Search results for: nano sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2477

Search results for: nano sensor

767 3D Simulation and Modeling of Magnetic-Sensitive on n-type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DGMOSFET)

Authors: M. Kessi

Abstract:

We investigated the effect of the magnetic field on carrier transport phenomena in the transistor channel region of Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). This explores the Lorentz force and basic physical properties of solids exposed to a constant external magnetic field. The magnetic field modulates the electrons and potential distribution in the case of silicon Tunnel FETs. This modulation shows up in the device's external electrical characteristics such as ON current (ION), subthreshold leakage current (IOF), the threshold voltage (VTH), the magneto-transconductance (gm) and the output magneto-conductance (gDS) of Tunnel FET. Moreover, the channel doping concentration and potential distribution are obtained using the numerical method by solving Poisson’s transport equation in 3D modules semiconductor magnetic sensors available in Silvaco TCAD tools. The numerical simulations of the magnetic nano-sensors are relatively new. In this work, we present the results of numerical simulations based on 3D magnetic sensors. The results show excellent accuracy comportment and good agreement compared with that obtained in the experimental study of MOSFETs technology.

Keywords: single-gate MOSFET, magnetic field, hall field, Lorentz force

Procedia PDF Downloads 176
766 Comparing the Experimental Thermal Conductivity Results Using Transient Methods

Authors: Sofia Mylona, Dale Hume

Abstract:

The main scope of this work is to compare the experimental thermal conductivity results of fluids between devices using transient techniques. A range of different liquids within a range of viscosities was measured with two or more devices, and the results were compared between the different methods and the reference equations wherever it was available. The liquids selected are the most commonly used in academic or industrial laboratories to calibrate their thermal conductivity instruments having a variety of thermal conductivity, viscosity, and density. Three transient methods (Transient Hot Wire, Transient Plane Source, and Transient Line Source) were compared for the thermal conductivity measurements taken by using them. These methods have been chosen as the most accurate and because they all follow the same idea; as a function of the logarithm of time, the thermal conductivity is calculated from the slope of a plot of sensor temperature rise. For all measurements, the selected temperature range was at the atmospheric level from 10 to 40 ° C. Our results are coming with an agreement with the objections of several scientists over the reliability of the results of a few popular devices. The observation was surprising that the device used in many laboratories for fast measurements of liquid thermal conductivity display deviations of 500 percent which can be very poorly reproduced.

Keywords: accurate data, liquids, thermal conductivity, transient methods.

Procedia PDF Downloads 149
765 Adsorption of Peppermint Essential Oil by Polypropylene Nanofiber

Authors: Duduku Krishnaiah, S. M. Anisuzzaman, Kumaran Govindaraj, Chiam Chel Ken, Zykamilia Kamin

Abstract:

Pure essential oil is highly demanded in the market since most of the so-called pure essential oils in the market contains alcohol. This is because of the usage of alcohol in separating oil and water mixture. Removal of pure essential oil from water without using any chemical solvent has become a challenging issue. Adsorbents generally have the properties of separating hydrophobic oil from hydrophilic mixture. Polypropylen nanofiber is a thermoplastic polymer which is produced from propylene. It was used as an adsorbent in this study. Based on the research, it was found that the polypropylene nanofiber was able to adsorb peppermint oil from the aqueous solution over a wide range of concentration. Based on scanning electron microscope (SEM), nanofiber has very small nano diameter fiber size in average before the adsorption and larger scaled average diameter of fibers after adsorption which indicates that smaller diameter of nanofiber enhances the adsorption process. The adsorption capacity of peppermint oil increases as the initial concentration of peppermint oil and amount of polypropylene nanofiber used increases. The maximum adsorption capacity of polypropylene nanofiber was found to be 689.5 mg/g at (T= 30°C). Moreover, the adsorption capacity of peppermint oil decreases as the temperature of solution increases. The equilibrium data of polypropylene nanofiber is best represented by Freundlich isotherm with the maximum adsorption capacity of 689.5 mg/g. The adsorption kinetics of polypropylene nanofiber was best represented by pseudo-second order model.

Keywords: nanofiber, adsorption, peppermint essential oil, isotherms, adsorption kinetics

Procedia PDF Downloads 151
764 Bank ATM Monitoring System Using IR Sensor

Authors: P. Saravanakumar, N. Raja, M. Rameshkumar, D. Mohankumar, R. Sateeshkumar, B. Maheshwari

Abstract:

This research work is designed using Microsoft VB. Net as front end and MySQL as back end. The project deals with secure the user transaction in the ATM system. This application contains the option for sending the failed transaction details to the particular customer by using the SMS. When the customer withdraws the amount from the Bank ATM system, sometimes the amount will not be dispatched but the amount will be debited to the particular account. This application is used to avoid this type of problems in the ATM system. In this proposed system using IR technique to detect the dispatched amount. IR Transmitter and IR Receiver are placed in the path of cash dispatch. It is connected each other through the IR signal. When the customers withdraw the amount in the ATM system then the amount will be dispatched or not is monitored by IR Receiver. If the amount will be dispatched then the signal will be interrupted between the IR Receiver and the IR Transmitter. At that time, the monitoring system will be reduced their particular withdraw amount on their account. If the cash will not be dispatched, the signal will not be interrupted, at that time the particular withdraw amount will not be reduced their account. If the transaction completed successfully, the transaction details such as withdraw amount and current balance can be sent to the customer via the SMS. If the transaction fails, the transaction failed message can be send to the customer.

Keywords: ATM system, monitoring system, IR Transmitter, IR Receiver

Procedia PDF Downloads 303
763 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress

Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu

Abstract:

The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.

Keywords: Ni-Mn coating, DC plating, internal stress, leveling power

Procedia PDF Downloads 365
762 Estimation of Gaseous Pollutants at Kalyanpur, Dhaka City

Authors: Farhana Tarannum

Abstract:

Ambient (outdoor) air pollution is now recognized as an important problem, both nationally and worldwide. The concentrations of gaseous pollutants (SOx, NOx, CO and O3) have been determined from samples collected at Kallyanpur along Shamoli corridor in Dhaka city. Pollutants were determined in a sample collected at ground level and a roof of a 7-storied building. These pollutants are emitted largely from stationary sources like fossil fuel fired power plants, industrial plants, and manufacturing facilities as well as mobile sources. The incomplete combustion of fuel, wood and the Sulphur containing fuel used in the vehicles are one of the main causes of CO and SOx respectively in our natural environment. When the temperature of combustion in high enough and some of that nitrogen reacts with oxygen in the air, various nitrogen oxides (NOx) are then formed. The VOCs react with NOx in the presence of sunlight to form O3. UV Visible spectrophotometric method has been used for the determination of SOx, NOx and O3. The sensor type device was used for the estimation of CO. It was found that the air pollutants (CO, SOx, NOx and O3) of a sample collected at the roof of a building were lower compared to the ground level; it indicated that ground level people are mostly affected by the gaseous pollutants.

Keywords: gaseous pollutants, UV-visible spectrophotometry, ambient air quality, Dhaka city

Procedia PDF Downloads 343
761 Synergetic Effects of Water and Sulfur Dioxide Treatments on Wear of Soda Lime Silicate Glass

Authors: Qian Qiao, Tongjin Xiao, Hongtu He, Jiaxin Yu

Abstract:

This study is focused on the synergetic effects of water and sulfur dioxide treatments (SO₂ treatments) on the mechanochemical wear of SLS glass. It is found that the wear behavior of SLS glass in humid air is very sensitive to the water and SO₂ treatment environments based on the wear test using a ball-on-flat reciprocation tribometer. When SLS glass is treated with SO₂-without, the presence of water, the wear resistance of SLS glass in humid air becomes significantly higher compared to the pristine glass. However, when SLS glass is treated with SO₂ with the presence of water, the wear resistance of SLS glass decreases remarkably with increasing in the relative humidity (RH) from 0% to 90%. Further analyses indicate that when sodium ions are leached out of SLS glass surface via the water and SO₂ treatments, the mechanochemical properties of SLS glass surface become different depending on the RH. At lower humidity, the nano hardness of the Na⁺-leached surface is higher, and it can contribute to the enhanced wear resistance of SLS glass. In contrast, at higher humidity conditions, the SLS glass surface is more hydrophilic, and substantial wear debris can be found inside the wear track of SLS glass. Those phenomena suggest that adhesive wear and abrasive wear dominate the wear mechanism of SLS glass in humid air, causing the decreased wear resistance of SLS glass with increasing the RH. These results may not only provide a deep understanding of the wear mechanism of SLS glass but also helpful for operation process of functional and engineering glasses.

Keywords: soda lime silicate glass, wear, water, SO₂

Procedia PDF Downloads 167
760 Synthesis, Characterization and Photocatalytic Performance of Visible Light Induced Materials

Authors: M. Muneer, Waseem Raza

Abstract:

Nano-crystalline materials of pure and metal-doped semiconducting materials have been successfully synthesized using sol gel and hydrothermal methods. The prepared materials were characterized by standard analytical techniques, i.e., XRD, SEM, EDX, UV–vis Spectroscopy and FTIR. The (XRD) analysis showed that the obtained particles are present in partial crystalline nature and exhibit no other impurity phase. The EDX and (SEM) images depicted that metals have been successfully loaded on the surface of the semiconductor. FTIR showed an additional absorption band at 910 cm−1, characteristic of absorption band indicating the incorporation of dopant into the lattice in addition to a broad and strong absorption band in the region of 410–580 cm−1 due to metal–O stretching. The UV–vis absorption spectra of synthesized particles indicate that the doping of metals into the lattice shift the absorption band towards the visible region. Thermal analysis, measurement of the synthesized sample showed that the thermal stability of pure semiconducting material is decreased due to increase in dopant concentration. The photocatalytic activity of the synthesized particles was studied by measuring the change in concentration of three different chromophoric dyes as a function of irradiation time. The photocatalytic activity of doped materials were found to increase with increase in dopant concentration.

Keywords: photocatalysis, metal doped semicondcutors, dye degradation, visible light active materials

Procedia PDF Downloads 431
759 Vision Aided INS for Soft Landing

Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj

Abstract:

The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.

Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering

Procedia PDF Downloads 459
758 Study of Ambient Air Quality on Building's Roof of Dhaka City

Authors: Koninika Tanzim

Abstract:

The gaseous pollutants, SO2, NO2, CO and O3 affect the environment of Dhaka City. These pollutants are mainly released from stationary sources, like, fossil-fueled, power plants, industrial units and brickfields around the city. Suspended particulate matters including PM10 and PM2.5 are also contributing to air pollution in Dhaka City. SO2, NO2 and O3 are determined by using UV and visible spectrophotometry. The sensor type devised has been used for the determination of CO in ambient air. Lead in the suspended particulate matter was determined by using atomic absorption spectrometry. The samples were collected at ground level and on the roof of a seven-storied building. For all the criteria pollutants, the concentration at the roof was found to the lower than that at the ground level. The average concentration of PM10 and PM2.5 were found to the 241.5 and 81.1 mg/m3 at the ground level. On the roof of a 7 storied building was however 49.99 mg/m3 and 25.88 mg/m3 for PM10 and PM2.5 respectively. The concentration of Pb varied from 0.011 to 0.04 mg/m3 at the ground level. The values for Pb at the roof level were significantly lower. The values for SO2, NO2, CO and O3 were found to be higher than the USEPA values.

Keywords: gaseous air pollutant, PM, lead, gravimetry, spectrophotometry, atomic absorption, ambient air quality

Procedia PDF Downloads 408
757 Inhibitory Impacts of Fulvic Acid-Coated Iron Oxide Nano Particles on the Amyloid Fibril Aggregations

Authors: Dalia Jomehpour, Sara Sheikhlary, Esmaeil Heydari, Mohammad Hossien Majles Ara

Abstract:

In this study, we report fulvic acid-coated iron oxide nanoparticles of 10.7 ± 2.7 nm size, which serve to inhibit amyloid fibrillation formation. Although the effect of fulvic acid on tau fibrils was investigated, to our best knowledge, its inhibitory impacts on amyloid aggregation formation have been assessed neither in-vitro nor in-vivo. On the other hand, iron oxide nanoparticles exhibit anti-amyloid activity on their own. This study investigates the inhibitory effect of fulvic acid coated iron oxide nanoparticles on amyloid aggregations formed from the commonly used in-vitro model, lysozyme from chicken egg white. FESEM, XRD, and FTIR characterization confirmed that fulvic acid was coated onto the surface of the nanoparticles. The inhibitory effects of the fulvic acid coated iron oxide nanoparticles were verified by Thioflavin T assay, circular dichroism (CD), and FESEM analysis. Furthermore, the toxicity of the nanoparticles on the neuroblastoma SH-SY5Y human cell line was assessed through an MTT assay. Our results indicate that fulvic acid coated iron oxide nanoparticles can efficiently inhibit the formation of amyloid aggregations while exhibiting negligible in-vitro toxicity; thus, they can be used as anti-amyloid agents in the development of the potential drug for neurodegenerative diseases.

Keywords: Alzheimer’s disease, fulvic acid coated iron oxide nanoparticles, fulvic acid, amyloid inhibitor, polyphenols

Procedia PDF Downloads 107
756 Produce High-Quality Activated Carbon with a Large Surface Area from Date Seeds Biomass for Water Treatment

Authors: Rashad Al-Gaashani, Viktor Kochkodan, Jenny Lawler

Abstract:

Physico-chemical activation method wasused to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomasswastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were used to evaluate the AC samples. AC produced from date seeds have a wide range of the pores available, including micro- andnano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metalsiron (III) and copper (II) ions were removed from wastewater using the AC producedusinga batch adsorption technique. The AC produced from date seeds biomass wastes show high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, pH on the removal of heavy metalswere studied.

Keywords: activated carbon, date seeds, biomass, heavy metals removal, water treatment

Procedia PDF Downloads 93
755 Quantum Dot Biosensing for Advancing Precision Cancer Detection

Authors: Sourav Sarkar, Manashjit Gogoi

Abstract:

In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.

Keywords: quantum dots, biosensing, cancer, device

Procedia PDF Downloads 51
754 Investigation of the Mechanical Performance of Carbon Nanomembranes for Water Separation Technologies

Authors: Marinos Dimitropoulos, George Trakakis, Nikolaus Meyerbröker, Raphael Dalpke, Polina Angelova, Albert Schnieders, Christos Pavlou, Christos Kostaras, Costas Galiotis, Konstantinos Dassios

Abstract:

Intended for purifying water, water separation technologies are widely employed in a variety of contemporary household and industrial applications. Ultrathin Carbon Nanomembranes (CNMs) offer a highly selective, fast-flow, energy-efficient water separation technology intended for demanding water treatment applications as a technological replacement for biological filtration membranes. The membranes are two-dimensional (2D) materials with sub-nm functional pores and a thickness of roughly 1 nm; they may be generated in large quantities on porous supporting substrates and have customizable properties. The purpose of this work was to investigate and analyze the mechanical characteristics of CNMs and their substrates in order to ensure the structural stability of the membrane during operation. Contrary to macro-materials, it is difficult to measure the mechanical properties of membranes that are only a few nanometers thick. The membranes were supported on atomically flat substrates as well as suspended over patterned substrates, and their inherent mechanical properties were tested with atomic force microscopy. Quantitative experiments under nanomechanical loading, nanoindentation, and nano fatigue demonstrated the membranes' potential for usage in water separation applications.

Keywords: carbon nanomembranes, mechanical properties, AFM

Procedia PDF Downloads 80
753 Effect of Nano/Micro Alumina Matrix on Alumina-Cubic Boron Nitride Composites Consolidated by Spark Plasma Sintering

Authors: A. S. Hakeem, B. Ahmed, M. Ehsan, A. Ibrahim, H. M. Irshad, T. Laoui

Abstract:

Alumina (Al2O3) - cubic boron nitride (cBN) ceramic composites were sintered by spark plasma sintering (SPS) using α-Al2O3 particle sizes; 150 µm, 150 nm and cBN particle size of 42 µm. Alumina-cBN composites containing 10, 20 and 30wt% cBN with and without Ni coated were sintering at an elevated temperature of 1400°C at a constant uniaxial pressure of 50 MPa. The effect of matrix particle size, cBN and Ni content on mechanical properties and thermal properties, i.e., thermal conductivity, diffusivity, expansion, densification, phase transformation, microstructure, hardness and toughness of the Al2O3-cBN/(Ni) composites under specific sintering conditions were investigated. The highest relative densification of 150 nm-Al2O3 containing 30wt% cBN (Ni coated) composite was 99% at TSPS = 1400°C. In case of 150 µm- Al2O3 compositions, the phase transformation of cBN to hBN were observed, and the relative densification decreased. Thermal conductivity depicts maximum value in case of 150 nm- Al2O3-30wt% cBN-Ni composition. The Vickers hardness of this composition at TSPS = 1400°C also showed the highest value of 29 GPa.

Keywords: alumina composite, cubic boron nitride, mechanical properties, phase transformation, Spark plasma sintering

Procedia PDF Downloads 336
752 Highly Stretchable, Intelligent and Conductive PEDOT/PU Nanofibers Based on Electrospinning and in situ Polymerization

Authors: Kun Qi, Yuman Zhou, Jianxin He

Abstract:

A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a highly stretchable and conductive Poly(3,4-ethylenedioxythiophene)/Polyurethane (PEDOT/PU) nanofibrous membrane is reported. PU nanofibers were prepared by electrospinning and then PEDOT was coated on the plasma modified PU nanofiber surface via in-situ polymerization to form flexible PEDOT/PU composite nanofibers with conductivity. The results show PEDOT is successfully synthesized on the surface of PU nanofiber and PEDOT/PU composite nanofibers possess skin-core structure. Furthermore, the experiments indicate the optimal technological parameters of the polymerization process are as follow: The concentration of EDOT monomers is 50 mmol/L, the polymerization time is 24 h and the temperature is 25℃. The PEDOT/PU nanofibers exhibit excellent electrical conductivity ( 27.4 S/cm). In addition, flexible sensor made from conductive PEDOT/PU nanofibers shows highly sensitive response towards tensile strain and also can be used to detect finger motion. The results demonstrate promising application of the as-obtained nanofibrous membrane in flexible wearable electronic fields.

Keywords: electrospinning, polyurethane, PEDOT, conductive nanofiber, flexible senor

Procedia PDF Downloads 352
751 A Weighted K-Medoids Clustering Algorithm for Effective Stability in Vehicular Ad Hoc Networks

Authors: Rejab Hajlaoui, Tarek Moulahi, Hervé Guyennet

Abstract:

In a highway scenario, the vehicle speed can exceed 120 kmph. Therefore, any vehicle can enter or leave the network within a very short time. This mobility adversely affects the network connectivity and decreases the life time of all established links. To ensure an effective stability in vehicular ad hoc networks with minimum broadcasting storm, we have developed a weighted algorithm based on the k-medoids clustering algorithm (WKCA). Indeed, the number of clusters and the initial cluster heads will not be selected randomly as usual, but considering the available transmission range and the environment size. Then, to ensure optimal assignment of nodes to clusters in both k-medoids phases, the combined weight of any node will be computed according to additional metrics including direction, relative speed and proximity. Empirical results prove that in addition to the convergence speed that characterizes the k-medoids algorithm, our proposed model performs well both AODV-Clustering and OLSR-Clustering protocols under different densities and velocities in term of end-to-end delay, packet delivery ratio, and throughput.

Keywords: communication, clustering algorithm, k-medoids, sensor, vehicular ad hoc network

Procedia PDF Downloads 232
750 A Peg Board with Photo-Reflectors to Detect Peg Insertion and Pull-Out Moments

Authors: Hiroshi Kinoshita, Yasuto Nakanishi, Ryuhei Okuno, Toshio Higashi

Abstract:

Various kinds of pegboards have been developed and used widely in research and clinics of rehabilitation for evaluation and training of patient’s hand function. A common measure in these peg boards is a total time of performance execution assessed by a tester’s stopwatch. Introduction of electrical and automatic measurement technology to the apparatus, on the other hand, has been delayed. The present work introduces the development of a pegboard with an electric sensor to detect moments of individual peg’s insertion and removal. The work also gives fundamental data obtained from a group of healthy young individuals who performed peg transfer tasks using the pegboard developed. Through trails and errors in pilot tests, two 10-hole peg-board boxes installed with a small photo-reflector and a DC amplifier at the bottom of each hole were designed and built by the present authors. The amplified electric analogue signals from the 20 reflectors were automatically digitized at 500 Hz per channel, and stored in a PC. The boxes were set on a test table at different distances (25, 50, 75, and 125 mm) in parallel to examine the effect of hole-to-hole distance. Fifty healthy young volunteers (25 in each gender) as subjects of the study performed successive fast 80 time peg transfers at each distance using their dominant and non-dominant hands. The data gathered showed a clear-cut light interruption/continuation moment by the pegs, allowing accurately (no tester’s error involved) and precisely (an order of milliseconds) to determine the pull out and insertion times of each peg. This further permitted computation of individual peg movement duration (PMD: from peg-lift-off to insertion) apart from hand reaching duration (HRD: from peg insertion to lift-off). An accidental drop of a peg led to an exceptionally long ( < mean + 3 SD) PMD, which was readily detected from an examination of data distribution. The PMD data were commonly right-skewed, suggesting that the median can be a better estimate of individual PMD than the mean. Repeated measures ANOVA using the median values revealed significant hole-to-hole distance, and hand dominance effects, suggesting that these need to be fixed in the accurate evaluation of PMD. The gender effect was non-significant. Performance consistency was also evaluated by the use of quartile variation coefficient values, which revealed no gender, hole-to-hole, and hand dominance effects. The measurement reliability was further examined using interclass correlation obtained from 14 subjects who performed the 25 and 125 mm hole distance tasks at two 7-10 days separate test sessions. Inter-class correlation values between the two tests showed fair reliability for PMD (0.65-0.75), and for HRD (0.77-0.94). We concluded that a sensor peg board developed in the present study could provide accurate (excluding tester’s errors), and precise (at a millisecond rate) time information of peg movement separated from that used for hand movement. It could also easily detect and automatically exclude erroneous execution data from his/her standard data. These would lead to a better evaluation of hand dexterity function compared to the widely used conventional used peg boards.

Keywords: hand, dexterity test, peg movement time, performance consistency

Procedia PDF Downloads 130
749 Amplitude and Latency of P300 Component from Auditory Stimulus in Different Types of Personality: An Event Related Potential Study

Authors: Nasir Yusoff, Ahmad Adamu Adamu, Tahamina Begum, Faruque Reza

Abstract:

The P300 from Event related potential (ERP) explains the psycho-physiological phenomenon in human body. The present study aims to identify the differences of amplitude and latency of P300 component from auditory stimuli, between ambiversion and extraversion types of personality. Ambivert (N=20) and extravert (N=20) undergoing ERP recording at the Hospital Universiti Sains Malaysia (HUSM) laboratory. Electroencephalogram data was recorded with oddball paradigm, counting auditory standard and target tones, from nine electrode sites (Fz, Cz, Pz, T3, T4, T5, T6, P3 and P4) by using the 128 HydroCel Geodesic Sensor Net. The P300 latency of the target tones at all electrodes were insignificant. Similarly, the P300 latency of the standard tones were also insignificant except at Fz and T3 electrode. Likewise, the P300 amplitude of the target and standard tone in all electrode sites were insignificant. Extravert and ambivert indicate similar characteristic in cognition processing from auditory task.

Keywords: amplitude, event related potential, p300 component, latency

Procedia PDF Downloads 368
748 Unsaturated Sites Constructed Grafted Polymer Nanoparticles to Promote CO₂ Separation in Mixed-Matrix Membranes

Authors: Boyu Li

Abstract:

Mixed matrix membranes (MMMs), as a separation technology, can improve CO₂ recycling efficiency and reduce the environmental impacts associated with huge emissions. Nevertheless, many challenges must be overcome to design excellent selectivity and permeability performance MMMs. Herein, this work demonstrates the design of nano-scale GNPs (Cu-BDC@PEG) with strong compatibility and high free friction volume (FFV) is an effective way to construct non-interfacial voids MMMs with a desirable combination of selectivity and permeability. Notably, the FFV boosted thanks to the chain length and shape of the GNPs. With this, the permeability and selectivity of Cu-BDC@PEG/PVDF MMMs had also been significantly improved. As such, compatible Cu-BDC@PEG proves very efficient for resolving challenges of MMMs with poor compatibility on the basis of the interfacial defect. Poly (Ethylene Glycol) (PEG) with oxygen groups can be finely coordinated with Cu-MOFs to disperse Cu-BDC@PEG homogenously and form hydrogen bonds with matrix to achieve continuous phase. The resultant MMMs exhibited a simultaneous enhancement of gas permeability (853.1 Barrer) and ideal CO₂/N selectivity (41.7), which has surpassed Robenson's upper bound. Moreover, Cu-BDC@PEG/PVDF has a high-temperature resistance and a long time sustainably. This attractive separation performance of Cu-BDC@PEG/PVDF offered an exciting platform for the development of composite membranes for sustainable CO₂ separations.

Keywords: metal organic framework, CO₂ separation, mixed matrix membrane, polymer

Procedia PDF Downloads 105
747 Detection of Cytotoxicity of Green Synthesized Silver, Gold, and Silver/Gold Bimetallic on Baby Hamster Kidney-21 Cells Using MTT Assay

Authors: Naila Sher, Mushtaq Ahmed, Nadia Mushtaq, Rahmat Ali Khan

Abstract:

In cancer therapy, nanoparticles (NPs) shall be applied possibly by inoculation in the veins of humans. This action will connect them with white (WBCs) and red blood cells (RBCs) in the bloodstream before they reach their main targeted cancer cells. However, possible effects of silver, gold, and silver/gold bimetallic NPs (Ag, Au, and Ag/Au BNPs) on baby hamster kidney-21 (BHK-21) cells were studied by MTT assay. Here, Ag, Au, and their Ag/Au BNPs (bimetallic nanoparticles) were synthesized by using Hippeastrum hybridum (HH) extract. These NPs were characterized by UV-visible spectroscopy, FT-IR, XRD, and EDX, and SEM analysis. XRD analysis conferring the crystal structure with an average size of 13.3, 10.72, and 8.34nm of Ag, Au, and Ag/Au BNPs, respectively. SEM showed that Ag, Au, and Ag/Au BNPs had irregular morphologies, with nano measures calculated sizes of 40, 30, and 20 nm respectively. EDX spectrometers confirmed the presence of elemental Ag signal of the AgNPs with 22.75%, Au signal of the AuNPs with 48.08%, Ag signal with 12%, and Au signal with 38.26% of the Ag/Au BNPs. The BHK-21cells were incubated in the existence of doxorubicin, plant extract, Ag, Au, and Ag/Au BNPs. The cytotoxic effects could be observed in a dose-dependent mode; doxorubicin and Ag/Au BNPs were more toxic than plant extract, Ag, and Au NPs. It is demonstrated that NPs interact with BHK-21cells and significantly reduce cell viability in a concentration-dependent manner. However, to reduce the potential threats of NPs further studies are recommended.

Keywords: hippeastrum hybridum, nanoparticle, BHK-21cells

Procedia PDF Downloads 124
746 Effect of Micaceous Iron Oxide and Nanocrystalline Al on the Electrochemical Behavior of Aliphatic Amine Cured Epoxy Coating

Authors: Asiful H. Seikh, Jabair A. Mohammed, Ubair A. Samad, Mohammad A. Alam, Saeed M. Al-Zahrani, El-Sayed M. Sherif

Abstract:

Three coating formulations were fabricated by incorporating different percentages of MIO (micaceous iron oxide ) (1, 2, and wt%) with ball-milled nanocrystalline Al (2 wt%) particles, which was optimized earlier. These coatings were characterized by means of different methods, namely, SEM, TGA, pendulum hardness, scratch test, and nano-indentation. The EIS measurements were carried out to report the effect of adding MIO powder in fabricated coatings on their corrosion behavior in 3.5 wt% NaCl solutions. In order to report the effect of immersion time on the corrosion and degradation of the prepared coatings, the EIS data were also acquired after various exposure periods of time, i.e., 1 h, 7 d, 14 d, 21 d, and 30 d in the test chloride solution. It has been found that the obtained EIS data for the fabricated coatings proved that the presence of 2% MIO provided the highest corrosion resistance amongst all coatings and that effect was recorded after all immersion periods of time. But, the MIO-incorporated coatings have less corrosion resistance than Al based epoxy coatings. It was also shown that with prolonged immersion, the resistance to corrosion declined after 7d, then with a longer period of immersion, i.e. 14 d, 21 d, and 30 d increases the resistance to corrosion by forming oxide products on the coatings surface. The results obtained from both mechanical and electrochemical testing confirmed that the fabricated coating with 2 wt% Al exhibited better hardness and higher resistance to corrosion as compared to coatings with 1 wt% Al and 3 wt% Al.

Keywords: epoxy coatings, nanomaterials, corrosion resistance, EIS, nanoindentation

Procedia PDF Downloads 63
745 Assessment of Metal and Nano-Metal Doped TiO₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue in Almeda Textile Industry, Tigray, Ethiopia

Authors: Mulugeta Gurum Gerechal

Abstract:

Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the Crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, Urea, NH₄OH and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400 °C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was a well efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21 % under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 4000C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.

Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination and methylene blue

Procedia PDF Downloads 54
744 Effect of Annealing Temperature on Microstructural Evolution of Nanoindented Cu/Si Thin Films

Authors: Woei-Shyan Lee, Yu-Liang Chuang

Abstract:

The nano-mechanical properties of as-deposited Cu/Si thin films indented to a depth of 2000 nm are investigated using a nanoindentation technique. The nanoindented specimens are annealed at a temperature of either 160 °C or 210°C, respectively. The microstructures of the as-deposited and annealed samples are then examined via transmission electron microscopy (TEM). The results show that both the loading and the unloading regions of the load-displacement curve are smooth and continuous, which suggests that no debonding or cracking occurs during nanoindentation. In addition, the hardness and Young’s modulus of the Cu/Si thin films are found to vary with the nanoindentation depth, and have maximum values of 2.8 GPa and 143 GPa, respectively, at the maximum indentation depth of 2000 nm. The TEM observations show that the region of the Cu/Si film beneath the indenter undergoes a phase transformation during the indentation process. In the case of the as-deposited specimens, the indentation pressure induces a completely amorphous phase within the indentation zone. For the specimens annealed at a temperature of 160°C, the amorphous nature of the microstructure within the indented zone is maintained. However, for the specimens annealed at a higher temperature of 210°C, the indentation affected zone consists of a mixture of amorphous phase and nanocrystalline phase. Copper silicide (η-Cu3Si) precipitates are observed in all of the annealed specimens. The density of the η-Cu3Si precipitates is found to increase with an increasing annealing temperature.

Keywords: nanoindentation, Cu/Si thin films, microstructural evolution, annealing temperature

Procedia PDF Downloads 384
743 Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot

Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin

Abstract:

This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.

Keywords: autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control

Procedia PDF Downloads 462
742 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity

Procedia PDF Downloads 368
741 Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting System

Authors: Saleh Gareh, B. C. Kok, H. H. Goh

Abstract:

Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF) electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H) is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d) and Piezoelectric Voltage Constant (g) values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT) with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.8 mW and 3 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system.

Keywords: piezoelectric energy harvesting, cymbal transducer, PZT (lead zirconate titanate), 2-DOF

Procedia PDF Downloads 348
740 Non-Contact Human Movement Monitoring Technique for Security Control System Based 2n Electrostatic Induction

Authors: Koichi Kurita

Abstract:

In this study, an effective non-contact technique for the detection of human physical activity is proposed. The technique is based on detecting the electrostatic induction current generated by the walking motion under non-contact and non-attached conditions. A theoretical model for the electrostatic induction current generated because of a change in the electric potential of the human body is proposed. By comparing the obtained electrostatic induction current with the theoretical model, it becomes obvious that this model effectively explains the behavior of the waveform of the electrostatic induction current. The normal walking motions are recorded using a portable sensor measurement located in a passageway of office building. The obtained results show that detailed information regarding physical activity such as a walking cycle can be estimated using our proposed technique. This suggests that the proposed technique which is based on the detection of the walking signal, can be successfully applied to the detection of human walking motion in a secured building.

Keywords: human walking motion, access control, electrostatic induction, alarm monitoring

Procedia PDF Downloads 355
739 Diffraction-Based Immunosensor for Dengue NS1 Virus

Authors: Harriet Jane R. Caleja, Joel I. Ballesteros, Florian R. Del Mundo

Abstract:

The dengue fever belongs to the world’s major cause of death, especially in the tropical areas. In the Philippines, the number of dengue cases during the first half of 2015 amounted to more than 50,000. In 2012, the total number of cases of dengue infection reached 132,046 of which 701 patients died. Dengue Nonstructural 1 virus (Dengue NS1 virus) is a recently discovered biomarker for the early detection of dengue virus. It is present in the serum of the dengue virus infected patients even during the earliest stages prior to the formation of dengue virus antibodies. A biosensor for the dengue detection using NS1 virus was developed for faster and accurate diagnostic tool. Biotinylated anti-dengue virus NS1 was used as the receptor for dengue virus NS1. Using the Diffractive Optics Technology (dotTM) technique, real time binding of the NS1 virus to the biotinylated anti-NS1 antibody is observed. The dot®-Avidin sensor recognizes the biotinylated anti-NS1 and this served as the capture molecule to the analyte, NS1 virus. The increase in the signal of the diffractive intensity signifies the binding of the capture and the analyte. The LOD was found to be 3.87 ng/mL while the LOQ is 12.9 ng/mL. The developed biosensor was also found to be specific for the NS1 virus.

Keywords: avidin-biotin, diffractive optics technology, immunosensor, NS1

Procedia PDF Downloads 320
738 Charge Transport in Biological Molecules

Authors: E. L. Albuquerque, U. L. Fulco, G. S. Ourique

Abstract:

The focus of this work is on the numerical investigation of the charge transport properties of the de novo-designed alpha3 polypeptide, as well as in its variants, all of them probed by gene engineering. The theoretical framework makes use of a tight-binding model Hamiltonian, together with ab-initio calculations within quantum chemistry simulation. The alpha3 polypeptide is a 21-residue with three repeats of the seven-residue amino acid sequence Leu-Glu-Thr-Leu-Ala-Lys-Ala, forming an alpha–helical bundle structure. Its variants are obtained by Ala→Gln substitution at the e (5th) and g (7th) position, respectively, of the alpha3 polypeptide amino acid sequence. Using transmission electron microscopy and atomic force microscopy, it was observed that the alpha3 polypeptide and one of its variant do have the ability to form fibrous assemblies, while the other does not. Our main aim is to investigate whether or not the biased alpha3 polypeptide and its variants can be also identified by quantum charge transport measurements through current-voltage (IxV) curves as a pattern to characterize their fibrous assemblies. It was observed that each peptide has a characteristic current pattern, which may be distinguished by charge transport measurements, suggesting that it might be a useful tool for the development of biosensors.

Keywords: charge transport properties, electronic transmittance, current-voltage characteristics, biological sensor

Procedia PDF Downloads 662