Search results for: sustainable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12084

Search results for: sustainable energy

10374 Public Perceptions of Solar Energy in South-West Nigeria

Authors: Kugbeme Isumonah

Abstract:

The Nigerian State has continued to battle huge power supply challenges. Erratic supply, low voltage, and billing issues characterize its power sector. Solar power is increasingly being advocated for as a potential to Nigeria’s energy crisis. This study investigates how the Nigerian public perceives solar power. It employs the use of an open-ended online survey eliciting responses from participants resident in two of South-West Nigeria’s largest cities (Lagos and Ibadan). The study found that general attitudes towards solar power are positive, and the energy source is viewed with great optimism within the context of solutions to Nigeria’s energy issues. It also found no significant variation in public perceptions of solar power along demographic lines. Further, it found that finance represents the biggest barrier to broader solar power adoption. The results of this study provide evidence for policy formulation geared towards addressing finance difficulties that currently impede expansion of solar power use in Nigeria.

Keywords: public perceptions, solar energy, Nigeria, attitudes

Procedia PDF Downloads 113
10373 Sustainable Design for Building Envelope in Hot Climates: A Case Study for the Role of the Dome as a Component of an Envelope in Heat Exchange

Authors: Akeel Noori Almulla Hwaish

Abstract:

Architectural design is influenced by the actual thermal behaviour of building components, and this in turn depends not only on their steady and periodic thermal characteristics, but also on exposure effects, orientation, surface colour, and climatic fluctuations at the given location. Design data and environmental parameters should be produced in an accurate way for specified locations, so that architects and engineers can confidently apply them in their design calculations that enable precise evaluation of the influence of various parameters relating to each component of the envelope, which indicates overall thermal performance of building. The present paper will be carried out with an objective of thermal behaviour assessment and characteristics of the opaque and transparent parts of one of the very unique components used as a symbolic distinguished element of building envelope, its thermal behaviour under the impact of solar temperatures, and its role in heat exchange related to a specific U-value of specified construction materials alternatives. The research method will consider the specified Hot-Dry weather and new mosque in Baghdad, Iraq as a case study. Also, data will be presented in light of the criteria of indoor thermal comfort in terms of design parameters and thermal assessment for a“model dome”. Design alternatives and considerations of energy conservation, will be discussed as well using comparative computer simulations. Findings will be incorporated to outline the conclusions clarifying the important role of the dome in heat exchange of the whole building envelope for approaching an indoor thermal comfort level and further research in the future.

Keywords: building envelope, sustainable design, dome impact, hot-climates, heat exchange

Procedia PDF Downloads 479
10372 Development of a Green Star Certification Tool for Existing Buildings in South Africa

Authors: Bouwer Kleynhans

Abstract:

The built environment is responsible for about 40% of the world’s energy consumption and generates one third of global carbon dioxide emissions. The Green Building Council of South Africa’s (GBCSA) current rating tools are all for new buildings. By far the largest portion of buildings exist stock and therefore the need to develop a certification tool for existing buildings. Direct energy measurement comprises 27% of the total available points in this tool. The aim of this paper is to describe the development process of a green star certification tool for existing buildings in South Africa with specific emphasis on the energy measurement criteria. Successful implementation of this tool within the property market will ensure a reduced carbon footprint of buildings.

Keywords: certification tool, development process, energy consumption, green buildings

Procedia PDF Downloads 327
10371 Compensation Mechanism Applied to Eco-Tourism Development in China

Authors: Min Wei

Abstract:

With the rapid development eco-tourism resources exploitation, the conflict between economy development and ecological environment is increasingly prominent. The environmental protection laws, however, are lack of necessary legal support to use market mechanism and economic means to carry out ecological compensation and promote the environmental protection. In order to protect the sustainable utilization of eco-tourism resources and the benign development of the interests of various stakeholders, protection of ecological compensation balance should be put on schedule. The main role of institutional guarantee in eco-tourism resources' value compensation mechanism is to solve the question 'how to guarantee compensation'. The evaluation of the game model in this paper reveals that interest balance of stakeholders is an important cornerstone to obtain the sustainable development. The findings result in constructing a sustainable development pattern of eco- tourism industry based on tripartite game equilibrium among government, tourism enterprises and tourists. It is important that the social, economic and ecological environment should be harmonious development during the pursuit of eco-tourism growth.

Keywords: environmental protection, ecological compensation, eco-tourism, market mechanism

Procedia PDF Downloads 391
10370 Analysis of Ecological Footprint of Residents for Urban Spatial Restructuring

Authors: Taehyun Kim, Hyunjoo Park, Taehyun Kim

Abstract:

Since the rapid economic development, Korea has recently entered a period of low growth due to population decline and aging. Due to the urbanization around the metropolitan area and the hollowing of local cities, the ecological capacity of a city is decreasing while ecological footprints are increasing, requiring a compact space plan for maintaining urban functions. The purpose of this study is to analyze the relationship between urban spatial structure and residents' ecological footprints for sustainable spatial planning. To do this, we try to analyze the relationship between intra-urban spatial structure, such as net/gross density and service accessibility, and resident ecological footprints of food, housing, transportation, goods and services through survey and structural equation modeling. The results of the study will be useful in establishing an implementation plan for sustainable development goals (SDGs), especially for sustainable cities and communities (SDG 11) and responsible consumption and production (SDG 12) in the future.

Keywords: ecological footprint, structural equation modeling, survey, sustainability, urban spatial structure

Procedia PDF Downloads 268
10369 Study on Energy Transfer in Collapsible Soil During Laboratory Proctor Compaction Test

Authors: Amritanshu Sandilya, M. V. Shah

Abstract:

Collapsible soils such as loess are a common geotechnical challenge due to their potential to undergo sudden and severe settlement under certain loading conditions. The need for filling engineering to increase developing land has grown significantly in recent years, which has created several difficulties in managing soil strength and stability during compaction. Numerous engineering problems, such as roadbed subsidence and pavement cracking, have been brought about by insufficient fill strength. Therefore, strict control of compaction parameters is essential to reduce these distresses. Accurately measuring the degree of compaction, which is often represented by compactness is an important component of compaction control. For credible predictions of how collapsible soils will behave under complicated loading situations, the accuracy of laboratory studies is essential. Therefore, this study aims to investigate the energy transfer in collapsible soils during laboratory Proctor compaction tests to provide insights into how energy transfer can be optimized to achieve more accurate and reliable results in compaction testing. The compaction characteristics in terms of energy of loess soil have been studied at moisture content corresponding to dry of optimum, at the optimum and wet side of optimum and at different compaction energy levels. The hammer impact force (E0) and soil bottom force (E) were measured using an impact load cell mounted at the bottom of the compaction mould. The variation in energy consumption ratio (E/ E0) was observed and compared with the compaction curve of the soil. The results indicate that the plot of energy consumption ratio versus moisture content can serve as a reliable indicator of the compaction characteristics of the soil in terms of energy.

Keywords: soil compaction, proctor compaction test, collapsible soil, energy transfer

Procedia PDF Downloads 95
10368 Transition to Hydrogen Cities in Korea and Japan

Authors: Minhee Son, Kyung Nam Kim

Abstract:

This study explores the plan of the Korean and Japanese governments to transition into the hydrogen economy. Two motor companies, Hyundai Motor Company from Korea and Toyota from Japan, released the Hydrogen Fuel Cell Vehicle to monopolize the green energy automobile market. Although, they are the main countries which emit greenhouse gas, hydrogen energy can bring from a certain industry places, such as chemical plants and steel mills. Recent, the two countries have been focusing on the hydrogen industry including a fuel cell vehicle, a hydrogen station, a fuel cell plant, a residential fuel cell. The purpose of this paper is to find out the differences of the policies in the two countries to be hydrogen societies. We analyze the behavior of the public and private sectors in Korea and Japan about hydrogen energy and fuel cells for the transition of the hydrogen economy. Finally we show the similarities and differences of both countries in hydrogen fuel cells. And some cities have feature such as Hydrogen cities. Hydrogen energy can make impact environmental sustainability.

Keywords: fuel cell, hydrogen city, hydrogen fuel cell vehicle, hydrogen station, hydrogen energy

Procedia PDF Downloads 494
10367 Sustainable Development through Cleaner Production in India: Barriers and Possible Directions for Implementation Based on Case Study

Authors: Aparajita Mukherjee, D. P. Mukherjee

Abstract:

This paper critically assessed pollution problems in small and medium enterprises with unique references to foundries and sponge iron industries to survey the adverse impact on human societies and the environment. The objective of this paper was to show how cleaner production concept was implemented in one foundry through improvisation of existing technology in India. Incremental advancement of existing technology minimized environmental issues and resource utilization. This study depicted that poor fiscal help, poor enforcement of government regulations, owners’ attitude and lacking specialized technical workers were the significant hindrances towards cleaner production. The paper explored the possible ways to overcome these hindrances for cleaner production. On a more general level, findings raise important questions regarding the need for a new paradigm for the implementation of cleaner production. Improvisation of existing technology in these enterprises would be cost effective towards sustainable development.

Keywords: SME pollution, ecological crisis, sustainable development, cleaner production, training

Procedia PDF Downloads 378
10366 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines

Authors: R. T. Aggangan

Abstract:

Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.

Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand

Procedia PDF Downloads 338
10365 Electricity Sector's Status in Lebanon and Portfolio Optimization for the Future Electricity Generation Scenarios

Authors: Nour Wehbe

Abstract:

The Lebanese electricity sector is at the heart of a deep crisis. Electricity in Lebanon is supplied by Électricité du Liban (EdL) which has to suffer from technical and financial deficiencies for decades and proved to be insufficient and deficient as the demand still exceeds the supply. As a result, backup generation is widespread throughout Lebanon. The sector costs massive government resources and, on top of it, consumers pay massive additional amounts for satisfying their electrical needs. While the developed countries have been investing in renewable energy for the past two decades, the Lebanese government realizes the importance of adopting such energy sourcing strategies for the upgrade of the electricity sector in the country. The diversification of the national electricity generation mix has increased considerably in Lebanon's energy planning agenda, especially that a detailed review of the energy potential in Lebanon has revealed a great potential of solar and wind energy resources, a considerable potential of biomass resource, and an important hydraulic potential in Lebanon. This paper presents a review of the energy status of Lebanon, and illustrates a detailed review of the EDL structure with the existing problems and recommended solutions. In addition, scenarios reflecting implementation of policy projects are presented, and conclusions are drawn on the usefulness of a proposed evaluation methodology and the effectiveness of the adopted new energy policy for the electrical sector in Lebanon.

Keywords: EdL Electricite du Liban, portfolio optimization, electricity generation mix, mean-variance approach

Procedia PDF Downloads 251
10364 Demographic Factor in Ensuring Sustainable Development of the Western Region of the Republic of Kazakhstan

Authors: Nyussupova Gulnara, Kenespayeva Laura, Kelinbayeva Roza, Aubakirova Gaukhar, Zhumagulov Chingiz, Aidarkhanova Gaukhar

Abstract:

The article analyzes the development of demographic processes in four regions of the Western region of the Republic of Kazakhstan (Aktobe, Atyrau, West Kazakhstan, and Mangystau) for the period from 2000 to 2022. This study uses theoretical and methodological analysis of scientific literature, methods of comparative, statistical analysis, GIS methods, grouping and systematization, index method and structural analysis. The research identified regional characteristics, development trends, and disproportions in the population of the studied areas within the framework of sustainable demographic development. The population dynamics, the age-sex structure of the population, life expectancy, natural movement of the population, including maternal and infant mortality, are considered as important indicators of the region’s sustainability. The features of migration processes in the Western region of Kazakhstan and the factors that determine them are identified. Conclusions are drawn about the level of sustainable development of the population of the studied region based on demographic processes. The results obtained will provide scientific, methodological and information support in the sectors of economics and science, including the preparation of socio-economic development programs and the development of scientific research using GIS.

Keywords: sustainable development, demographic processes, Western Region, Republic of Kazakhstan, population structure, natural population movement, migration

Procedia PDF Downloads 70
10363 Review of Energy Efficiency Routing in Ad Hoc Wireless Networks

Authors: P. R. Dushantha Chaminda, Peng Kai

Abstract:

In this review paper, we enclose the thought of wireless ad hoc networks and particularly mobile ad hoc network (MANET), their field of study, intention, concern, benefit and disadvantages, modifications, with relation of AODV routing protocol. Mobile computing is developing speedily with progression in wireless communications and wireless networking protocols. Making communication easy, we function most wireless network devices and sensor networks, movable, battery-powered, thus control on a highly constrained energy budget. However, progress in battery technology presents that only little improvements in battery volume can be expected in the near future. Moreover, recharging or substitution batteries is costly or unworkable, it is preferable to support energy waste level of devices low.

Keywords: wireless ad hoc network, energy efficient routing protocols, AODV, EOAODV, AODVEA, AODVM, AOMDV, FF-AOMDV, AOMR-LM

Procedia PDF Downloads 221
10362 Nonlinear Triad Interactions in Magnetohydrodynamic Plasma Turbulence

Authors: Yasser Rammah, Wolf-Christian Mueller

Abstract:

Nonlinear triad interactions in incompressible three-dimensional magnetohydrodynamic (3D-MHD) turbulence are studied by analyzing data from high-resolution direct numerical simulations of decaying isotropic (5123 grid points) and forced anisotropic (10242 x256 grid points) turbulence. An accurate numerical approach toward analyzing nonlinear turbulent energy transfer function and triad interactions is presented. It involves the direct numerical examination of every wavenumber triad that is associated with the nonlinear terms in the differential equations of MHD in the inertial range of turbulence. The technique allows us to compute the spectral energy transfer and energy fluxes, as well as the spectral locality property of energy transfer function. To this end, the geometrical shape of each underlying wavenumber triad that contributes to the statistical transfer density function is examined to infer the locality of the energy transfer. Results show that the total energy transfer is local via nonlocal triad interactions in decaying macroscopically isotropic MHD turbulence. In anisotropic MHD, turbulence subject to a strong mean magnetic field the nonlinear transfer is generally weaker and exhibits a moderate increase of nonlocality in both perpendicular and parallel directions compared to the isotropic case. These results support the recent mathematical findings, which also claim the locality of nonlinear energy transfer in MHD turbulence.

Keywords: magnetohydrodynamic (MHD) turbulence, transfer density function, locality function, direct numerical simulation (DNS)

Procedia PDF Downloads 388
10361 Energy Saving Techniques for MIMO Decoders

Authors: Zhuofan Cheng, Qiongda Hu, Mohammed El-Hajjar, Basel Halak

Abstract:

Multiple-input multiple-output (MIMO) systems can allow significantly higher data rates compared to single-antenna-aided systems. They are expected to be a prominent part of the 5G communication standard. However, these decoders suffer from high power consumption. This work presents a design technique in order to improve the energy efficiency of MIMO systems; this facilitates their use in the next generation of battery-operated communication devices such as mobile phones and tablets. The proposed optimization approach consists of the use of low complexity lattice reduction algorithm in combination with an adaptive VLSI implementation. The proposed design has been realized and verified in 65nm technology. The results show that the proposed design is significantly more energy-efficient than conventional K-best MIMO systems.

Keywords: energy, lattice reduction, MIMO, VLSI

Procedia PDF Downloads 333
10360 Recovery of Waste: Feasibility and Sustainable Application of Residues from Drinking Water Treatment in Building Materials

Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque, Isabela Santos

Abstract:

The aim of this study was to perform the physicochemical characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal as the launching of the residue in the rivers, disposal in landfills or burning it, because such ways pollute watercourses, ground and air. The analyzes performed: Granulometry, identification of clay minerals, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: recovery of waste, residue, sustainable, water treatment plant, WTR

Procedia PDF Downloads 550
10359 Experimental and Numerical Modeling of Dynamic Axial Crushing of a Composite Glass/PEHD

Authors: Mahmoudi Noureddine, Kaou Abdellah

Abstract:

Energy absorption is a major requirement for automotive structures. Although crashworthy structures of composite based glass fiber have exhibited energy absorption greater than similar at other composites structures, the crush process in many cases is accompanied by fracture, rather than by plastic deformation. The crash experiments show that the tubes are crushed in progressive manner start from one end of the tubes and delamination takes place between the layers. To better understand details of the crash process, ABAQUS finite element code is used.

Keywords: Energy absorption, crash, PEHD

Procedia PDF Downloads 500
10358 Lightning Protection Design Applied to Sustainable Development

Authors: Sylvain Fauveaux, T. Nowicki

Abstract:

Lightning protection is nowadays applied worldwide since the advent of international standards. Lightning protection is widely justified by the casualties and damages involved. As a matter of fact, the lightning business is constantly growing as more and more sensible areas need to be protected. However, the worldwide demand of copper materiel is increasing as well, its price too. Furthermore, the most frequently used method of protection is consuming a lot of copper. The copper production is also consuming a large amount of natural and power resources, not to mention the ecologic balance.

Keywords: ESEAT, Lightning protection , natural resources management, NF C 17-102, sustainable development

Procedia PDF Downloads 164
10357 The Evaluation of Costs and Greenhouse Gas Reduction by Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gasses. In Japan, 'The National Plan for the Promotion of Biomass Utilization' and 'The Priority Plan for Social Infrastructure Development' were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Costs were estimated on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. Greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: global warming countermeasure, energy technology, solid fuel production, biogas

Procedia PDF Downloads 390
10356 Basic Properties of a Fundamental Particle: Behavioral-Physical and Visual Methods for the Study of Fundamental Particle

Authors: Shukran M. Dadayev

Abstract:

To author's best knowledge, in this paper, the Basic Properties and Research methods of a Fundamental Particle is studied for the first time. That's to say, Fundamental Particle has not been discovered in the Nature yet. Because Fundamental Particle consists of specific Physical, Geometrical and Internal bases. Geometrical and Internal characteristics that are considered significant for the elementary and fundamental particles aren’t basic properties, characteristics or criteria of a Fundamental Particle. Of course, completely new Physical and Visual experimental methods of Quantum mechanics and Behavioral-Physical investigations of Particles are needed to study and discover the Fundamental Particle. These are new Physical, Visual and Behavioral-Physical experimental methods for describing and discovering the Fundamental Particle in the Nature and Microworld. Fundamental Particle consists of the same Energy-Mass-Motion system and a symmetry of Energy-Mass-Motion. Fundamental Particle supplies each of the elementary particles with the same Energy-Mass-Motion system at the same time and regulates each of the particles. Fundamental Particle gives Energy, Mass and Motion to each particles at the same time, each of the Particles consists of acquired Energy-Mass-Motion system and symmetry. Energy, Mass, Motion given by the Fundamental Particle to the particles are Symmetrical Equivalent and they remain in their primary shapes in all cases. Fundamental Particle gives Energy-Mass-Motion system and symmetry consisting of different measures and functions to each of the particles. The Motion given by the Fundamental Particle to the particles is Gravitation, Gravitational Interaction not only gives Motion, but also cause Motion by attracting. All Substances, Fields and Cosmic objects consist of Energy-Mass-Motion. The Field also includes specific Mass. They are always Energetic, Massive and Active. Fundamental Particle establishes the bases of the Nature. Supplement and Regulating of all the particles existing in the Nature belongs to Fundamental Particle.

Keywords: basic properties of a fundamental particle, behavioral-physical and visual methods, energy-mass-motion system and symmetrical equivalence, fundamental particle

Procedia PDF Downloads 3778
10355 Study of Linear Generator for Vibration Energy Harvesting of Frequency more than 50Hz

Authors: Seong-Jin Cho, Jin Ho Kim

Abstract:

Energy harvesting is the technology which gathers and converts external energies such as light, vibration and heat which are disposed into reusable electrical energy and uses such electrical energy. The vibration energy harvesting is very interesting technology because it produces very high density of energy and unaffected by the climate. Vibration energy can be harvested by the electrostatic, electromagnetic and piezoelectric systems. The electrostatic system has low energy conversion efficiency, and the piezoelectric system is expensive and needs the frequent maintenance because it is made of piezoelectric ceramic. On the other hand, the electromagnetic system has a long life time and high harvesting efficiency, and it is relatively cheap. The electromagnetic harvesting system includes the linear generator and the rotary-type generator. The rotary-type generators require the additional mechanical conversion device if it uses linear motion of vibration. But, the linear generator uses directly linear motion of vibration without a mechanical conversion device, and it has uncomplicated structure and light weight compared with the rotary-type generator. Therefore, the linear electromagnetic generator can be useful in using vibration energy harvesting. The pole transformer systems need electricity sensor system for sending voltage and power information to administrator. Therefore, the battery is essential, and its regular maintenance of replacement is required. In case of the transformer of high location in mountainous areas, the person can’t easily access it resulting in high maintenance cost. To overcome these problems, we designed and developed the linear electromagnetic generator which can replace battery in electricity sensor system for sending voltage and power information of the pole transformer. And, it uses vibration energy of frequency more than 50 Hz by the pole transformer. In order to analyze the electromagnetic characteristics of small linear electric generator, a commercial electromagnetic finite element analysis program "MAXWELL" was used. Then, through the actual production and experiment of linear generator, we confirmed output power of linear generator.

Keywords: energy harvesting, frequency, linear generator, experiment

Procedia PDF Downloads 262
10354 Use of Magnesium as a Renewable Energy Source

Authors: Rafayel K. Kostanyan

Abstract:

The opportunities of use of metallic magnesium as a generator of hydrogen gas, as well as thermal and electric energy is presented in the paper. Various schemes of magnesium application are discussed and power characteristics of corresponding devices are presented. Economic estimation of hydrogen price obtained by different methods is made, including the use of magnesium as a source of hydrogen for transportation in comparison with gasoline. Details and prospects of our new inexpensive technology of magnesium production from magnesium hydroxide and magnesium bearing rocks (which are available worldwide and in Armenia) are analyzed. It is estimated the threshold cost of Mg production at which application of this metal in power engineering is economically justified.

Keywords: energy, electrodialysis, magnesium, new technology

Procedia PDF Downloads 272
10353 Sustaining Efficiency in Electricity Distribution to Enhance Effective Human Security for the Vulnerable People in Ghana

Authors: Anthony Nyamekeh-Armah Adjei, Toshiaki Aoki

Abstract:

The unreliable and poor efficiency of electricity distribution leading to frequent power outages and high losses are the major challenge facing the power distribution sector in Ghana. Distribution system routes electricity from the power generating station at a higher voltage through the transmission grid and steps it down through the low voltage lines to end users. Approximately all electricity problems and disturbances that have increased the call for renewable and sustainable energy in recent years have their roots in the distribution system. Therefore, sustaining electricity distribution efficiency can potentially contribute to the reserve of natural energy resources use in power generation, reducing greenhouse gas emission (GHG), decreasing tariffs for consumers and effective human security. Human Security is a people-centered approach where individual human being is the principal object of concern, focuses on protecting the vital core of all human lives in ways for meeting basic needs that enhance the safety and protection of individuals and communities. The vulnerability is the diminished capacity of an individual or group to anticipate, resist and recover from the effect of natural, human-induced disaster. The research objectives are to explore the causes of frequent power outages to consumers, high losses in the distribution network and the effect of poor electricity distribution efficiency on the vulnerable (poor and ordinary) people that mostly depend on electricity for their daily activities or life to survive. The importance of the study is that in a developing country like Ghana where raising a capital for new infrastructure project is difficult, it would be beneficial to enhance the efficiency that will significantly minimize the high energy losses, reduce power outage, to ensure safe and reliable delivery of electric power to consumers to secure the security of people’s livelihood. The methodology used in this study is both interview and questionnaire survey to analyze the response from the respondents on causes of power outages and high losses facing the electricity company of Ghana (ECG) and its effect on the livelihood on the vulnerable people. Among the outcome of both administered questionnaire and the interview survey from the field were; poor maintenance of existing sub-stations, use of aging equipment, use of poor distribution infrastructure and poor metering and billing system. The main observation of this paper is that the poor network efficiency (high losses and power outages) affects the livelihood of the vulnerable people. Therefore, the paper recommends that policymakers should insist on all regulation guiding electricity distribution to improve system efficiency. In conclusion, there should be decentralization of off-grid solar PV technologies to provide a sustainable and cost-effective, which can increase daily productivity and improve the quality of life of the vulnerable people in the rural communities.

Keywords: electricity efficiency, high losses, human security, power outage

Procedia PDF Downloads 289
10352 Module Based Review over Current Regenerative Braking Landing Gear

Authors: Madikeri Rohit

Abstract:

As energy efficiency is the key concern in many aircraft manufacturing companies regenerative braking is a technique using which energy lost due to friction while braking can be regained. In the operation of an aircraft, significant energy is lost during deceleration or braking which occurs during its landing phase. This problem can be overcome using Regenerative Breaking System (RBS) in landing gear. The major problem faced is regarding the batteries and the overall efficiency gained in competence with the added weight. As the amount of energy required to store is huge we need batteries with high capacity for storage. Another obstacle by using high capacity batteries is the added weight which undermines the efficiency obtained using RBS. An approach to this problem is to either use the obtained energy immediately without storage or to store in other forms such as mechanical, pneumatic and hydraulic. Problem faced with mechanical systems is the weight of the flywheel needed to obtain required efficiency. Pneumatic and hydraulic systems are a better option at present. Using hydraulic systems for storing energy is efficient as it integrates into the overall hydraulic system present in the aircraft. Another obstacle is faced with the redundancy of this system. Conventional braking must be used along with RBS in order to provide redundancy. Major benefits obtained using RBS is with the help of the energy obtained during landing which can be used of engine less taxing. This reduces fuel consumption as well as noise and air pollution. Another added benefit of using RBS is to provide electrical supply to lighting systems, cabin pressurization system and can be used for emergency power supply in case of electric failure. This paper discusses about using RBS in landing gear, problems, prospects and new techniques being pursued to improve RBS.

Keywords: regenerative braking, types of energy conversion, landing gear, energy storage

Procedia PDF Downloads 265
10351 Energy Reclamation in Micro Cavitating Flow

Authors: Morteza Ghorbani, Reza Ghorbani

Abstract:

Cavitation phenomenon has attracted much attention in the mechanical and biomedical technologies. Despite the simplicity and mostly low cost of the devices generating cavitation bubbles, the physics behind the generation and collapse of these bubbles particularly in micro/nano scale has still not well understood. In the chemical industry, micro/nano bubble generation is expected to be applicable to the development of porous materials such as microcellular plastic foams. Moreover, it was demonstrated that the presence of micro/nano bubbles on a surface reduced the adsorption of proteins. Thus, the micro/nano bubbles could act as antifouling agents. Micro and nano bubbles were also employed in water purification, froth floatation, even in sonofusion, which was not completely validated. Small bubbles could also be generated using micro scale hydrodynamic cavitation. In this study, compared to the studies available in the literature, we are proposing a novel approach in micro scale utilizing the energy produced during the interaction of the spray affected by the hydrodynamic cavitating flow and a thin aluminum plate. With a decrease in the size, cavitation effects become significant. It is clearly shown that with the aid of hydrodynamic cavitation generated inside the micro/mini-channels in addition to the optimization of the distance between the tip of the microchannel configuration and the solid surface, surface temperatures can be increased up to 50C under the conditions of this study. The temperature rise on the surfaces near the collapsing small bubbles was exploited for energy harvesting in small scale, in such a way that miniature, cost-effective, and environmentally friendly energy-harvesting devices can be developed. Such devices will not require any external power and moving parts in contrast to common energy-harvesting devices, such as those involving piezoelectric materials and micro engine. Energy harvesting from thermal energy has been widely exploited to achieve energy savings and clean technologies. We are proposing a cost effective and environmentally friendly solution for the growing individual energy needs thanks to the energy application of cavitating flows. The necessary power for consumer devices, such as cell phones and laptops, can be provided using this approach. Thus, this approach has the potential for solving personal energy needs in an inexpensive and environmentally friendly manner and can trigger a shift of paradigm in energy harvesting.

Keywords: cavitation, energy, harvesting, micro scale

Procedia PDF Downloads 197
10350 Design of New Sustainable Pavement Concrete: An Experimental Road

Authors: Manuel Rosales, Francisco Agrela, Julia Rosales

Abstract:

The development of concrete pavements that include recycled waste with active and predictive safety features is a possible approach to mitigate the harmful impacts of the construction industry, such as CO2 emissions and the consumption of energy and natural resources during the construction and maintenance of road infrastructure. This study establishes the basis for formulating new smart materials for concrete pavements and carrying out the in-situ implementation of an experimental road section. To this end, a comprehensive recycled pavement solution is developed that combines eco-hybrid cement made with 25% mixed recycled aggregate powder (pMRA) and biomass bottom ash powder (pBBA) and a 30% substitution of natural aggregate by MRA and BBA. This work is grouped in three lines. 1) construction materials with high rates of use of recycled material, 2) production processes with efficient consumption of natural resources and use of cleaner energies, and 3) implementation and monitoring of road section with sustainable concrete made from waste. The objective of this study is to ensure satisfactory rheology, mechanical strength, durability, and CO2 capture of pavement concrete manufactured from waste and its subsequent application in real road section as well as its monitoring to establish the optimal range of recycled material. The concrete developed during this study are aimed at the reuse of waste, promoting the circular economy. For this purpose, and after having carried out different tests in the laboratory, three mixtures were established to be applied on the experimental road.

Keywords: biomass bottom ash, construction and demolition waste, recycled concrete pavements, full-scale experimental road, monitoring

Procedia PDF Downloads 72
10349 Public Culture Intervention in the Sustainable Renewal of Vernacular Heritage, Taking the Villages Surrounding the Erlitou Site in China as an Example

Authors: Gong Zhang

Abstract:

The villages surrounding protected areas of the Sites are a unique vernacular heritage due to their geographical location, long history, and the combination of nature and humanity. With the construction of more and more heritage sites, the villages around them are faced with the conflict between conservation and development. How to carry out sustainable micro-renewal while preserving the authenticity of the vernacular heritage is of great importance for the co-growth of the village residents and the site. This paper focuses on the process of revitalization of the villages nearby the Erlitou Site Park in China, aiming to study how sustainable village regeneration and conservation can be carried out through the activation of public culture. Firstly, through field research and literature review, this paper studies the vernacular morphology and architecture types of more than ten historical villages around the Erlitou site and investigates the traditional vernacular culture and the daily public activities of the local villagers. Secondly, taking the nearest village to the site area, Ranzhuang Village, as an example, the paper studies the role of public cultural activity interventions on the three different stages of vernacular heritage renewal: master planning, architecture group, and acupuncture-style micro-renewal of individual buildings, aiming to summarise its impact on villagers' lives and vernacular heritage. This paper concludes that a living regeneration with a moderate public cultural activity intervention can promote the symbiosis between the heritage site and the life of the villagers and increase the vitality of the village. This study aims to use the example of village regeneration in Henan, China, as a sustainable reference for the co-development of heritage sites and villages in other parts of the world.

Keywords: Erlitou site, public culture intervention, sustainable, vernacular heritage

Procedia PDF Downloads 251
10348 Corporate Resilience Through a Sustainable Financial Function: An Innovative Model for Reconciling Sustainability and Overcoming Crises

Authors: Barzi Ghizlane, Badrane Nohayla

Abstract:

In an environment characterized by a succession of economic, environmental, and social crises, companies must reassess their financial approach, not merely with a survival mindset, but with the aim of evolving and thriving in a constantly changing context. In this process, a sustainable financial function becomes imperative to ensure long-term growth. By integrating sustainable and responsible practices, companies can better identify and anticipate risks, diversify their sources of financing, and, most importantly, strengthen the management of their resources. Indeed, the sustainable financial function goes far beyond traditional financial activities of companies. It positions itself as a strategic pillar of development and growth through the adoption of green approaches that meet their immediate needs. This perspective constitutes a combination of financial performance and sustainability. Consequently, it allows companies to navigate with agility in a changing environment while ensuring increased resilience. Moreover, a company’s ability to withstand external shocks and risks is based on three fundamental pillars. First, proactive crisis management, which essentially allows for the identification and detection of vulnerabilities related to economic and social risks, while establishing efficient and flexible financial mechanisms to mitigate their impact. Second, maintaining financial transparency is crucial to strengthening stakeholder trust, attracting investors, and solidifying the company's market reputation. Finally, incorporating responsible and resilient investments, primarily based on ESG criteria, is key. The objective of this study is to explore how the green financial function can become a key driver in increasing companies’ resilience to various contemporary crises. It aims to demonstrate that the introduction of sustainable principles in financial management is a pathway to turning challenges into opportunities for growth and transformation.

Keywords: finance, corporate, innovation, resilience, crises, performance

Procedia PDF Downloads 11
10347 Benchmarking Energy Challenges in Palm Oil Production Industry in Ghana

Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen

Abstract:

The current energy crisis in Ghana has affected significant number of industries which have direct impact on the country’s economy. Amongst the affected industries are palm oil production industries even though the impact is less as compared to fully relied national grid industries. Most of the large and medium palm oil production industries are partially grid reliance, however, the unavailability and the high cost palm biomass poses huge challenge. This paper aimed to identify and analyse the energy challenges associated with the palm oil production industries in Ghana. The study is conducted on the nine largest palm oil production plants in Ghana. Data is obtained by the use of questionnaire and observation. Since the study aimed to compare the respective energy challenges associated with nine industrial plants under study and establish a benchmark that represents a common problem of all the nine plants under study, the study uses percentile analysis and Analysis of Variance (ANOVA) as the statistical tools to validate the benchmark. The results indicate that lack of sustainability of palm biomass supply chain is the key energy challenge in the palm oil production industries in Ghana. Other problems include intermittent power supply from the grid and the low boiler efficiency due to outmoded conversion technology of the boilers. The result also demonstrates that there are statistically significant differences between the technologies in different age groups in relation to technology conversion efficiency.

Keywords: palm biomass, steam supply, energy challenges, energy benchmark

Procedia PDF Downloads 375
10346 Energy Dynamics of Solar Thermionic Power Conversion with Emitter of Graphene

Authors: Olukunle C. Olawole, Dilip K. De, Moses Emetere, Omoje Maxwell

Abstract:

Graphene can stand very high temperature up to 4500 K in vacuum and has potential for application in thermionic energy converter. In this paper, we discuss the application of energy dynamics principles and the modified Richardson-Dushman Equation, to estimate the efficiency of solar power conversion to electrical power by a solar thermionic energy converter (STEC) containing emitter made of graphene. We present detailed simulation of power output for different solar insolation, diameter of parabolic concentrator, area of the graphene emitter (same as that of the collector), temperature of the collector, physical dimensions of the emitter-collector etc. After discussing possible methods of reduction or elimination of space charge problem using magnetic field and gate, we finally discuss relative advantages of using emitters made of graphene, carbon nanotube and metals respectively in a STEC.

Keywords: graphene, high temperature, modified Richardson-Dushman equation, solar thermionic energy converter

Procedia PDF Downloads 313
10345 Storage Method for Parts from End of Life Vehicles' Dismantling Process According to Sustainable Development Requirements: Polish Case Study

Authors: M. Kosacka, I. Kudelska

Abstract:

Vehicle is one of the most influential and complex product worldwide, which affects people’s life, state of the environment and condition of the economy (all aspects of sustainable development concept) during each stage of lifecycle. With the increase of vehicles’ number, there is growing potential for management of End of Life Vehicle (ELV), which is hazardous waste. From one point of view, the ELV should be managed to ensure risk elimination, but from another point, it should be treated as a source of valuable materials and spare parts. In order to obtain materials and spare parts, there are established recycling networks, which are an example of sustainable policy realization at the national level. The basic object in the polish recycling network is dismantling facility. The output material streams in dismantling stations include waste, which very often generate costs and spare parts, that have the biggest potential for revenues creation. Both outputs are stored into warehouses, according to the law. In accordance to the revenue creation and sustainability potential, it has been placed a strong emphasis on storage process. We present the concept of storage method, which takes into account the specific of the dismantling facility in order to support decision-making process with regard to the principles of sustainable development. The method was developed on the basis of case study of one of the greatest dismantling facility in Poland.

Keywords: dismantling, end of life vehicles, sustainability, storage

Procedia PDF Downloads 277