study. The data were collected between the dates 23 May 2016 and 3 June 2016. The data were collected using the socio-demographic information, the peer support scale and the university life adaptation scale. Ethical approvals for the study and permission from the university were taken. Numbers, percentages, averages, one-Way ANOVA, pearson correlation analysis and regression analysis have been used in assessing the data. Findings: When the problems most frequently encountered by students just starting the university were ordered, problems regarding their classes took the first place by 41.6%, socio-cultural problems took the second place by 38.7%, and economic problems took the third place by 37.6%. The mean total score of the Adaptation to University Life Scale was found to be 216.78±32.15. Considering that the lowest and highest scores that can be gained from the scale are 132 and 289 respectively, it was found that the adaptation to university life levels of the students were higher than the average. The mean adaptation to university life score of the nursing students was higher than those of the students of other departments. The mean score of ‘the Peer Support Scale’ was found to be 47.24±10.27. Considering that the lowest and highest scores that can be gained from the scale are 17 and 68 respectively, it was found that the peer support levels of the students were higher than the average. As a result of the regression analysis, it was found that 20% of the total variance regarding adaptation to university life was explained by peer support. Conclution: Receiving the support peer groups becomes highly important in the university adaptation process of first-year students. Peer support will create the means for easier completion of this difficult transition process.Keywords: adaptation to university life, first years, peer support, university student
Procedia PDF Downloads 2152166 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 1492165 Prevalence and Risk Factors of Cardiovascular Diseases among Bangladeshi Adults: Findings from a Cross Sectional Study
Authors: Fouzia Khanam, Belal Hossain, Kaosar Afsana, Mahfuzar Rahman
Abstract:
Aim: Although cardiovascular diseases (CVD) has already been recognized as a major cause of death in developed countries, its prevalence is rising in developing countries as well, and engendering a challenge for the health sector. Bangladesh has experienced an epidemiological transition from communicable to non-communicable diseases over the last few decades. So, the rising prevalence of CVD and its risk factors are imposing a major problem for the country. We aimed to examine the prevalence of CVDs and socioeconomic and lifestyle factors related to it from a population-based survey. Methods: The data used for this study were collected as a part of a large-scale cross-sectional study conducted to explore the overall health status of children, mothers and senior citizens of Bangladesh. Multistage cluster random sampling procedure was applied by considering unions as clusters and households as the primary sampling unit to select a total of 11,428 households for the base survey. Present analysis encompassed 12338 respondents of ≥ 35 years, selected from both rural areas and urban slums of the country. Socio-economic, demographic and lifestyle information were obtained through individual by a face-to-face interview which was noted in ODK platform. And height, weight, blood pressure and glycosuria were measured using standardized methods. Chi-square test, Univariate modified Poisson regression model, and multivariate modified Poisson regression model were done using STATA software (version 13.0) for analysis. Results: Overall, the prevalence of CVD was 4.51%, of which 1.78% had stroke and 3.17% suffered from heart diseases. Male had higher prevalence of stroke (2.20%) than their counterparts (1.37%). Notably, thirty percent of respondents had high blood pressure and 5% population had diabetes and more than half of the population was pre-hypertensive. Additionally, 20% were overweight, 77% were smoker or consumed smokeless tobacco and 28% of respondents were physically inactive. Eighty-two percent of respondents took extra salt while eating and 29% of respondents had deprived sleep. Furthermore, the prevalence of risk factor of CVD varied according to gender. Women had a higher prevalence of overweight, obesity and diabetes. Women were also less physically active compared to men and took more extra salt. Smoking was lower in women compared to men. Moreover, women slept less compared to their counterpart. After adjusting confounders in modified Poisson regression model, age, gender, occupation, wealth quintile, BMI, extra salt intake, daily sleep, tiredness, diabetes, and hypertension remained as risk factors for CVD. Conclusion: The prevalence of CVD is significant in Bangladesh, and there is an evidence of rising trend for its risk factors such as hypertension, diabetes especially in older population, women and high-income groups. Therefore, in this current epidemiological transition, immediate public health intervention is warranted to address the overwhelming CVD risk.Keywords: cardiovascular diseases, diabetes, hypertension, stroke
Procedia PDF Downloads 3812164 The Teacher’s Role in Generating and Maintaining the Motivation of Adult Learners of English: A Mixed Methods Study in Hungarian Corporate Contexts
Authors: Csaba Kalman
Abstract:
In spite of the existence of numerous second language (L2) motivation theories, the teacher’s role in motivating learners has remained an under-researched niche to this day. If we narrow down our focus on the teacher’s role on motivating adult learners of English in an English as a Foreign Language (EFL) context in corporate environments, empirical research is practically non-existent. This study fills the above research niche by exploring the most motivating aspects of the teacher’s personality, behaviour, and teaching practices that affect adult learners’ L2 motivation in corporate contexts in Hungary. The study was conducted in a wide range of industries in 18 organisations that employ over 250 people in Hungary. In order to triangulate the research, 21 human resources managers, 18 language teachers, and 466 adult learners of English were involved in the investigation by participating in interview studies, and quantitative questionnaire studies that measured ten scales related to the teacher’s role, as well as two criterion measure scales of intrinsic and extrinsic motivation. The qualitative data were analysed using a template organising style, while descriptive, inferential statistics, as well as multivariate statistical techniques, such as correlation and regression analyses, were used for analysing the quantitative data. The results showed that certain aspects of the teacher’s personality (thoroughness, enthusiasm, credibility, and flexibility), as well as preparedness, incorporating English for Specific Purposes (ESP) in the syllabus, and focusing on the present, proved to be the most salient aspects of the teacher’s motivating influence. The regression analyses conducted with the criterion measure scales revealed that 22% of the variance in learners’ intrinsic motivation could be explained by the teacher’s preparedness and appearance, and 23% of the variance in learners’ extrinsic motivation could be attributed to the teacher’s personal branding and incorporating ESP in the syllabus. The findings confirm the pivotal role teachers play in motivating L2 learners independent of the context they teach in; and, at the same time, call for further research so that we can better conceptualise the motivating influence of L2 teachers.Keywords: adult learners, corporate contexts, motivation, teacher’s role
Procedia PDF Downloads 1052163 Similar Correlation of Meat and Sugar to Global Obesity Prevalence
Authors: Wenpeng You, Maciej Henneberg
Abstract:
Background: Sugar consumption has been overwhelmingly advocated as a major dietary offender to obesity prevalence. Meat intake has been hypothesized as an obesity contributor in previous publications, but a moderate amount of meat to be included in our daily diet still has been suggested in many dietary guidelines. Comparable sugar and meat exposure data were obtained to assess the difference in relationships between the two major food groups and obesity prevalence at population level. Methods: Population level estimates of obesity and overweight rates, per capita per day exposure of major food groups (meat, sugar, starch crops, fibers, fats and fruits) and total calories, per capita per year GDP, urbanization and physical inactivity prevalence rate were extracted and matched for statistical analysis. Correlation coefficient (Pearson and partial) comparisons with Fisher’s r-to-z transformation and β range (β ± 2 SE) and overlapping in multiple linear regression (Enter and Stepwise) were used to examine potential differences in the relationships between obesity prevalence and sugar exposure and meat exposure respectively. Results: Pearson and partial correlations (controlled for total calories, physical inactivity prevalence, GDP and urbanization) analyses revealed that sugar and meat exposures correlated to obesity and overweight prevalence significantly. Fisher's r-to-z transformation did not show statistically significant difference in Pearson correlation coefficients (z=-0.53, p=0.5961) or partial correlation coefficients (z=-0.04, p=0.9681) between obesity prevalence and both sugar exposure and meat exposure. Both Enter and Stepwise models in multiple linear regression analysis showed that sugar and meat exposure were most significant predictors of obesity prevalence. Great β range overlapping in the Enter (0.289-0.573) and Stepwise (0.294-0.582) models indicated statistically sugar and meat exposure correlated to obesity without significant difference. Conclusion: Worldwide sugar and meat exposure correlated to obesity prevalence at the same extent. Like sugar, minimal meat exposure should also be suggested in the dietary guidelines.Keywords: meat, sugar, obesity, energy surplus, meat protein, fats, insulin resistance
Procedia PDF Downloads 3062162 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange
Procedia PDF Downloads 3322161 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis
Authors: Adrian-Gabriel Chifu, Sebastien Fournier
Abstract:
One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.Keywords: sentiment analysis, difficulty, classification, machine learning
Procedia PDF Downloads 892160 A Quantitative Study Investigating Whether the Internalisation of Adolescent Femininity Ideologies Predicts Depression and Anxiety in Female Adolescents
Authors: Tondani Mudau, Sherine B. Van Wyk, Zuhayr Kafaar, Janan Dietrich
Abstract:
Female adolescents residing in a patriarchal society such as South Africa are more inclined to embrace feminine ideologies. Internalizing these ideologies may expose female adolescents to mental health challenges such as depression and anxiety. This study explored whether the internalisation of adolescent femininity ideologies namely, objectified relationship with own body (ORB) and inauthentic self in relationships (ISR) predicted anxiety and depression in late female adolescents at Stellenbosch University. The sample of the study consisted of 1451 (18-24) female undergraduate and postgraduate students enrolled at Stellenbosch University. The mean age of the participants was 20 (SD=1.46), and most participants (39.7%) were first-year students. The study employed a cross-sectional quantitative research design. Data was collected through an online self-completion survey, the survey consisted of three sections, the first section asked biographical questions regarding age, gender, race and family background. The second section measured the internalisation of feminine ideologies by using the adolescent femininity ideology scale which has two subscales namely inauthentic self in relationship with others (ISR) and objectified relationship with one’s own body (ORB). The ISR scale had the Cronbach Alpha of 0.76, and the ORB scale had the Cronbach Alpha of 0.83. The third section measured mental health (depression and anxiety) by using the Hopkins Symptoms 25-checklist which had the Cronbach Alpha of 0.93. Data were analysed through multiple linear regression from IBM SPSS (Statistical Package for the Social Sciences Version 24). The overall results of the multiple linear regression showed that The AFIS combination accounted for 14% for anxiety as measured by the Hopkins Symptoms Checklist R² = .142, F (2, 682) = 56.431, p < .001. The combination also accounted for 24% for depression as measured by the Hopkins Symptoms Checklist R² = .239, F (2, 682) = 106.971, p < .0. The findings in this study affirm the objectification and feminist theory contentions that internalising femininity ideologies (ISR and ORB) predict negative mental health in female adolescents.Keywords: adolescents, anxiety, depression, feminine ideologies, inauthentic self, mental health, self-objectification, South Africa
Procedia PDF Downloads 1512159 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM
Authors: Prateek Singh, Dilshad Ahmad
Abstract:
Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish
Procedia PDF Downloads 2082158 The Associations of Family Support with Sexual Behaviour and Repeat Induced Abortion among Chinese Adolescents
Authors: Jiashu Shen
Abstract:
Background: The abortion rate has increased significantly, which is harmful especially to adolescents, making repeat induced abortion (RIA) among adolescents a social problem. This study aims to investigate the associations of family support with sexual behavior and repeat induced abortion among Chinese adolescents Methods: This study based on a national hospital-based sample with 945 girls aged 15-19 who underwent induced abortion in 43 hospitals. Multivariate logistic regressions were performed to estimated odds ratio for the risk factors. Results: Adolescences living with parents were less inclined to undergo RIA, especially if they were rural (adjusted odds ratio=0.48 95%CI 0.31-0.72) and local (adjusted odds ratio =0.39 95%=0.23-0.66). Those with parental financial support were likely to have less sexual partnersand take contraceptives more regularly. Those with higher self-perceived importance in family were more likely to take contraceptives during the first sexual intercourse in higher age, and with higher first abortion age and less sexual partners. Conclusion: In mainland China, living with parents, parental financial support, high self-perceived importance in family and adequate family sexuality communications may contribute to lower incidence of RIA.Keywords: Chinese adolescent, family support, repeat induced abortion, sexual behavior
Procedia PDF Downloads 1202157 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 2972156 An Adaptive Application of Emotionally Focused Couple Therapy with Trans and Nonbinary Couples
Authors: Reihaneh Mahdavishahri, Dumayi Gutierrez
Abstract:
Emotionally focused couple therapy (EFCT) is one of the most effective and evidence-based approaches to couple therapy. Yet, literature is scarce of its effective application with trans and non-binary couples. It is estimated that 1.4 million trans adults live in the United Stated, with about 40% of these individuals experiencing serious psychological distress within the past month. Trans and nonbinary adults are significantly likely to experience discrimination, harassment, family rejection, and relationship challenges throughout the course of their lives. As systemic therapists, applying an informed lens when working with trans and nonbinary couples can contribute to providing effective mental health care to these individuals. This paper aims to provide a comprehensive, intersectional, and culturally informed application of EFCT with trans and nonbinary couples. We will address the current literature on applications of EFCT with diverse couples, EFCT’s strengths and limitations on cultural humility, and the gaps within current systems of care for trans and nonbinary couples. We will then provide an adaptive application of EFCT to help trans, and nonbinary couples recover from potential attachment injuries in their relationships, intersecting gender minority stressors, and achieve healing and restoration in their interpersonal dynamics.Keywords: attachment, culturally informed care, emotionally focused couple therapy, trans and nonbinary couples
Procedia PDF Downloads 742155 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 762154 Negative Perceptions of Ageing Predicts Greater Dysfunctional Sleep Related Cognition Among Adults Aged 60+
Authors: Serena Salvi
Abstract:
Ageistic stereotypes and practices have become a normal and therefore pervasive phenomenon in various aspects of everyday life. Over the past years, renewed awareness towards self-directed age stereotyping in older adults has given rise to a line of research focused on the potential role of attitudes towards ageing on seniors’ health and functioning. This set of studies has showed how a negative internalisation of ageistic stereotypes would discourage older adults in seeking medical advice, in addition to be associated to negative subjective health evaluation. An important dimension of mental health that is often affected in older adults is represented by sleep quality. Self-reported sleep quality among older adults has shown to be often unreliable when compared to their objective sleep measures. Investigations focused on self-reported sleep quality among older adults have suggested how this portion of the population would tend to accept disrupted sleep if believed to be up to standard for their age. On the other hand, unrealistic expectations, and dysfunctional beliefs towards sleep in ageing, might prompt older adults to report sleep disruption even in the absence of objective disrupted sleep. Objective of this study is to examine an association between personal attitudes towards ageing in adults aged 60+ and dysfunctional sleep related cognition. More in detail, this study aims to investigate a potential association between personal attitudes towards ageing, sleep locus of control and dysfunctional beliefs towards sleep among this portion of the population. Data in this study were statistically analysed in SPSS software. Participants were recruited through the online participants recruitment system Prolific. Inclusion of attention check questions throughout the questionnaire and consistency of responses were looked at. Prior to the commencement of this study, Ethical Approval was granted (ref. 39396). Descriptive statistics were used to determine the frequency, mean, and SDs of the variables. Pearson coefficient was used for interval variables, independent T-test for comparing means between two independent groups, analysis of variance (ANOVA) test for comparing the means in several independent groups, and hierarchical linear regression models for predicting criterion variables based on predictor variables. In this study self-perceptions of ageing were assessed using APQ-B’s subscales, while dysfunctional sleep related cognition was operationalised using the SLOC and the DBAS16 scales. Of the final subscales taken in consideration in the brief version of the APQ questionnaire, Emotional Representations (ER), Control Positive (PC) and Control and Consequences Negative (NC) have shown to be of particularly relevance for the remits of this study. Regression analysis show how an increase in the APQ-B subscale Emotional Representations (ER) predicts an increase in dysfunctional beliefs and attitudes towards sleep in this sample, after controlling for subjective sleep quality, level of depression and chronological age. A second regression analysis showed that APQ-B subscales Control Positive (PC) and Control and Consequences Negative (NC) were significant predictors in the change of variance of SLOC, after controlling for subjective sleep quality, level of depression and dysfunctional beliefs about sleep.Keywords: sleep-related cognition, perceptions of aging, older adults, sleep quality
Procedia PDF Downloads 1032153 Predicting College Students’ Happiness During COVID-19 Pandemic; Be optimistic and Well in College!
Authors: Michiko Iwasaki, Jane M. Endres, Julia Y. Richards, Andrew Futterman
Abstract:
The present study aimed to examine college students’ happiness during COVID19-pandemic. Using the online survey data from 96 college students in the U.S., a regression analysis was conducted to predict college students’ happiness. The results indicated that a four-predictor model (optimism, college students’ subjective wellbeing, coronavirus stress, and spirituality) explained 57.9% of the variance in student’s subjective happiness, F(4,77)=26.428, p<.001, R2=.579, 95% CI [.41,.66]. The study suggests the importance of learned optimism among college students.Keywords: COVID-19, optimism, spirituality, well-being
Procedia PDF Downloads 2262152 Analysis of Interpolation Factor in Pulse Shaping Filter on MRC for CDMA 2000 Systems
Authors: Pankaj Verma, Gagandeep Singh Walia, Padma Devi, H. P. Singh
Abstract:
Code Division Multiple Access 2000 operates on various RF channel bandwidths 1.2288 or 3.6864 Mcps. CDMA offers high bandwidth and wireless broadband services but the efficiency gets decreased because of many interfering factors like fading, interference, scattering, diffraction, refraction, reflection etc. To reduce the spectral bandwidth is one of the major concerns in modern day technology and this is achieved by pulse shaping filter. This paper investigates the effect of diversity (MRC), interpolation factor in Root Raised Cosine (RRC) filter for the QPSK and BPSK modulation schemes. It is made possible to send information with minimum inter symbol interference and within limited bandwidth with proper pulse shaping technique. Bit error rate (BER) performance is analyzed by applying diversity technique by varying the interpolation factor for Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK). Interpolation factor increases the original sampling rate of a sequence to a higher rate and reduces the interference and diversity reduces the fading.Keywords: CDMA2000, root raised cosine, roll off factor, ISI, diversity, interference, fading
Procedia PDF Downloads 4752151 An Enhanced Hybrid Backoff Technique for Minimizing the Occurrence of Collision in Mobile Ad Hoc Networks
Authors: N. Sabiyath Fatima, R. K. Shanmugasundaram
Abstract:
In Mobile Ad-hoc Networks (MANETS), every node performs both as transmitter and receiver. The existing backoff models do not exactly forecast the performance of the wireless network. Also, the existing models experience elevated packet collisions. Every time a collision happens, the station’s contention window (CW) is doubled till it arrives at the utmost value. The main objective of this paper is to diminish collision by means of contention window Multiplicative Increase Decrease Backoff (CWMIDB) scheme. The intention of rising CW is to shrink the collision possibility by distributing the traffic into an outsized point in time. Within wireless Ad hoc networks, the CWMIDB algorithm dynamically controls the contention window of the nodes experiencing collisions. During packet communication, the backoff counter is evenly selected from the given choice of [0, CW-1]. At this point, CW is recognized as contention window and its significance lies on the amount of unsuccessful transmission that had happened for the packet. On the initial transmission endeavour, CW is put to least amount value (C min), if transmission effort fails, subsequently the value gets doubled, and once more the value is set to least amount on victorious broadcast. CWMIDB is simulated inside NS2 environment and its performance is compared with Binary Exponential Backoff Algorithm. The simulation results show improvement in transmission probability compared to that of the existing backoff algorithm.Keywords: backoff, contention window, CWMIDB, MANET
Procedia PDF Downloads 277