Search results for: fiber reinforcement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1831

Search results for: fiber reinforcement

121 Impact of Different Rearing Diets on the Performance of Adult Mealworms Tenebrio molitor

Authors: Caroline Provost, Francois Dumont

Abstract:

Production of insects for human and animal consumption is an increasingly important activity in Canada. Protein production is more efficient and less harmful to the environment using insect rearing compared to the impact of traditional livestock, poultry and fish farms. Insects are rich in essential amino acids, essential fatty acids and trace elements. Thus, insect-based products could be used as a food supplement for livestock and domestic animals and may even find their way into the diets of high performing athletes or fine dining. Nevertheless, several parameters remain to be determined to ensure efficient and profitable production that meet the potential of these sectors. This project proposes to improve the production processes, rearing diets and processing methods for three species with valuable gastronomic and nutritional potential: the common mealworms (Tenebrio molitor), the small mealworm (Alphitobius diaperinus), and the giant mealworm (Zophobas morio). The general objective of the project is to acquire specific knowledge for mass rearing of insects dedicated to animal and human consumption in order to respond to current market opportunities and meet a growing demand for these products. Mass rearing of the three species of mealworm was produced to provide the individuals needed for the experiments. Mealworms eat flour from different cereals (e.g. wheat, barley, buckwheat). These cereals vary in their composition (protein, carbohydrates, fiber, vitamins, antioxidant, etc.), but also in their purchase cost. Seven different diets were compared to optimize the yield of the rearing. Diets were composed of cereal flour (e.g. wheat, barley) and were either mixed or left alone. Female fecundity, larvae mortality and growing curves were observed. Some flour diets have positive effects on female fecundity and larvae performance while each mealworm was found to have specific diet requirements. Trade-offs between mealworm performance and costs need to be considered. Experiments on the effect of flour composition on several parameters related to performance and nutritional and gastronomic value led to the identification of a more appropriate diet for each mealworm.

Keywords: mass rearing, mealworm, human consumption, diet

Procedia PDF Downloads 132
120 Reverse Engineering of a Secondary Structure of a Helicopter: A Study Case

Authors: Jose Daniel Giraldo Arias, Camilo Rojas Gomez, David Villegas Delgado, Gullermo Idarraga Alarcon, Juan Meza Meza

Abstract:

The reverse engineering processes are widely used in the industry with the main goal to determine the materials and the manufacture used to produce a component. There are a lot of characterization techniques and computational tools that are used in order to get this information. A study case of a reverse engineering applied to a secondary sandwich- hybrid type structure used in a helicopter is presented. The methodology used consists of five main steps, which can be applied to any other similar component: Collect information about the service conditions of the part, disassembly and dimensional characterization, functional characterization, material properties characterization and manufacturing processes characterization, allowing to obtain all the supports of the traceability of the materials and processes of the aeronautical products that ensure their airworthiness. A detailed explanation of each step is covered. Criticality and comprehend the functionalities of each part, information of the state of the art and information obtained from interviews with the technical groups of the helicopter’s operators were analyzed,3D optical scanning technique, standard and advanced materials characterization techniques and finite element simulation allow to obtain all the characteristics of the materials used in the manufacture of the component. It was found that most of the materials are quite common in the aeronautical industry, including Kevlar, carbon, and glass fibers, aluminum honeycomb core, epoxy resin and epoxy adhesive. The stacking sequence and volumetric fiber fraction are a critical issue for the mechanical behavior; a digestion acid method was used for this purpose. This also helps in the determination of the manufacture technique which for this case was Vacuum Bagging. Samples of the material were manufactured and submitted to mechanical and environmental tests. These results were compared with those obtained during reverse engineering, which allows concluding that the materials and manufacture were correctly determined. Tooling for the manufacture was designed and manufactured according to the geometry and manufacture process requisites. The part was manufactured and the mechanical, and environmental tests required were also performed. Finally, a geometric characterization and non-destructive techniques allow verifying the quality of the part.

Keywords: reverse engineering, sandwich-structured composite parts, helicopter, mechanical properties, prototype

Procedia PDF Downloads 393
119 Spatial Accessibility Analysis of Kabul City Public Transport

Authors: Mohammad Idrees Yusofzai, Hirobata Yasuhiro, Matsuo Kojiro

Abstract:

Kabul is the capital of Afghanistan. It is the focal point of educational, industrial, etc. of Afghanistan. Additionally, the population of Kabul has grown recently and will increase because of return of refugees and shifting of people from other province to Kabul city. However, this increase in population, the issues of urban congestion and other related problems of urban transportation in Kabul city arises. One of the problems is public transport (large buses) service and needs to be modified and enhanced especially large bus routes that are operating in each zone of the 22 zone of Kabul City. To achieve the above mentioned goal of improving public transport, Spatial Accessibility Analysis is one of the important attributes to assess the effectiveness of transportation system and urban transport policy of a city, because accessibility indicator as an alternative tool to support public policy that aims the reinforcement of sustainable urban space. The case study of this research compares the present model (present bus route) and the modified model of public transport. Furthermore, present model, the bus routes in most of the zones are active, however, with having low frequency and unpublished schedule, and accessibility result is analyzed in four cases, based on the variables of accessibility. Whereas in modified model all zones in Kabul is taken into consideration with having specified origin and high frequency. Indeed the number of frequencies is kept high; however, this number is based on the number of buses Millie Bus Enterprise Authority (MBEA) owns. The same approach of cases is applied in modified model to figure out the best accessibility for the modified model. Indeed, the modified model is having a positive impact in congestion level in Kabul city. Besides, analyses of person trip and trip distribution have been also analyzed because how people move in the study area by each mode of transportation. So, the general aims of this research are to assess the present movement of people, identify zones in need of public transport and assess equity level of accessibility in Kabul city. The framework of methodology used in this research is based on gravity analysis model of accessibility; besides, generalized cost (time) of travel and travel mode is calculated. The main data come from person trip survey, socio-economic characteristics, demographic data by Japan International Cooperation Agency, 2008, study of Kabul city and also from the previous researches on travel pattern and the remaining data regarding present bus line and routes have been from MBEA. In conclusion, this research explores zones where public transport accessibility level is high and where it is low. It was found that both models the downtown area or central zones of Kabul city is having high level accessibility. Besides, the present model is the most unfavorable compared with the modified model based on the accessibility analysis.

Keywords: accessibility, bus generalized cost, gravity model, public transportation network

Procedia PDF Downloads 170
118 Design and Assessment of Base Isolated Structures under Spectrum-Compatible Bidirectional Earthquakes

Authors: Marco Furinghetti, Alberto Pavese, Michele Rinaldi

Abstract:

Concave Surface Slider devices have been more and more used in real applications for seismic protection of both bridge and building structures. Several research activities have been carried out, in order to investigate the lateral response of such a typology of devices, and a reasonably high level of knowledge has been reached. If radial analysis is performed, the frictional force is always aligned with respect to the restoring force, whereas under bidirectional seismic events, a bi-axial interaction of the directions of motion occurs, due to the step-wise projection of the main frictional force, which is assumed to be aligned to the trajectory of the isolator. Nonetheless, if non-linear time history analyses have to be performed, standard codes provide precise rules for the definition of an averagely spectrum-compatible set of accelerograms in radial conditions, whereas for bidirectional motions different combinations of the single components spectra can be found. Moreover, nowadays software for the adjustment of natural accelerograms are available, which lead to a higher quality of spectrum-compatibility and to a smaller dispersion of results for radial motions. In this endeavor a simplified design procedure is defined, for building structures, base-isolated by means of Concave Surface Slider devices. Different case study structures have been analyzed. In a first stage, the capacity curve has been computed, by means of non-linear static analyses on the fixed-base structures: inelastic fiber elements have been adopted and different direction angles of lateral forces have been studied. Thanks to these results, a linear elastic Finite Element Model has been defined, characterized by the same global stiffness of the linear elastic branch of the non-linear capacity curve. Then, non-linear time history analyses have been performed on the base-isolated structures, by applying seven bidirectional seismic events. The spectrum-compatibility of bidirectional earthquakes has been studied, by considering different combinations of single components and adjusting single records: thanks to the proposed procedure, results have shown a small dispersion and a good agreement in comparison to the assumed design values.

Keywords: concave surface slider, spectrum-compatibility, bidirectional earthquake, base isolation

Procedia PDF Downloads 276
117 Investigation on Behaviour of Reinforced Concrete Beam-Column Joints Retrofitted with CFRP

Authors: Ehsan Mohseni

Abstract:

The aim of this thesis is to provide numerical analyses of reinforced concrete beams-column joints with/without CFRP (Carbon Fiber Reinforced Polymer) in order to achieve a better understanding of the behaviour of strengthened beamcolumn joints. A comprehensive literature survey prior to this study revealed that published studies are limited to a handful only; the results are inconclusive and some are even contradictory. Therefore in order to improve on this situation, following that review, a numerical study was designed and performed as presented in this thesis. For the numerical study, dimensions, end supports, and characteristics of the beam and column models were the same as those chosen in an experimental investigation performed previously where ten beamcolumn joint were tested tofailure. Finite element analysis is a useful tool in cases where analytical methods are not capable of solving the problem due to the complexities associated with the problem. The cyclic behaviour of FRP strengthened reinforced concrete beam-columns joints is such a case. Interaction of steel (longitudinal and stirrups), concrete and FRP, yielding of steel bars and stirrups, cracking of concrete, the redistribution of stresses as some elements unload due to crushing or yielding and the confinement of concrete due to the presence of FRP are some of the issues that introduce the complexities into the problem.Numerical solutions, however, can provide further in formation about the behaviour in lieu of the costly experiments or complex closed form solutions. This thesis presents the results of a numerical study on beam-column joints subjected to cyclic loads that are strengthened with CFRP wraps or strrips in a variety of configurations. The analyses are performed by Abaqus finite element program and are calibrated with the experiments. A range of issues in beam-column joints including the cracking load, the ultimate load, lateral load-displacement curves of joints, are investigated.The numerical results for different configurations of strengthening are compared. Finally, the computed numerical results are compared with those obtained from experiments. the cracking load, the ultimate load, lateral load-displacement curves obtained from numerical analysis for all joints were in very good agreement with the corresponding experimental ones.The results obtained from the numerical analysis in most cases implies that this method is conservative and therefore can be used in design applications with confidence.

Keywords: numerical analysis, strengthening, CFRP, reinforced concrete joints

Procedia PDF Downloads 328
116 Analyzing Concrete Structures by Using Laser Induced Breakdown Spectroscopy

Authors: Nina Sankat, Gerd Wilsch, Cassian Gottlieb, Steven Millar, Tobias Guenther

Abstract:

Laser-Induced Breakdown Spectroscopy (LIBS) is a combination of laser ablation and optical emission spectroscopy, which in principle can simultaneously analyze all elements on the periodic table. Materials can be analyzed in terms of chemical composition in a two-dimensional, time efficient and minor destructive manner. These advantages predestine LIBS as a monitoring technique in the field of civil engineering. The decreasing service life of concrete infrastructures is a continuously growing problematic. A variety of intruding, harmful substances can damage the reinforcement or the concrete itself. To insure a sufficient service life a regular monitoring of the structure is necessary. LIBS offers many applications to accomplish a successful examination of the conditions of concrete structures. A selection of those applications are the 2D-evaluation of chlorine-, sodium- and sulfur-concentration, the identification of carbonation depths and the representation of the heterogeneity of concrete. LIBS obtains this information by using a pulsed laser with a short pulse length (some mJ), which is focused on the surfaces of the analyzed specimen, for this only an optical access is needed. Because of the high power density (some GW/cm²) a minimal amount of material is vaporized and transformed into a plasma. This plasma emits light depending on the chemical composition of the vaporized material. By analyzing the emitted light, information for every measurement point is gained. The chemical composition of the scanned area is visualized in a 2D-map with spatial resolutions up to 0.1 mm x 0.1 mm. Those 2D-maps can be converted into classic depth profiles, as typically seen for the results of chloride concentration provided by chemical analysis like potentiometric titration. However, the 2D-visualization offers many advantages like illustrating chlorine carrying cracks, direct imaging of the carbonation depth and in general allowing the separation of the aggregates from the cement paste. By calibrating the LIBS-System, not only qualitative but quantitative results can be obtained. Those quantitative results can also be based on the cement paste, while excluding the aggregates. An additional advantage of LIBS is its mobility. By using the mobile system, located at BAM, onsite measurements are feasible. The mobile LIBS-system was already used to obtain chloride, sodium and sulfur concentrations onsite of parking decks, bridges and sewage treatment plants even under hard conditions like ongoing construction work or rough weather. All those prospects make LIBS a promising method to secure the integrity of infrastructures in a sustainable manner.

Keywords: concrete, damage assessment, harmful substances, LIBS

Procedia PDF Downloads 165
115 Transition from Linear to Circular Economy in Gypsum in India

Authors: Shanti Swaroop Gupta, Bibekananda Mohapatra, S. K. Chaturvedi, Anand Bohra

Abstract:

For sustainable development in India, there is an urgent need to follow the principles of industrial symbiosis in the industrial processes, under which the scraps, wastes, or by‐products of one industry can become the raw materials for another. This will not only help in reducing the dependence on natural resources but also help in gaining economic advantage to the industry. Gypsum is one such area in India, where the linear economy model of by-product gypsum utilization has resulted in unutilized legacy phosphogypsum stock of 64.65 million tonnes (mt) at phosphoric acid plants in 2020-21. In the future, this unutilized gypsum stock will increase further due to the expected generation of Flue Gas Desulphurization (FGD) gypsum in huge quantities from thermal power plants. Therefore, it is essential to transit from the linear to circular economy in Gypsum in India, which will result in huge environmental as well as ecological benefits. Gypsum is required in many sectors like Construction (Cement industry, gypsum boards, glass fiber reinforced gypsum panels, gypsum plaster, fly ash lime bricks, floor screeds, road construction), agriculture, in the manufacture of Plaster of Paris, pottery, ceramic industry, water treatment processes, manufacture of ammonium sulphate, paints, textiles, etc. The challenges faced in areas of quality, policy, logistics, lack of infrastructure, promotion, etc., for complete utilization of by-product gypsum have been discussed. The untapped potential of by-product gypsum utilization in various sectors like the use of gypsum in agriculture for sodic soil reclamation, utilization of legacy stock in cement industry on mission mode, improvement in quality of by-product gypsum by standardization and usage in building materials industry has been identified. Based on the measures required to tackle the various challenges and utilization of the untapped potential of gypsum, a comprehensive action plan for the transition from linear to the circular economy in gypsum in India has been formulated. The strategies and policy measures required to implement the action plan to achieve a circular economy in Gypsum have been recommended for various government departments. It is estimated that the focused implementation of the proposed action plan would result in a significant decrease in unutilized gypsum legacy stock in the next five years and it would cease to exist by 2027-28 if the proposed action plan is effectively implemented.

Keywords: circular economy, FGD gypsum, India, phosphogypsum

Procedia PDF Downloads 250
114 Processing of Flexible Dielectric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Wearable Technology Applications

Authors: D. Sun, L. Saw, A. Onyianta, D. O’Rourke, Z. Lu, C. See, C. Wilson, C. Popescu, M. Dorris

Abstract:

With the rapid development of wearable technology (e.g., smartwatch, activity trackers and health monitor devices), flexible dielectric materials with environmental-friendly, low-cost and high-energy efficiency characteristics are in increasing demand. In this work, a flexible dielectric nanocomposite was processed by incorporating two components: cellulose nanofibrils and alum sludge in a polymer matrix. The two components were used in the reinforcement phase as well as for enhancing the dielectric properties; they were processed using waste materials that would otherwise be disposed to landfills. Alum sludge is a by-product of the water treatment process in which aluminum sulfate is prevalently used as the primary coagulant. According to the data from a project partner-Scottish Water: there are approximately 10k tons of alum sludge generated as a waste from the water treatment work to be landfilled every year in Scotland. The industry has been facing escalating financial and environmental pressure to develop more sustainable strategies to deal with alum sludge wastes. In the available literature, some work on reusing alum sludge has been reported (e.g., aluminum recovery or agriculture and land reclamation). However, little work can be found in applying it to processing energy materials (e.g., dielectrics) for enhanced energy density and efficiency. The alum sludge was collected directly from a water treatment plant of Scottish Water and heat-treated and refined before being used in preparing composites. Cellulose nanofibrils were derived from water hyacinth, an invasive aquatic weed that causes significant ecological issues in tropical regions. The harvested water hyacinth was dried and processed using a cost-effective method, including a chemical extraction followed by a homogenization process in order to extract cellulose nanofibrils. Biodegradable elastomer polydimethylsiloxane (PDMS) was used as the polymer matrix and the nanocomposites were processed by casting raw materials in Petri dishes. The processed composites were characterized using various methods, including scanning electron microscopy (SEM), rheological analysis, thermogravimetric and X-ray diffraction analysis. The SEM result showed that cellulose nanofibrils of approximately 20nm in diameter and 100nm in length were obtained and the alum sludge particles were of approximately 200um in diameters. The TGA/DSC analysis result showed that a weight loss of up to 48% can be seen in the raw material of alum sludge and its crystallization process has been started at approximately 800°C. This observation coincides with the XRD result. Other experiments also showed that the composites exhibit comprehensive mechanical and dielectric performances. This work depicts that it is a sustainable practice of reusing such waste materials in preparing flexible, lightweight and miniature dielectric materials for wearable technology applications.

Keywords: cellulose, biodegradable, sustainable, alum sludge, nanocomposite, wearable technology, dielectric

Procedia PDF Downloads 73
113 Internet Memes as Meaning-Making Tools within Subcultures: A Case Study of Lolita Fashion

Authors: Victoria Esteves

Abstract:

Online memes have not only impacted different aspects of culture, but they have also left their mark on particular subcultures, where memes have reflected issues and debates surrounding specific spheres of interest. This is the first study that outlines how memes can address cultural intersections within the Lolita fashion community, which are much more specific and which fall outside of the broad focus of politics and/or social commentary. This is done by looking at the way online memes are used in this particular subculture as a form of meaning-making and group identity reinforcement, demonstrating not only the adaptability of online memes to specific cultural groups but also how subcultures tailor these digital objects to discuss both community-centered topics and more broad societal aspects. As part of an online ethnography, this study focuses on qualitative content analysis by taking a look at some of the meme communication that has permeated Lolita fashion communities. Examples of memes used in this context are picked apart in order to understand this specific layered phenomenon of communication, as well as to gain insights into how memes can operate as visual shorthand for the remix of meaning-making. There are existing parallels between internet culture and cultural behaviors surrounding Lolita fashion: not only is the latter strongly influenced by the former (due to its highly globalized dispersion and lack of physical shops, Lolita fashion is almost entirely reliant on the internet for its existence), both also emphasize curatorial roles through a careful collaborative process of documenting significant aspects of their culture (e.g., Know Your Meme and Lolibrary). Further similarities appear when looking at ideas of inclusion and exclusion that permeate both cultures, where memes and language are used in order to both solidify group identity and to police those who do not ascribe to these cultural tropes correctly, creating a feedback loop that reinforces subcultural ideals. Memes function as excellent forms of communication within the Lolita community because they reinforce its coded ideas and allows a kind of participation that echoes other cultural groups that are online-heavy such as fandoms. Furthermore, whilst the international Lolita community was mostly self-contained within its LiveJournal birthplace, it has become increasingly dispersed through an array of different social media groups that have fragmented this subculture significantly. The use of memes is key in maintaining a sense of connection throughout this now fragmentary experience of fashion. Memes are also used in the Lolita fashion community to bridge the gap between Lolita fashion related community issues and wider global topics; these reflect not only an ability to make use of a broader online language to address specific issues of the community (which in turn provide a very community-specific engagement with remix practices) but also memes’ ability to be tailored to accommodate overlapping cultural and political concerns and discussions between subcultures and broader societal groups. Ultimately, online memes provide the necessary elasticity to allow their adaption and adoption by subcultural groups, who in turn use memes to extend their meaning-making processes.

Keywords: internet culture, Lolita fashion, memes, online community, remix

Procedia PDF Downloads 154
112 Study of Durability of Porous Polymer Materials, Glass-Fiber-Reinforced Polyurethane Foam (R-PUF) in MarkIII Containment Membrane System

Authors: Florent Cerdan, Anne-Gaëlle Denay, Annette Roy, Jean-Claude Grandidier, Éric Laine

Abstract:

The insulation of MarkIII membrane of the Liquid Natural Gas Carriers (LNGC) consists of a load- bearing system made of panels in reinforced polyurethane foam (R-PUF). During the shipping, the cargo containment shall be potentially subject to risk events which can be water leakage through the wall ballast tank. The aim of these present works is to further develop understanding of water transfer mechanisms and water effect on properties of R-PUF. This multi-scale approach contributes to improve the durability. Macroscale / Mesoscale Firstly, the use of the gravimetric technique has allowed to define, at room temperature, the water transfer mechanisms and kinetic diffusion, in the R-PUF. The solubility follows a first kinetic fast growing connected to the water absorption by the micro-porosity, and then evolves linearly slowly, this second stage is connected to molecular diffusion and dissolution of water in the dense membranes polyurethane. Secondly, in the purpose of improving the understanding of the transfer mechanism, the study of the evolution of the buoyant force has been established. It allowed to identify the effect of the balance of total and partial pressure of mixture gas contained in pores surface. Mesoscale / Microscale The differential scanning calorimetry (DSC) and Dynamical Mechanical Analysis (DMA), have been used to investigate the hydration of the hard and soft segments of the polyurethane matrix. The purpose was to identify the sensitivity of these two phases. It been shown that the glass transition temperatures shifts towards the low temperatures when the solubility of the water increases. These observations permit to conclude to a plasticization of the polymer matrix. Microscale The Fourier Transform Infrared (FTIR) study has been used to investigate the characterization of functional groups on the edge, the center and mid-way of the sample according the duration of submersion. More water there is in the material, more the water fix themselves on the urethanes groups and more specifically on amide groups. The pic of C=O urethane shifts at lower frequencies quickly before 24 hours of submersion then grows slowly. The intensity of the pic decreases more flatly after that.

Keywords: porous materials, water sorption, glass transition temperature, DSC, DMA, FTIR, transfer mechanisms

Procedia PDF Downloads 503
111 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator

Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li

Abstract:

A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.

Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator

Procedia PDF Downloads 139
110 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge

Abstract:

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panels

Keywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling

Procedia PDF Downloads 298
109 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas

Abstract:

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Keywords: acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete

Procedia PDF Downloads 154
108 Acerola and Orange By-Products as Sources of Bioactive Compounds for Probiotic Fermented Milks

Authors: Tatyane Lopes de Freitas, Antonio Diogo S. Vieira, Susana Marta Isay Saad, Maria Ines Genovese

Abstract:

The fruit processing industries generate a large volume of residues to produce juices, pulps, and jams. These residues, or by-products, consisting of peels, seeds, and pulps, are routinely discarded. Fruits are rich in bioactive compounds, including polyphenols, which have positive effects on health. Dry residues from two fruits, acerola (M. emarginata D. C.) and orange (C. sinensis), were characterized in relation to contents of ascorbic acid, minerals, total dietary fibers, moisture, ash, lipids, proteins, and carbohydrates, and also high performance liquid chromatographic profile of flavonoids, total polyphenols and proanthocyanidins contents, and antioxidant capacity by three different methods (Ferric reducing antioxidant power assay-FRAP, Oxygen Radical Absorbance Capacity-ORAC, 1,1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity). Acerola by-products presented the highest acid ascorbic content (605 mg/100 g), and better antioxidant capacity than orange by-products. The dry residues from acerola demonstrated high contents of proanthocyanidins (617 µg CE/g) and total polyphenols (2525 mg gallic acid equivalents - GAE/100 g). Both presented high total dietary fiber (above 60%) and protein contents (acerola: 10.4%; orange: 9.9%), and reduced fat content (acerola: 1.6%; orange: 2.6%). Both residues showed high levels of potassium, calcium, and magnesium, and were considered sources of these minerals. With acerola by-product, four formulations of probiotics fermented milks were produced: F0 (without the addition of acerola residue (AR)), F2 (2% AR), F5 (5% AR) and F10 (10% AR). The physicochemical characteristics of the fermented milks throughout of storage were investigated, as well as the impact of in vitro simulated gastrointestinal conditions on flavonoids and probiotics. The microorganisms analyzed maintained their populations around 8 log CFU/g during storage. After the gastric phase of the simulated digestion, the populations decreased, and after the enteric phase, no colonies were detected. On the other hand, the flavonoids increased after the gastric phase, maintaining or suffering small decrease after enteric phase. Acerola by-products powder is a valuable ingredient to be used in functional foods because is rich in vitamin C, fibers and flavonoids. These flavonoids appear to be highly resistant to the acids and salts of digestion.

Keywords: acerola, orange, by-products, fermented milk

Procedia PDF Downloads 113
107 The Role of Movement Quality after Osgood-Schlatter Disease in an Amateur Football Player: A Case Study

Authors: D. Pogliana, A. Maso, N. Milani, D. Panzin, S. Rivaroli, J. Konin

Abstract:

This case aims to identify the role of movement quality during the final stage of return to sport (RTS) in a male amateur football player 13 years old after passing the acute phase of the bilateral Osgood-Schlatter disease (OSD). The patient, after a year from passing the acute phase of OSD with the abstention of physical activity, reports bilateral anterior knee pain at the beginning of the football sport activity. Interventions: After the orthopedist check, who recommended physiotherapy sessions for the correction of motor patterns and the isometric reinforcement of the muscles of the quadriceps, the rehabilitation intervention was developed in 7 weeks through 14 sessions of neuro-motor training (NMT) with a frequency of two weekly sessions and six sessions of muscle-strengthening with a frequency of one weekly session. The sessions of NMT were carried out through free body exercises (or with overloads) with visual bio-feedback with the help of two cameras (one with anterior vision and one with lateral vision of the subject) and a big touch screen. The aim of these sessions of NMT was to modify the dysfunctional motor patterns evaluated by the 2D motion analysis test. The test was carried out at the beginning and at the end of the rehabilitation course and included five movements: single-leg squat (SLS), drop jump (DJ), single-leg hop (SLH), lateral shuffle (LS), and change of direction (COD). Each of these movements was evaluated through the video analysis of dynamic valgus knee, pelvic tilt, trunk control, shock absorption, and motor strategy. A free image analysis software (Kinovea) was then used to calculate scores. Results: Baseline assessment of the subject showed a total score of 59% on the right limb and 64% on the left limb (considering an optimal score above 85%) with large deficits in shock absorption capabilities, the presence of dynamic valgus knee, and dysfunctional motor strategies defined “quadriceps dominant.” After six weeks of training, the subject achieved a total score of 80% on the right limb and 86% on the left limb, with significant improvements in shock absorption capabilities, the presence of dynamic knee valgus, and the employment of more hip-oriented motor strategies on both lower limbs. The improvements shown in dynamic knee valgus, greater hip-oriented motor strategies, and improved shock absorption identified through six weeks of the NMT program can help a teenager amateur football player to manage the anterior knee pain during sports activity. In conclusion, NMT was a good choice to help a 13 years old male amateur football player to return to performance without pain after OSD and can also be used with all this type of athletes of the other teams' sports.

Keywords: movement analysis, neuro-motor training, knee pain, movement strategies

Procedia PDF Downloads 108
106 Cellular Components of the Hemal Node of Egyptian Cattle

Authors: Amira E. Derbalah, Doaa M. Zaghloul

Abstract:

10 clinically healthy hemal nodes were collected from male bulls aged 2-3 years. Light microscopy revealed a capsule of connective tissue consisted mainly of collagen fiber surrounding hemal node, numerous erythrocytes were found in wide subcapsular sinus under the capsule. The parenchyma of the hemal node was divided into cortex and medulla. Diffused lymphocytes, and lymphoid follicles, having germinal centers were the main components of the cortex, while in the medulla there was wide medullary sinus, diffused lymphocytes and few lymphoid nodules. The area occupied with lymph nodules was larger than that occupied with non-nodular structure of lymphoid cords and blood sinusoids. Electron microscopy revealed the cellular components of hemal node including elements of circulating erythrocytes intermingled with lymphocytes, plasma cells, mast cells, reticular cells, macrophages, megakaryocytes and endothelial cells lining the blood sinuses. The lymphocytes were somewhat triangular in shape with cytoplasmic processes extending between adjacent erythrocytes. Nuclei were triangular to oval in shape, lightly stained with clear nuclear membrane indentation and clear nucleoli. The reticular cells were elongated in shape with cytoplasmic processes extending between adjacent lymphocytes, rough endoplasmic reticulum, ribosomes and few lysosomes were seen in their cytoplasm. Nucleus was elongated in shape with less condensed chromatin. Plasma cells were oval to irregular in shape with numerous dilated rough endoplasmic reticulum containing electron lucent material occupying the whole cytoplasm and few mitochondria were found. Nuclei were centrally located and oval in shape with heterochromatin emarginated and often clumped near the nuclear membrane. Occasionally megakaryocytes and mast cells were seen among lymphocytes. Megakaryocytes had multilobulated nucleus and free ribosomes often appearing as small aggregates in their cytoplasm, while mast cell had their characteristic electron dense granule in the cytoplasm, few electron lucent granules were found also, we conclude that, the main function of the hemal node of cattle is proliferation of lymphocytes. No role for plasma cell in erythrophagocytosis could be suggested.

Keywords: cattle, electron microscopy, hemal node, histology, immune system

Procedia PDF Downloads 382
105 A Novel Harmonic Compensation Algorithm for High Speed Drives

Authors: Lakdar Sadi-Haddad

Abstract:

The past few years study of very high speed electrical drives have seen a resurgence of interest. An inventory of the number of scientific papers and patents dealing with the subject makes it relevant. In fact democratization of magnetic bearing technology is at the origin of recent developments in high speed applications. These machines have as main advantage a much higher power density than the state of the art. Nevertheless particular attention should be paid to the design of the inverter as well as control and command. Surface mounted permanent magnet synchronous machine is the most appropriate technology to address high speed issues. However, it has the drawback of using a carbon sleeve to contain magnets that could tear because of the centrifugal forces generated in rotor periphery. Carbon fiber is well known for its mechanical properties but it has poor heat conduction. It results in a very bad evacuation of eddy current losses induce in the magnets by time and space stator harmonics. The three-phase inverter is the main harmonic source causing eddy currents in the magnets. In high speed applications such harmonics are harmful because on the one hand the characteristic impedance is very low and on the other hand the ratio between the switching frequency and that of the fundamental is much lower than that of the state of the art. To minimize the impact of these harmonics a first lever is to use strategy of modulation producing low harmonic distortion while the second is to introduce a sinus filter between the inverter and the machine to smooth voltage and current waveforms applied to the machine. Nevertheless, in very high speed machine the interaction of the processes mentioned above may introduce particular harmonics that can irreversibly damage the system: harmonics at the resonant frequency, harmonics at the shaft mode frequency, subharmonics etc. Some studies address these issues but treat these phenomena with separate solutions (specific strategy of modulation, active damping methods ...). The purpose of this paper is to present a complete new active harmonic compensation algorithm based on an improvement of the standard vector control as a global solution to all these issues. This presentation will be based on a complete theoretical analysis of the processes leading to the generation of such undesired harmonics. Then a state of the art of available solutions will be provided before developing the content of a new active harmonic compensation algorithm. The study will be completed by a validation study using simulations and practical case on a high speed machine.

Keywords: active harmonic compensation, eddy current losses, high speed machine

Procedia PDF Downloads 380
104 Finite Element Molecular Modeling: A Structural Method for Large Deformations

Authors: A. Rezaei, M. Huisman, W. Van Paepegem

Abstract:

Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.

Keywords: finite element, large deformation, molecular mechanics, structural method

Procedia PDF Downloads 133
103 Teaching Turn-Taking Rules and Pragmatic Principles to Empower EFL Students and Enhance Their Learning in Speaking Modules

Authors: O. F. Elkommos

Abstract:

Teaching and learning EFL speaking modules is one of the most challenging productive modules for both instructors and learners. In a student-centered interactive communicative language teaching approach, learners and instructors should be aware of the fact that the target language must be taught as/for communication. The student must be empowered by tools that will work on more than one level of their communicative competence. Communicative learning will need a teaching and learning methodology that will address the goal. Teaching turn-taking rules, pragmatic principles and speech acts will enhance students' sociolinguistic competence, strategic competence together with discourse competence. Sociolinguistic competence entails the mastering of speech act conventions and illocutionary acts of refusing, agreeing/disagreeing; emotive acts like, thanking, apologizing, inviting, offering; directives like, ordering, requesting, advising, and hinting, among others. Strategic competence includes enlightening students’ consciousness of the various particular turn-taking systemic rules of organizing techniques of opening and closing conversation, adjacency pairs, interrupting, back-channeling, asking for/giving opinion, agreeing/disagreeing, using natural fillers for pauses, gaps, speaker select, self-select, and silence among others. Students will have the tools to manage a conversation. Students are engaged in opportunities of experiencing the natural language not as a mere extra student talking time but rather an empowerment of knowing and using the strategies. They will have the component items they need to use as well as the opportunity to communicate in the target language using topics of their interest and choice. This enhances students' communicative abilities. Available websites and textbooks now use one or more of these tools of turn-taking or pragmatics. These will be students' support in self-study in their independent learning study hours. This will be their reinforcement practice on e-Learning interactive activities. The students' target is to be able to communicate the intended meaning to an addressee that is in turn able to infer that intended meaning. The combination of these tools will be assertive and encouraging to the student to beat the struggle with what to say, how to say it, and when to say it. Teaching the rules, principles and techniques is an act of awareness raising method engaging students in activities that will lead to their pragmatic discourse competence. The aim of the paper is to show how the suggested pragmatic model will empower students with tools and systems that would support their learning. Supporting students with turn taking rules, speech act theory, applying both to texts and practical analysis and using it in speaking classes empowers students’ pragmatic discourse competence and assists them to understand language and its context. They become more spontaneous and ready to learn the discourse pragmatic dimension of the speaking techniques and suitable content. Students showed a better performance and a good motivation to learn. The model is therefore suggested for speaking modules in EFL classes.

Keywords: communicative competence, EFL, empowering learners, enhance learning, speech acts, teaching speaking, turn taking, learner centred, pragmatics

Procedia PDF Downloads 154
102 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)

Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky

Abstract:

The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.

Keywords: sutures, biomaterials, silk, Ramie

Procedia PDF Downloads 295
101 Improving the Utilization of Telfairia occidentalis Leaf Meal with Cellulase-Glucanase-Xylanase Combination and Selected Probiotic in Broiler Diets

Authors: Ayodeji Fasuyi

Abstract:

Telfairia occidentalis is a leafy vegetable commonly grown in the tropics for nutritional benefits. The use of enzymes and probiotics is becoming prominent due to the ban on antibiotics as growth promoters in many parts of the world. It is conceived that with enzymes and probiotics additives, fibrous leafy vegetables can be incorporated into poultry feeds as protein source. However, certain antinutrients were also found in the leaves of Telfairia occidentalis. Four broiler starter and finisher diets were formulated for the two phases of the broiler experiments. A mixture of fiber degrading enzymes, Roxazyme G2 (combination of cellulase, glucanase and xylanase) and probiotics (Turbotox), a growth promoter, were used in broiler diets at 1:1. The Roxazyme G2/Turbotox mixtures were used in diets containing four varying levels of Telfairia occidentalis leaf meal (TOLM) at 0, 10, 20 and 30%. Diets 1 were standard broiler diets without TOLM and Roxazyme G2 and Turbotox additives. Diets 2, 3 and 4 had enzymes and probiotics additives. Certain mineral elements such as Ca, P, K, Na, Mg, Fe, Mn, Cu and Zn were found in notable quantities viz. 2.6 g/100 g, 1.2 g/100 g, 6.2 g/100 g, 5.1 g/100 g, 4.7 g/100 g, 5875 ppm, 182 ppm, 136 ppm and 1036 ppm, respectively. Phytin, phytin-P, oxalate, tannin and HCN were also found in ample quantities viz. 189.2 mg/100 g, 120.1 mg/100 g, 80.7 mg/100 g, 43.1 mg/100 g and 61.2 mg/100 g, respectively. The average weight gain was highest at 46.3 g/bird/day for birds on 10% TOLM diet but similar (P > 0.05) to 46.2 g/bird/day for birds on 20% TOLM. The feed conversion ratio (FCR) of 2.27 was the lowest and optimum for birds on 10% TOLM although similar (P > 0.05) to 2.29 obtained for birds on 20% TOLM. FCR of 2.61 was the highest at 2.61 for birds on 30% TOLM diet. The lowest FCR of 2.27 was obtained for birds on 10% TOLM diet although similar (P > 0.05) to 2.29 for birds on 20% TOLM diet. Most carcass characteristics and organ weights were similar (P > 0.05) for the experimental birds on the different diets except for kidney, gizzard and intestinal length. The values for kidney, gizzard and intestinal length were significantly higher (P < 0.05) for birds on the TOLM diets. The nitrogen retention had the highest value of 72.37 ± 0.10% for birds on 10% TOLM diet although similar (P > 0.05) to 71.54 ± 1.89 obtained for birds on the control diet without TOLM and enzymes/probiotics mixture. There was evidence of a better utilization of TOLM as a plant protein source. The carcass characteristics and organ weights all showed evidence of uniform tissue buildup and muscles development particularly in diets containing 10% of TOLM level. There was also better nitrogen utilization in birds on the 10% TOLM diet. Considering the cheap cost of TOLM, it is envisaged that its introduction into poultry feeds as a plant protein source will ultimately reduce the cost of poultry feeds.

Keywords: Telfairia occidentalis leaf meal, enzymes, probiotics, additives

Procedia PDF Downloads 118
100 Development and Structural Characterization of a Snack Food with Added Type 4 Extruded Resistant Starch

Authors: Alberto A. Escobar Puentes, G. Adriana García, Luis F. Cuevas G., Alejandro P. Zepeda, Fernando B. Martínez, Susana A. Rincón

Abstract:

Snack foods are usually classified as ‘junk food’ because have little nutritional value. However, due to the increase on the demand and third generation (3G) snacks market, low price and easy to prepare, can be considered as carriers of compounds with certain nutritional value. Resistant starch (RS) is classified as a prebiotic fiber it helps to control metabolic problems and has anti-cancer colon properties. The active compound can be developed by chemical cross-linking of starch with phosphate salts to obtain a type 4 resistant starch (RS4). The chemical reaction can be achieved by extrusion, a process widely used to produce snack foods, since it's versatile and a low-cost procedure. Starch is the major ingredient for snacks 3G manufacture, and the seeds of sorghum contain high levels of starch (70%), the most drought-tolerant gluten-free cereal. Due to this, the aim of this research was to develop a snack (3G), with RS4 in optimal conditions extrusion (previously determined) from sorghum starch, and carry on a sensory, chemically and structural characterization. A sample (200 g) of sorghum starch was conditioned with 4% sodium trimetaphosphate/ sodium tripolyphosphate (99:1) and set to 28.5% of moisture content. Then, the sample was processed in a single screw extruder equipped with rectangular die. The inlet, transport and output temperatures were 60°C, 134°C and 70°C, respectively. The resulting pellets were expanded in a microwave oven. The expansion index (EI), penetration force (PF) and sensory analysis were evaluated in the expanded pellets. The pellets were milled to obtain flour and RS content, degree of substitution (DS), and percentage of phosphorus (% P) were measured. Spectroscopy [Fourier Transform Infrared (FTIR)], X-ray diffraction, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analysis were performed in order to determine structural changes after the process. The results in 3G were as follows: RS, 17.14 ± 0.29%; EI, 5.66 ± 0.35 and PF, 5.73 ± 0.15 (N). Groups of phosphate were identified in the starch molecule by FTIR: DS, 0.024 ± 0.003 and %P, 0.35±0.15 [values permitted as food additives (<4 %P)]. In this work an increase of the gelatinization temperature after the crosslinking of starch was detected; the loss of granular and vapor bubbles after expansion were observed by SEM; By using X-ray diffraction, loss of crystallinity was observed after extrusion process. Finally, a snack (3G) was obtained with RS4 developed by extrusion technology. The sorghum starch was efficient for snack 3G production.

Keywords: extrusion, resistant starch, snack (3G), Sorghum

Procedia PDF Downloads 293
99 Effect of Low Calorie Sweeteners on Chemical, Sensory Evaluation and Antidiabetic of Pumpkin Jam Fortified with Soybean

Authors: Amnah M. A. Alsuhaibani, Amal N. Al-Kuraieef

Abstract:

Introduction: In the recent decades, production of low-calorie jams is needed for diabetics that comprise low calorie fruits and low calorie sweeteners. Object: the research aimed to prepare low calorie formulated pumpkin jams (fructose, stevia and aspartame) incorporated with soy bean and evaluate the jams through chemical analysis and sensory evaluation after storage for six month. Moreover, the possible effect of consumption of low calorie jams on diabetic rats was investigated. Methods: Five formulas of pumpkin jam with different sucrose, fructose, stevia and aspartame sweeteners and soy bean were prepared and stored at 10 oC for six month compared to ordinary pumpkin jam. Chemical composition and sensory evaluation of formulated jams were evaluated at zero time, 3 month and 6 month of storage. The best three acceptable pumpkin jams were taken for biological study on diabetic rats. Rats divided into group (1) served as negative control and streptozotocin induce diabetes four rat groups that were positive diabetic control (group2), rats fed on standard diet with 10% sucrose soybean jam, fructose soybean jam and stevia soybean jam (group 3, 4&5), respectively. Results: The content of protein, fat, ash and fiber were increased but carbohydrate was decreased in low calorie formulated pumpkin jams compared to ordinary jam. Production of aspartame soybean pumpkin jam had lower score of all sensory attributes compared to other jam then followed by stevia soybean Pumpkin jam. Using non nutritive sweeteners (stevia & aspartame) with soybean in processing jam could lower the score of the sensory attributes after storage for 3 and 6 months. The highest score was recorded for sucrose and fructose soybean jams followed by stevia soybean jam while aspartame soybean jam recorded the lowest score significantly. The biological evaluation showed a significant improvement in body weight and FER of rats after six weeks of consumption of standard diet with jams (Group 3,4&5) compared to Group1. Rats consumed 10% low calorie jam with nutrient sweetener (fructose) and non nutrient sweetener (stevia) soybean jam (group 4& 5) showed significant decrease in glucose level, liver function enzymes activity, and liver cholesterol & total lipids in addition of significant increase of insulin and glycogen compared to the levels of group 2. Conclusion: low calorie pumpkin jams can be prepared by low calorie sweeteners and soybean and also storage for 3 months at 10oC without change sensory attributes. Consumption of stevia pumpkin jam fortified with soybean had positive health effects on streptozoticin induced diabetes in rats.

Keywords: pumpkin jam, HFCS, aspartame, stevia, storage

Procedia PDF Downloads 165
98 Cartilage Mimicking Coatings to Increase the Life-Span of Bearing Surfaces in Joint Prosthesis

Authors: L. Sánchez-Abella, I. Loinaz, H-J. Grande, D. Dupin

Abstract:

Aseptic loosening remains as the principal cause of revision in total hip arthroplasty (THA). For long-term implantations, submicron particles are generated in vivo due to the inherent wear of the prosthesis. When this occurs, macrophages undergo phagocytosis and secretion of bone resorptive cytokines inducing osteolysis, hence loosening of the implanted prosthesis. Therefore, new technologies are required to reduce the wear of the bearing materials and hence increase the life-span of the prosthesis. Our strategy focuses on surface modification of the bearing materials with a hydrophilic coating based on cross-linked water-soluble (meth)acrylic monomers to improve their tribological behavior. These coatings are biocompatible, with high swelling capacity and antifouling properties, mimicking the properties of natural cartilage, i.e. wear resistance with a permanent hydrated layer that prevents prosthesis damage. Cartilage mimicking based coatings may be also used to protect medical device surfaces from damage and scratches that will compromise their integrity and hence their safety. However, there are only a few reports on the mechanical and tribological characteristics of this type of coatings. Clear beneficial advantages of this coating have been demonstrated in different conditions and different materials, such as Ultra-high molecular weight polyethylene (UHMWPE), Polyethylene (XLPE), Carbon-fiber-reinforced polyetheretherketone (CFR-PEEK), cobalt-chromium (CoCr), Stainless steel, Zirconia Toughened Alumina (ZTA) and Alumina. Using routine tribological experiments, the wear for UHMWPE substrate was decreased by 75% against alumina, ZTA and stainless steel. For PEEK-CFR substrate coated, the amount of material lost against ZTA and CrCo was at least 40% lower. Experiments on hip simulator allowed coated ZTA femoral heads and coated UHMWPE cups to be validated with a decrease of 80% of loss material. Further experiments on hip simulator adding abrasive particles (1 micron sized alumina particles) during 3 million cycles, on a total of 6 million, demonstrated a decreased of around 55% of wear compared to uncoated UHMWPE and uncoated XLPE. In conclusion, CIDETEC‘s hydrogel coating technology is versatile and can be adapted to protect a large range of surfaces, even in abrasive conditions.

Keywords: cartilage, hydrogel, hydrophilic coating, joint

Procedia PDF Downloads 103
97 Basotho Cultural Shift: The Role of Dress in the Shift

Authors: Papali Elizabeth Maqalika

Abstract:

Introduction: Dress is used daily and can be used to define culture, and through it, individuals form a sense of self and identity. One of the characteristics of culture is that it evolves; Basotho culture is no exception to this. It has evolved through rites of entry, significant ceremonies, daily living, and an approach to others. Most of these affect and have been affected by the local/traditional dress. The study focused on the evolution of culture, and the role played by dress as it is one of the major contributors to non-verbal communication. Methodology: Secondary data were used since most of the original cultural practices are no longer held dear in the value system and so no longer practiced. Interviews were conducted to get some insights from the senior citizens and their responses compared to those of the present adults. Content analysis was used for the interview data. Results: The nature of governance in Lesotho has clearly contributed to the current cultural state of confusion. The Basotho culture has indeed shifted, and the difference in dress code explains it. Acculturation, the alteration in environments, and the type of occasions Basotho attended lately contributed to the shift. Technology brought about a difference in the mode of transport, sports, household activities, and gender roles. Conclusion and Recommendations: It was concluded that since culture is imparted through socialisation, a change in availability of most Basotho women leaves little time left for socialisation with children and resorts to other upbringing patterns, most of which are not cultural; this has brought a cultural shift. In addition, acculturation has contributed massively to the value system of Basotho. The type of dress worn by Basotho presently shifts the culture, and the shifting culture also shifts the dress required to suit the present culture. Because of the type of mindset Basotho has now, it is recommended that cultural days be observed in schools, including the multi-racial ones, and media should assist in this information transmission. The campaigns regarding the value of traditional dress and what it represents are recommended. The local dressmakers manufacturing the Seshoeshoe and any other traditional dress need to be educated about the fabric history, fiber content, and consequent care to be in a position to guide ultimate consumers of the products. Awareness campaigns that the culture shifts and may not necessarily result in negative should be ventured. Cultural exhibitions should also be held ideally at places that hold some cultural heritage. The ministry of sports and culture, together with that of tourism, should run with cultural awareness and enriching vision with a focus on education as opposed to revenue collection.

Keywords: Basotho, culture, dress, acculturation, influence, cultural heritage, socialization, non-verbal communication, Seshoeshoe

Procedia PDF Downloads 57
96 Opportunities Forensics Biology in the Study of Sperm Traces after Washing

Authors: Saule Musabekova

Abstract:

Achievements of modern science, especially genetics, led to a sharp intensification of the process of proof. Footprints, subjected to destruction-related cause-effect relationships, are sources of evidentiary information on the circumstances it was committed and the persons committed it. Currently, with the overall growth in the number of crimes against sexual inviolability or sexual freedom, and increased the proportion of the crimes where to destroy the traces of the crime perpetrators different detergents are used. A characteristic feature of modern synthetic detergents is the presence of biological additives - enzymes that break down and gradually destroy stains of protein origin. To study the nature of the influence of modern washing powders semen stains were put kinds of fabrics and prepared in advance stained sperm of men of different groups according to ABO system. For research washing machines of known manufacturers of household appliances have been used with different production characteristics, in which the test was performed and the washing of various kinds of fabrics with semen stains. After washing the tissue with spots were tested for the presence of semen stains visually preserved, establishing in them surviving sperm or their elements, we studied the possibilities of the group diagnostics on the system ABO or molecular-genetic identification. The subsequent study of these spots by morphological method showed that 100% detection of morphological sperm cells - sperm is not possible. As a result, in 30% of further studies of these traces gave weakly positive results are obtained with an immunoassay test PSA SEMIQUANT. It is noted that the percentage of positive results obtained in the study of semen traces disposed on natural fiber fabrics is higher than sperm traces disposed on synthetic fabrics. Study traces of semen, confirmed by PSA - test 3% possible to establish a genetic profile of the person and obtain any positive findings of the molecular genetic examination. In other cases, it was not a sufficient amount of material for DNA identification. Results of research and the practical expert study found, in most cases, the conclusions of the identification of sperm traces do not seem possible. This a consequence of exposure to semen traces on the material evidence of biological additives contained in modern detergents and further the influence of other effective methods. Resulting in DNA has undergone irreversible changes (degradation) under the influence of external human factors. Using molecular genetic methods can partially solve the problems arising in the study of unlaundered physical evidence for the disclosure and investigation of crimes.

Keywords: study of sperm, modern detergents, washing powders, forensic medicine

Procedia PDF Downloads 283
95 Application of Laser-Induced Breakdown Spectroscopy for the Evaluation of Concrete on the Construction Site and in the Laboratory

Authors: Gerd Wilsch, Tobias Guenther, Tobias Voelker

Abstract:

In view of the ageing of vital infrastructure facilities, a reliable condition assessment of concrete structures is becoming of increasing interest for asset owners to plan timely and appropriate maintenance and repair interventions. For concrete structures, reinforcement corrosion induced by penetrating chlorides is the dominant deterioration mechanism affecting the serviceability and, eventually, structural performance. The determination of the quantitative chloride ingress is required not only to provide valuable information on the present condition of a structure, but the data obtained can also be used for the prediction of its future development and associated risks. At present, wet chemical analysis of ground concrete samples by a laboratory is the most common test procedure for the determination of the chloride content. As the chloride content is expressed by the mass of the binder, the analysis should involve determination of both the amount of binder and the amount of chloride contained in a concrete sample. This procedure is laborious, time-consuming, and costly. The chloride profile obtained is based on depth intervals of 10 mm. LIBS is an economically viable alternative providing chloride contents at depth intervals of 1 mm or less. It provides two-dimensional maps of quantitative element distributions and can locate spots of higher concentrations like in a crack. The results are correlated directly to the mass of the binder, and it can be applied on-site to deliver instantaneous results for the evaluation of the structure. Examples for the application of the method in the laboratory for the investigation of diffusion and migration of chlorides, sulfates, and alkalis are presented. An example for the visualization of the Li transport in concrete is also shown. These examples show the potential of the method for a fast, reliable, and automated two-dimensional investigation of transport processes. Due to the better spatial resolution, more accurate input parameters for model calculations are determined. By the simultaneous detection of elements such as carbon, chlorine, sodium, and potassium, the mutual influence of the different processes can be determined in only one measurement. Furthermore, the application of a mobile LIBS system in a parking garage is demonstrated. It uses a diode-pumped low energy laser (3 mJ, 1.5 ns, 100 Hz) and a compact NIR spectrometer. A portable scanner allows a two-dimensional quantitative element mapping. Results show the quantitative chloride analysis on wall and floor surfaces. To determine the 2-D distribution of harmful elements (Cl, C), concrete cores were drilled, split, and analyzed directly on-site. Results obtained were compared and verified with laboratory measurements. The results presented show that the LIBS method is a valuable addition to the standard procedures - the wet chemical analysis of ground concrete samples. Currently, work is underway to develop a technical code of practice for the application of the method for the determination of chloride concentration in concrete.

Keywords: chemical analysis, concrete, LIBS, spectroscopy

Procedia PDF Downloads 95
94 Facilitating the Learning Environment as a Servant Leader: Empowering Self-Directed Student Learning

Authors: Thomas James Bell III

Abstract:

Pedagogy is thought of as one's philosophy, theory, or teaching method. This study examines the science of learning, considering the forced reconsideration of effective pedagogy brought on by the aftermath of the 2020 coronavirus pandemic. With the aid of various technologies, online education holds challenges and promises to enhance the learning environment if implemented to facilitate student learning. Behaviorism centers around the belief that the instructor is the sage on the classroom stage using repetition techniques as the primary learning instrument. This approach to pedagogy ascribes complete control of the learning environment and works best for students to learn by allowing students to answer questions with immediate feedback. Such structured learning reinforcement tends to guide students' learning without considering learners' independence and individual reasoning. And such activities may inadvertently stifle the student's ability to develop critical thinking and self-expression skills. Fundamentally liberationism pedagogy dismisses the concept that education is merely about students learning things and more about the way students learn. Alternatively, the liberationist approach democratizes the classroom by redefining the role of the teacher and student. The teacher is no longer viewed as the sage on the stage but as a guide on the side. Instead, this approach views students as creators of knowledge and not empty vessels to be filled with knowledge. Moreover, students are well suited to decide how best to learn and which areas improvements are needed. This study will explore the classroom instructor as a servant leader in the twenty-first century, which allows students to integrate technology that encapsulates more individual learning styles. The researcher will examine the Professional Scrum Master (PSM I) exam pass rate results of 124 students in six sections of an Agile scrum course. The students will be separated into two groups; the first group will follow a structured instructor-led course outlined by a course syllabus. The second group will consist of several small teams (ten or fewer) of self-led and self-empowered students. The teams will conduct several event meetings that include sprint planning meetings, daily scrums, sprint reviews, and retrospective meetings throughout the semester will the instructor facilitating the teams' activities as needed. The methodology for this study will use the compare means t-test to compare the mean of an exam pass rate in one group to the mean of the second group. A one-tailed test (i.e., less than or greater than) will be used with the null hypothesis, for the difference between the groups in the population will be set to zero. The major findings will expand the pedagogical approach that suggests pedagogy primarily exist in support of teacher-led learning, which has formed the pillars of traditional classroom teaching. But in light of the fourth industrial revolution, there is a fusion of learning platforms across the digital, physical, and biological worlds with disruptive technological advancements in areas such as the Internet of Things (IoT), artificial intelligence (AI), 3D printing, robotics, and others.

Keywords: pedagogy, behaviorism, liberationism, flipping the classroom, servant leader instructor, agile scrum in education

Procedia PDF Downloads 120
93 Design, Implementation, and Evaluation of ALS-PBL Model in the EMI Classroom

Authors: Yen-Hui Lu

Abstract:

In the past two decades, in order to increase university visibility and internationalization, English as a medium of instruction (EMI) has become one of the main language policies in higher education institutions where English is not a dominant language. However, given the complex, discipline-embedded nature of academic communication, academic literacy does not come with students’ everyday language experience, and it is a challenge for all students. Particularly, to engage students in the effective learning process of discipline concepts in the EMI classrooms, teachers need to provide explicit academic language instruction to assist students in deep understanding of discipline concepts. To bridge the gap between academic language development and discipline learning in the EMI classrooms, the researcher incorporates academic language strategies and key elements of project-based learning (PBL) into an Academic Language Strategy driven PBL (ALS-PBL) model. With clear steps and strategies, the model helps EMI teachers to scaffold students’ academic language development in the EMI classrooms. ALS-PBL model includes three major stages: preparation, implementation, and assessment. First, in the preparation stage, ALS-PBL teachers need to identify learning goals for both content and language learning and to design PBL topics for investigation. Second, during the implementation stage, ALS-PBL teachers use the model as a guideline to create a lesson structure and class routine. There are five important elements in the implementation stage: (1) academic language preparation, (2) connecting background knowledge, (3) comprehensible input, (4) academic language reinforcement, and (5) sustained inquiry and project presentation. Finally, ALS-PBL teachers use formative assessments such as student learning logs, teachers’ feedback, and peer evaluation to collect detailed information that demonstrates students’ academic language development in the learning process. In this study, ALS-PBL model was implemented in an interdisciplinary course entitled “Science is Everywhere”, which was co-taught by five professors from different discipline backgrounds, English education, civil engineering, business administration, international business, and chemical engineering. The purpose of the course was to cultivate students’ interdisciplinary knowledge as well as English competency in disciplinary areas. This study used a case-study design to systematically investigate students’ learning experiences in the class using ALS-PBL model. The participants of the study were 22 college students with different majors. This course was one of the elective EMI courses in this focal university. The students enrolled in this EMI course to fulfill the school language policy, which requires the students to complete two EMI courses before their graduation. For the credibility, this study used multiple methods to collect data, including classroom observation, teachers’ feedback, peer assessment, student learning log, and student focus-group interviews. Research findings show four major successful aspects of implementing ALS-PBL model in the EMI classroom: (1) clear focus on both content and language learning, (2) meaningful practice in authentic communication, (3) reflective learning in academic language strategies, and (4) collaborative support in content knowledge.This study will be of value to teachers involved in delivering English as well as content lessons to language learners by providing a theoretically-sound practical model for application in the classroom.

Keywords: academic language development, content and language integrated learning, english as a medium of instruction, project-based learning

Procedia PDF Downloads 67
92 Enhancement Effect of Compound 4-Hydroxybenzoic Acid from Petung Bamboo (Dendrocalamus Asper) Shoots on α1β2γ2S of GABA (A) Receptor Expressed in Xenopus laevis Oocytes- Preliminary Study on Its Anti-Epileptic Potential

Authors: Muhammad Bilal, Amelia Jane Llyod, Habsah Mohamad, Jia Hui Wong, Abdul Aziz Mohamed Yusoff, Jafri Malin Abdullah, Jingli Zhang

Abstract:

Epilepsy is one of the major brain afflictions occurs with uncontrolled excitation of cortex; disturbed 50 million of world’s population. About 25 percent of patients subjected to adverse effects from antiepileptic drugs (AEDs) such as depression, nausea, tremors, gastrointestinal symptoms, osteoporosis, dizziness, weight change, drowsiness, fatigue are commonly observed indications; therefore, new drugs are required to cure epilepsy. GABA is principle inhibitory neurotransmitter, control excitation of the brain. Mutation or dysfunction of GABA receptor is one of the primary causes of epilepsy, which is confirmed from many acquired models of epilepsy like traumatic brain injury, kindling, and status epilepticus models of epilepsy. GABA receptor has 3 distinct types such as GABA (A), GABA (B), GABA(C).GABA (A) receptor has 20 different subunits, α1β2γ2 subunits composition of GABA (A) receptor is the most used combination of subunits for screening of compounds against epilepsy. We expressed α1β2γ2s subunits of GABA (A) Receptor in Xenopus leavis oocytes and examined the enhancement potential of 4-Hydroxybenzoic acid compound on GABA (A) receptor via two-electrode voltage clamp current recording technique. Bamboo shoots are the young, tender offspring of bamboo, which are usually harvested after a cultivating period of 2 weeks. Proteins, acids, fat, starch, carbohydrate, fatty acid, vitamin, dietary fiber, and minerals are the major constituent found systematically in bamboo shoots. These shoots reported to have anticancer, antiviral, antibacterial activity, also possess antioxidant properties due to the presence of phenolic compounds. Student t-test analysis suggested that 4- hydroxybenzoic acid positively allosteric GABA (A) receptor, increased normalized current amplitude to 1.0304±0.0464(p value 0.032) compared with vehicle. 4-Hydrobenzoic acid, a compound from Dendrocalamus Asper bamboo shoot gives new insights for future studies on bamboo shoots with motivation for extraction of more compounds to investigate their effects on human and rodents against epilepsy, insomnia, and anxiety.

Keywords: α1β2γ2S, antiepileptic, bamboo shoots, epilepsy GABA (A) receptor, two-microelectrode voltage clamp, xenopus laevis oocytes

Procedia PDF Downloads 387