Search results for: steel strip reinforcement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2411

Search results for: steel strip reinforcement

701 The Effect of H2S on Crystal Structure

Authors: C. Venkataraman B. E., J. Nagarajan B. E., V. Srinivasan M. Tech

Abstract:

For a better understanding on sulfide stress corrosion cracking, a theoretical approach based on crystal structure, molecule behavior, flow of electrons and electrochemical reaction is developed. Its impact on different materials such as carbon steel, low alloy, alloy for sour (H2S) environments is studied. This paper describes the theories on various disaster and failures occurred in the industry by Stress Corrosion Cracking (SCC). Parameters such as pH of process fluid, partial pressure of CO2, O2, Chlorine, effect of internal pressure (crystal structure deformation by stress), and external environment condition are considered. An analytical line graph is then created for process fluid parameter verses time, temperature, induced/residual stress due to local pressure build-up. By comparison with the load test result of NACE and ASTM, it is possible to predict and simplify the control of SCC by use of materials like ferritic, Austenitic material in the oil and gas & petroleum industries.

Keywords: crystal structure deformation, failure assessment, alloy-environment combination, H2S

Procedia PDF Downloads 387
700 Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study

Authors: Riccardo Angiuli, Michele Giannuzzi, Rodolfo Franchi, Gabriele Papadia

Abstract:

Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing.

Keywords: machining, infrared thermography, FEM, temperature measurement

Procedia PDF Downloads 171
699 Effect of Post Hardening on PVD Coated Tools

Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli

Abstract:

In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.

Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing

Procedia PDF Downloads 331
698 Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System

Authors: Asad Naeem, Jinkoo Kim

Abstract:

This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces.

Keywords: seismic retrofit, spring viscous damper, shaking table test, earthquake resistant structures

Procedia PDF Downloads 163
697 Biobased Facade: Illuminated Natural Fibre Polymer with Cardboard Core

Authors: Ralf Gliniorz, Carolin Petzoldt, Andreas Ehrlich, Sandra Gelbrich, Lothar Kroll

Abstract:

The building envelope is integral part of buildings, and renewable resources have a key role in energy consumption. So our aim was the development and implementation of a free forming facade system, consisting of fibre-reinforced polymer, which is built up of commercial biobased resin systems and natural fibre reinforcement. The field of application is aimed in modern architecture, like the office block 'Fachagentur Nachwachsende Rohstoffe e.V.' with its oak wood recyclate facade. The build-up of our elements is a classically sandwich-structured composite: face sheets as fibre-reinforced composite using polymer matrix, here a biobased epoxy, and natural fibres. The biobased core consists of stuck cardboard structure (BC-flute). Each element is manufactured from two shells in a counterpart, via hand lay-up laminate. These natural fibre skins and cardboard core have adhered 'wet-on-wet'. As a result, you get the effect of translucent face sheets with matrix illumination. Each created pixel can be controlled in RGB-colours and form together a screen at buildings. A 10 x 5 m² area 'NFP-BIO' with 25 elements is planned as a reference object in Chemnitz. The resolution is about 100 x 50 pixels. Specials are also the efficient technology of production and the possibility to extensively 3D-formed elements for buildings, replacing customary facade systems, which can give out information or advertising.

Keywords: biobased facade, cardboard core, natural fibre skins, sandwich element

Procedia PDF Downloads 197
696 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: adaptive welding, automatic welding, pipe welding, orbital welding, laser vision sensor, LVS, welding D/B

Procedia PDF Downloads 665
695 Investigation of Effect of Mixture Ratio and Compaction Pressure of Reinforced with Miscanthus Fibre Brake Pad Samples

Authors: M. Unaldi, R. Kus

Abstract:

Brake pads are important parts of the braking system and they are made of different materials. Use of asbestos fibre can cause health risks. The goal of this study is to determine the effect of ecological brake pad samples which are produced under different compaction pressure values and mixture ratios by using miscanthus as reinforcement component on the density, hardness, wear rate and compression strength properties, and friction coefficients changes of ecological brake pad samples. Miscanthus powder, cashew powder, alumina powder, phenolic resin powder, and calcite powder mixtures were used to produce ecological brake pad samples. The physical properties of the brake pad samples produced under different mixture ratios and compaction pressures values were determined to assign their effects on them by using Taguchi experimental design. Mixture ratios and compaction pressures values were chosen as the factors with three-levels. Experiments are conducted to L₉(3⁴) Taguchi orthogonal array design. The results showed that hardness value is very much affected both compaction pressure values and mixture ratios than the other physical properties. When reinforcing component ratio within the mixture and compaction pressure value is increased, hardness and compression strength values of the all samples are also increased. All test results taking into account, the ideal compaction value for used components and mixture ratios were determined as 200 MPa.

Keywords: brake pad, eco-friendly materials, hardness, Miscanthus, Taguchi method

Procedia PDF Downloads 309
694 Chemical Degradation of a Polyester Nonwoven Membrane Used in Aerosol and Drainage Filter

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester nonwoven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibres. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.

Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media

Procedia PDF Downloads 333
693 Crushing Behaviour of Thin Tubes with Various Corrugated Sections Using Finite Element Modelling

Authors: Shagil Akhtar, Syed Muneeb Iqbal, Mohammed R. Rahim

Abstract:

Common steel tubes with similar confines were used in simulation of tubes with distinctive type of corrugated sections. These corrugated cross-sections were arc-tangent, triangular, trapezoidal and square corrugated sections. The outcome of fluctuating structures of tube cross-section shape on the deformation feedback, collapse form and energy absorption characteristics of tubes under quasi-static axial compression have been prepared numerically. The finite element package of ANSYS Workbench was applied in the current analysis. The axial load-displacement products accompanied by the fold formation of disparate tubes were inspected and compared. Deviation of the initial peak load and the mean crushing force of the tubes with distinctive cross-sections were conscientiously examined.

Keywords: absorbed energy, axial loading, corrugated tubes, finite element, initial peak load, mean crushing force

Procedia PDF Downloads 368
692 Behavior of A Vertical Pile Under the Effect of an Inclined Load in Loose Sand

Authors: Fathi Mohamed Abdrabbo, Khaled Esayed Gaaver, Musab Musa Eldooma

Abstract:

This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements of pile head, as well as the deformation profiles along the pile and the pile stiffness, are significantly affected by α. It was observed that the P-Y curves of the pile-soil system are independent of α. Also, the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal load component of the applied load on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile.

Keywords: deep foundation, piles, inclined load, pile deformations

Procedia PDF Downloads 134
691 Assessment of Mechanical Properties of Induction Furnace Slag as Partial Replacement of Fine Aggregate in Concrete

Authors: Muhammad Javed Bhatti, Tariq Ali, Muazz Ali

Abstract:

Due to growing environmental awareness in Pakistan, the researchers are increasingly turning to assess and analyze properties of industrial waste and finding solutions on using industrial waste as secondary material. Due to industrialization, enormous by-products are produced and to utilize these by-products is the main challenge faced in Pakistan. Induction furnace slag is one of the industrial by-products from the iron and steel making industries. This paper highlights the true utilization of induction furnace slag as partial replacement of fine aggregate. For the experimental investigation, mixes were prepared with fine aggregate replacement using 0 percent, 5 percent, 10 percent, 15 percent, 20 percent, 25 percent, 30 percent, 35 percent and 40 percent induction furnace slag to evaluate the workability, compaction factor, compressive strength, flexural strength, modulus of elasticity.

Keywords: compressive strength, deflection, induction furnace slag, workability

Procedia PDF Downloads 282
690 Modeling and Behavior of Structural Walls

Authors: Salima Djehaichia, Rachid Lassoued

Abstract:

Reinforced concrete structural walls are very efficient elements for protecting buildings against excessive early damage and against collapse under earthquake actions. It is therefore of interest to develop a numerical model which simulates the typical behavior of these units, this paper presents and describes different modeling techniques that have been used by researchers and their advantages and limitations mentioned. The earthquake of Boumerdes in 2003 has demonstrated the fragility of structures and total neglect of sismique design rules in the realization of old buildings. Significant damage and destruction of buildings caused by this earthquake are not due to the choice of type of material, but the design and the study does not congruent with seismic code requirements and bad quality of materials. For idealizing the failure of rules, a parametric study focuses on: low rate of reinforcements, type of reinforcement, resistance moderate of concrete. As an application the modeling strategy based on finite elements combined with a discretization of wall more solicited by successive thin layers. The estimated performance level achieved during a seismic action is obtained from capacity curves under incrementally increasing loads. Using a pushover analysis, a characteristic non linear force-displacement relationship can be determined. The results of numeric model are confronted with those of Algerian Para seismic Rules (RPA) in force have allowed the determination of profits in terms of displacement, shearing action, ductility.

Keywords: modeling, old building, pushover analysis, structural walls

Procedia PDF Downloads 229
689 Anlaytical Studies on Subgrade Soil Using Jute Geotextile

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural geotextile material obtained from gunny bags was used due to its vast local availability. Construction of flexible pavement on weaker soil such as clay soils is a significant problem in construction as well as in design due to its expansive characteristics. Jute geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to an economical design. California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples, CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen. JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 422
688 Flame Acceleration of Premixed Natural Gas/Air Explosion in Closed Pipe

Authors: H. Mat Kiah, Rafiziana M. Kasmani, Norazana Ibrahim, Roshafima R. Ali, Aziatul N.Sadikin

Abstract:

An experimental study has been done to investigate the flame acceleration in a closed pipe. A horizontal steel pipe, 2m long and 0.1 m in diameter (L/D of 20), was used in this work. For tests with 90 degree bends, the bend had a radius of 0.1 m and thus, the pipe was lengthened 1 m (based on the centreline length of the segment). Ignition was affected one end of the vessel while the other end was closed. Only stoichiometric concentration (Ф, = 1.0) of natural gas/air mixtures will be reported in this paper. It was demonstrated that bend pipe configuration gave three times higher in maximum over-pressure (5.5 bars) compared to straight pipe (2.0 bars). From the results, the highest flame speed of 63 m s-1 was observed in a gas explosion with bent pipe, greater by a factor of ~3 as compared with straight pipe (23 m s-1). This occurs because bending acts similar to an obstacle, in which this mechanism can induce more turbulence, initiating combustion in an unburned pocket at the corner region and causing a high mass burning rate which increases the flame speed.

Keywords: bending, gas explosion, bending, flame acceleration, over-pressure

Procedia PDF Downloads 394
687 Revival of Old Silk Route and New Maritime Route: An Opportunity for India or Hidden Geopolitics of China

Authors: Geetanjali Sharma

Abstract:

There are always provincial variations which deserve more detailed treatment. Before the arrival of modern era, geography and cultural homogeneity were determining factors of human habitat and migration. Boundaries as if we see them, did not exist earlier. The connectivity of the world was also different as of now. The reinforcement of the old silk route will improve economic cooperation and connectivity between Asian, European and African countries, but obviously, it is designed to improve China’s geopolitical and geostrategic position in the world. The paper is based on the secondary sources of data. Analytical and historical approach has been used to clarify the ties between the old silk routes and new One-Belt-One-Road initiative China. The paper begins with an explanation of the historical background of the old Silk Route, its origin and development, trailed by an analysis of latest declarations by the Chinese leaders to revive it. It also discusses the impacts of this initiative on India’s economy and cultural exchange between associated regions. Lastly, the paper sums up the findings and suggestions for keeping a balance between the security and economic relationship between the countries. It concludes that the silk route is an effort in commencing a ‘grand strategy’ for global trade and cooperation with hidden objectives of China to increase the investment of China in other continents as well. The revival of silk route may prove to be a very helpful in reinforcing cooperation and raising it to a new level of economic establishments. However, China has yet to promote the much-needed political and strategic trust.

Keywords: OBOR (One-Belt-One-Road), geopolitics, economic relation, security concerns

Procedia PDF Downloads 266
686 Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil

Authors: Dogan Cetin, Omar Hamdi Jasim

Abstract:

Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively.

Keywords: compaction test, sawdust, shear strength, UU Triaxial Test

Procedia PDF Downloads 335
685 Extent of Applying Evidence Based Practices in Inclusion Programs for Pupils with Intellectual Disability

Authors: Faris Algahtani

Abstract:

The current study aimed to reveal the extent to which evidence-based practices are applied in programs to integrate students with intellectual disabilities from the point of view of their teachers in Yanbu Governorate, and to reveal statistically significant differences in their application of evidence-based practices according to the following variables: gender, educational qualification, experience and training courses. The researcher used the descriptive approach, and accordingly; she designed a questionnaire consisting of 22 phrases applied it to a random sample of (97) teachers of intellectual disability in the integration programs of the Ministry of Education in the government sector in Yanbu Governorate, with (49) male teachers and (48) female teachers. The study showed that teachers of students with intellectual disabilities apply evidence-based practices in programs to integrate students with intellectual disabilities to a large extent. Among the most prominent of these practices came reinforcement in the first place, followed by using visual stimuli/aids, and in the third-place came starting with less complex or challenging skills then moving to more difficult skills. The results also showed no statistically significant differences over the extent of the application attributed to the variables of experience, qualification or training. On the other hand, there were statistically significant differences over the extent of the application attributed to gender in favor of females.

Keywords: evidence-based practices, intellectual disability, inclusion programs, teachers of students with intellectual disabilities

Procedia PDF Downloads 71
684 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel During PIN on Disk Dry Wear Testing

Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed

Abstract:

This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between the contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load while dropped with the increase in ambient temperature. The highest Tdiff was 289°C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400°C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data revealed good agreement.

Keywords: pin on disk test, contact temperature, wear, sliding surface, friction, ambient temperature

Procedia PDF Downloads 55
683 Centrifuge Modeling of Monopiles Subjected to Lateral Monotonic Loading

Authors: H. R. Khodaei, M. Moradi, A. H. Tajik

Abstract:

The type of foundation commonly used today for berthing dolphins is a set of tubular steel piles with large diameters, which are known as monopiles. The design of these monopiles is based on the theories related with laterally loaded piles. One of the most common methods to analyze and design the piles subjected to lateral loads is the p-y curves. In the present study, centrifuge tests are conducted in order to obtain the p-y curves. Series of tests were designed in order to investigate the scaling laws in the centrifuge for monotonic loading. Also, two important parameters, the embedded depth L of the pile in the soil and free length e of the pile, as well as their ratios were studied via five experimental tests. Finally, the p-y curves of API are presented to be compared with the curves obtained from the tests so that the differences could be demonstrated. The results show that the p-y curves proposed by API highly overestimate the lateral load bearing capacity. It suggests that these curves need correction and modification for each site as the soil conditions change.

Keywords: centrifuge modeling, monopile, lateral loading, p-y curves

Procedia PDF Downloads 232
682 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method

Authors: Felix Jr. Garde, Eric Augustus Tingatinga

Abstract:

Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.

Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method

Procedia PDF Downloads 305
681 Efficient Prediction of Surface Roughness Using Box Behnken Design

Authors: Ajay Kumar Sarathe, Abhinay Kumar

Abstract:

Production of quality products required for specific engineering applications is an important issue. The roughness of the surface plays an important role in the quality of the product by using appropriate machining parameters to eliminate wastage due to over machining. To increase the quality of the surface, the optimum machining parameter setting is crucial during the machining operation. The effect of key machining parameters- spindle speed, feed rate, and depth of cut on surface roughness has been evaluated. Experimental work was carried out using High Speed Steel tool and AlSI 1018 as workpiece material. In this study, the predictive model has been developed using Box-Behnken Design. An experimental investigation has been carried out for this work using BBD for three factors and observed that the predictive model of Ra value is closed to predictive value with a marginal error of 2.8648 %. Developed model establishes a correlation between selected key machining parameters that influence the surface roughness in a AISI 1018. F

Keywords: ANOVA, BBD, optimisation, response surface methodology

Procedia PDF Downloads 142
680 Effect of Hooked-End Steel Fibres Geometry on Pull-Out Behaviour of Ultra-High Performance Concrete

Authors: Sadoon Abdallah, Mizi Fan, Xiangming Zhou

Abstract:

In this study, a comprehensive approach has been adopted to examine in detail the effect of various hook geometries on bond-slip characteristics. Extensive single fibre pull-out tests on ultra-high performance matrix with three different W/B ratios and embedded lengths have been carried out. Test results showed that the mechanical deformation of fibre hook is the main mechanism governing the pull-out behaviour. Furthermore, the quantitative analyses have been completed to compare the hook design contribution of 3D, 4D and 5D fibres to assess overall pull-out behaviour. It was also revealed that there is a strong relationship between the magnitude of hook contribution and W/B ratio (i.e. matrix strength). Reducing the W/B ratio from 0.20 to 0.11 greatly optimizes the interfacial transition zone (ITZ) and enables better mobilization, straightening of the hook and results in bond-slip-hardening behaviour.

Keywords: bobond mechanisms, fibre-matrix interface, hook geometry, pullout behaviour and water to binder ratio

Procedia PDF Downloads 361
679 The Nonlinear Research on Rotational Stiffness of Cuplock Joint

Authors: Liuyu Zhang, Di Mo, Qiang Yan, Min Liu

Abstract:

As the important equipment in the construction field, cuplock scaffold plays an important role in the construction process. As a scaffold connecting member, cuplock joint is of great importance. In order to explore the rotational stiffness nonlinear characteristics changing features of different structural forms of cuplock joint in different tightening torque condition under different conditions of load, ANSYS is used to establish four kinds of cuplock joint models with different forces to simulate the real force situation. By setting the different load conditions which means the cuplock is loaded at a certain distance from the cuplock joint in a certain direction until the cuplock is damaged and considering the gap between the cross bar joint and the vertical bar, the differences in the influence of the structural form and tightening torque on the rotation stiffness of the cuplock under different load conditions are compared. It is significantly important to improve the accuracy of calculating bearing capacity and stability of the cuplock steel pipe scaffold.

Keywords: cuplock joint, highway tunnel, non-linear characteristics, rotational stiffness, scaffold stability, theoretical analysis

Procedia PDF Downloads 111
678 Study on Connecting Method of Box Pontoons

Authors: Young-Jun You, Youn-Ju Jeong, Min-Su Park, Du-Ho Lee

Abstract:

Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example.

Keywords: connection, floating container terminal, pontoon, pre-stressing, shear key

Procedia PDF Downloads 306
677 New Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading

Authors: Amar Sabih, James Nemes

Abstract:

The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a new workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion.

Keywords: adiabatic sher band, ductile failure, stress instability, workability criterion

Procedia PDF Downloads 73
676 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete

Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews

Abstract:

In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).

Keywords: debonding, fibre reinforced polymers (FRP), pull-out test, stepwise regression analysis

Procedia PDF Downloads 230
675 Evaluation of Fatigue Crack Growth Rate in Weldments

Authors: Pavel Zlabek, Vaclav Mentl

Abstract:

The fatigue crack growth rate evaluation is a basic experimental characteristic when assessment o f the remaining lifetime is needed. Within the repair welding technology project, the crack growth rate at cyclic loading was measured in base and weld metals and in the situation when cracks were initiated in base metal and grew into the weld metal through heat-affected zone and back to the base metal. Two welding technologies were applied and specimens in as-welded state and after heat treatment were tested. Fatigue crack growth rate measurement was performed on CrMoV pressure vessel steel and the tests were performed at room temperature. The crack growth rate was measured on CCT test specimens (see figure) for both the base and weld metals and also in the case of crack subsequent transition through all the weld zones. A 500 kN MTS controlled electro-hydraulic testing machine and Model 632.13C-20 MTS extensometer were used to perform the tests.

Keywords: cracks, fatigue, steels, weldments

Procedia PDF Downloads 505
674 Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator

Authors: Chiang-Ho Cheng, Hong-Yih Cheng, An-Shik Yang, Tung-Hsun Hsu

Abstract:

This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system.

Keywords: actuator, nozzle, microejector, piezoelectric

Procedia PDF Downloads 412
673 Analytical Studies on Subgrade Soil Using Jute Geotextiles

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, Jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 410
672 Strength of Soft Clay Reinforced with Polypropylene Column

Authors: Muzamir Hasan, Anas Bazirgan

Abstract:

Granular columns is a technique that has the properties of improving bearing capacity, accelerating the dissipation of excess pore water pressure and reducing settlement in a weak soft soil. This research aims to investigate the role of Polypropylene column in improving the shear strength and compressibility of soft reconstituted kaolin clay by determining the effects of area replacement ratio, height penetrating ratio and volume replacement ratio of a singular Polypropylene column on the strength characteristics. Reinforced kaolin samples were subjected to Unconfined Compression (UCT) and Unconsolidated Undrained (UU) triaxial tests. The kaolin samples were 50 mm in diameter and 100 mm in height. Using the PP column reinforcement, with an area replacement ratio of 0.8, 0.5 and 0.3, shear strength increased approximately 5.27%, 26.22% and 64.28%, and 37.14%, 42.33% and 51.17%, for area replacement ratios of 25% and 10.24%. Meanwhile, UU testing showed an increase in shear strength of 24.01%, 23.17% and 23.49% and 28.79%, 27.29 and 30.81% for the same ratios. Based on the UCT results, the undrained shear strength generally increased with the decrease in height penetration ratio. However, based on the UU test results Mohr-Coulomb failure criteria, the installation of Polypropylene columns did not show any significant difference in effective friction angle. However, there was an increase in the apparent cohesion and undrained shear strength of the kaolin clay. In conclusion, Polypropylene column greatly improved the shear strength; and could therefore be implemented in reducing the cost of soil improvement as a replacement for non-renewable materials.

Keywords: polypropylene, UCT, UU test, Kaolin S300, ground improvement

Procedia PDF Downloads 312