Search results for: fiber contents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2470

Search results for: fiber contents

760 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.

Keywords: direct shear, shear strength, slag, UU test

Procedia PDF Downloads 463
759 Investigation of Verbal Feedback and Learning Process for Oral Presentation

Authors: Nattawadee Sinpattanawong

Abstract:

Oral presentation has been used mostly in business communication. The business presentation is carrying out through an audio and visual presentation material such as statistical documents, projectors, etc. Common examples of business presentation are intra-organization and sales presentations. The study aims at investigating functions, strategies and contents of assessors’ verbal feedback on presenters’ oral presentations and exploring presenters’ learning process and specific views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. This study is designed as a descriptive qualitative research; four master students and one teacher in English for Business and Industry Presentation Techniques class of public university will be selected. The researcher hopes that any understanding how assessors’ verbal feedback on oral presentations and learning process may illuminate issues for other people. The data from this research may help to expand and facilitate the readers’ understanding of assessors’ verbal feedback on oral presentations and learning process in their own situations. The research instruments include an audio recorder, video recorder and an interview. The students will be interviewing in order to ask for their views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. After finishing data collection, the data will be analyzed and transcribed. The findings of this study are significant because it can provide presenters knowledge to enhance their learning process and provide teachers knowledge about providing verbal feedback on student’s oral presentations on a business context.

Keywords: business context, learning process, oral presentation, verbal feedback

Procedia PDF Downloads 178
758 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Authors: Teerapon Pirom, Ura Pancharoen

Abstract:

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Keywords: aliquat336, amoxicillin, HFSLM, kinetic

Procedia PDF Downloads 263
757 Green Fruit and Vegetables Have Favorable Effects on 3-Year Changes of Cardiometabolic Risk Factors: A Cohort Study

Authors: Parvin Mirmiran, Zahra Bahadoran, Nazanin Moslehi, Fereidoun Azizi

Abstract:

Background and aim: We aimed to investigate the effects of green fruits and vegetables (green FV) consumption on the 3-year changes of cardiometabolic risk factors. Methods: This longitudinal study was conducted in the framework of Tehran Lipid and Glucose Study, between 2006-2008 and 2009-2011, on 1272 adults. Dietary intake of green FV, including green cabbage, broccoli, lettuce, celery, green beans, green peas, cucumber, leafy vegetables, zucchini, green chili and bell pepper, and kiwi fruit, has been assessed by a validated semi-quantitative food frequency questionnaire at baseline and second examination. Demographics, anthropometrics and biochemical measures were evaluated at baseline and 3 years later. The associations of cardiometabolic risk changes with mean intake of green FV were estimated. Results: The mean age of men and women at baseline was 39.8±12.7 and 37.3±12.1 years, respectively. Mean intake of green FV was 152±77 g/d. More intake from green FV was accompanied to more intake of vitamin A, α and β-carotene, lutein, β-criptoxanthine, potassium, magnesium and fiber. Consumption of green FV was inversely associated with 3-year change of waist circumference (β= -0.07, P=0.01), total cholesterol (β= -0.11, P=0.01) and triglycerides (β= -0.13, P=0.01). Each 25 g/d increase in consumption of green FV decreased the incidence of hyper-triglyceridemia by 12% (OR:0.88, 95%CI:0.71-0.99) in men. In women, no significant association was observed between consumption of green FV with cardiometabolic risk factors. Conclusion: Higher consumption of green FV could have preventive effects against abdominal fat gain and lipid disorders.

Keywords: cardiometabolic risk factors, abdominal obesity, lipid disorders, fruits, vegetables

Procedia PDF Downloads 395
756 Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab

Authors: Nameer A. Alwash, Dunia A. Abd AlRadha, Arshed M. Aljanaby

Abstract:

This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder.

Keywords: reactive powder concrete, RPC, hybrid concrete, composite section, RC girder, RC slab, shear connecters, inverted T section, shear reinforcment, shear span over effective depth

Procedia PDF Downloads 344
755 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE

Procedia PDF Downloads 58
754 A Methodological Concept towards a Framework Development for Social Software Adoption in Higher Education System

Authors: Kenneth N. Ohei, Roelien Brink

Abstract:

For decades, teaching and learning processes have centered on the traditional approach (Web 1.0) that promoted teacher-directed pedagogical practices. Currently, there is a realization that the traditional approach is not adequate to effectively address and improve all student-learning outcomes. The subsequent incorporation of social software, Information, and Communication Technology (ICT) tools in universities may serve as complementary to support educational goals, offering students the affordability and opportunity to educational choices and learning platforms. Consequently, educators’ inability to incorporate these instructional ICT tools in their teaching and learning practices remains a challenge. This will signify that educators still lack the ICT skills required to administer lectures and bridging learning gaps. This study probes a methodological concept with the aim of developing a framework towards the adoption of social software in HES to help facilitate business processes and can build social presence among students. A mixed method will be appropriate to develop a comprehensive framework needed in Higher Educational System (HES). After research have been conducted, the adoption of social software will be based on the developed comprehensive framework which is supposed to impact positively on education and approach of delivery, improves learning experience, engagement and finally, increases educational opportunities and easy access to educational contents.

Keywords: blended and integrated learning, learning experience and engagement, higher educational system, HES, information and communication technology, ICT, social presence, Web 1.0, Web 2.0, Web 3.0

Procedia PDF Downloads 147
753 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model

Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar

Abstract:

In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.

Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model

Procedia PDF Downloads 361
752 Mechanical and Biodegradability of Porous Poly-ε-Caprolactone/Polyethylene Glycol Copolymer-Reinforced Cellulose Nanofibers for Soft Tissue Engineering Applications

Authors: Mustafa Abu Ghalia, Mohammed Seddik

Abstract:

The design and development of a new class of biomaterial has gained particular interest in producing polymer scaffold for biomedical applications. Improving mechanical properties, biological and controlling pores scaffold are important factors to provide appropriate biomaterial for implement in soft tissue repair and regeneration. In this study, poly-ε-caprolactone (PCL) /polyethylene glycol (PEG) copolymer (80/20) incorporated with CNF scaffolds were made employing solvent casting and particulate leaching methods. Four mass percentages of CNF (1, 2.5, 5, and 10 wt.%) were integrated into the copolymer through a silane coupling agent. Mechanical properties were determined using Tensile Tester data acquisition to investigate the effect of porosity, pore size, and CNF contents. Tensile strength obtained for PCL/PEG- 5 wt.% CNF was 16 MPa, which drastically decreased after creating a porous structure to 7.1 MPa. The optimum parameters of the results were found to be 5 wt.% for CNF, 240 μm for pore size, and 83% for porosity. Scanning electron microscopy (SEM) micrograph reveals that consistent pore size and regular pore shape were accomplished after the addition of CNF-5 wt. % into PCL/PEG. The results of mass loss of PCL/PEG reinforced-CNF 1% have clearly enhanced to double values compared with PCL/PEG copolymer and three times with PCL/PEG scaffold-CNF 1%. In addition, all PCL/PEG reinforced and scaffold- CNF were partially disintegrated under composting conditions confirming their biodegradable behavior. This also provides a possible solution for the end life of these biomaterials.

Keywords: PCL/PEG, cellulose nanofibers, tissue engineering, biodegradation, compost polymers

Procedia PDF Downloads 45
751 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells

Authors: Saheed O. Akinwale, Olufemi A. Koya

Abstract:

Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.

Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness

Procedia PDF Downloads 216
750 Analytical Studies on Subgrade Soil Using Jute Geotextiles

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, Jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 412
749 Nutritive Value of Three-Stage Olive Cake (Olea europaea L.) for Growing Rabbit

Authors: Zahia Dorbane, Si Ammar Kadi, Dalila Boudouma, Thierry Gidenne

Abstract:

In rabbits feeding, minimum fibre intake is essential to avoid digestive disorders. However, this concentration of fibre is not easy to obtain when formulating feeds, without reduction of nutritional value. Three stage olive cake, the residual material after oil extraction by centrifugation, including pulp and stones, can be used as a fibre source in rabbit diet. The incorporation of olive cake can allow a better balance between different fibre fractions and reduce health disorder. However, for practical use of any raw material, it is necessary to know its chemical and nutritive value. The aim of this study was to assess the nutritive value of three-stage olive cake (TSOC) for growing rabbits. Thus, 36 rabbits weaned at 35 days (702.8 ± 28.5) were divided into three groups of 12 receiving one of the following diets: control with 0% of TSOC, TSOC10 (10% of TSOC) and TSOC20 (20% TSOC). The rabbits were individually housed in digestibility cages and received ad libitum one of the three diets, fresh and clean water was provided ad libitum. After an adaptation period of 7d, feces were collected for 4d. Collected feces were frozen and stored for further analysis. The chemical composition of TSOC shows that it is a rich fiber raw material since it contains (%DM): 6% of CP; 7.4% of EE; 78.7% of NDF; 55.4% of ADF and 24.3% of ADL. The inclusion of TSOC at 20% of basal diet reduced the digestibility coefficient of organic matter, crude protein and NDF from 67.8 to 55.3%, 80.4 to 75.3% and from 31.5 to 18.4% (p < 0.001) respectively. The digestible energy and digestible protein content of the three-stage olive cake estimated by regression was 2.94 ± 0.52MJ DE/kg DM and 22.4 ± 6 g DP/kg DM respectively. In conclusion, based on the results of the present experiment, the three-stage olive cake can be used as a fibre source for rabbit.

Keywords: digestibility, nutritive value, olive cake, rabbit

Procedia PDF Downloads 143
748 On Compression Properties of Honeycomb Structures Using Flax/PLA Composite as Core Material

Authors: S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishaks

Abstract:

Sandwich structures based on cellular cores are increasingly being utilized as energy-absorbing components in the industry. However, determining ideal structural configurations remains challenging. This chapter compares the compression properties of flax fiber-reinforced polylactic acid (PLA) of empty honeycomb core, foam-filled honeycomb and double cell wall square interlocking core sandwich structure under quasi-static compression loading. The square interlocking core is fabricated through a slotting technique, whereas the honeycomb core is made using a corrugated mold that was initially used to create the corrugated core composite profile, which is then cut into corrugated webs and assembled to form the honeycomb core. The sandwich structures are tested at a crosshead displacement rate of 2 mm/min. The experimental results showed that honeycomb outperformed the square interlocking core in terms of their strength capability and SEA by around 14% and 34%, respectively. It is observed that the foam-filled honeycomb collapse in a progressive mode, exhibiting noticeable advantages over the empty honeycomb; this is attributed to the interaction between the honeycomb wall and foam filler. Interestingly, the average SEAs of foam-filled and empty honeycomb cores have no significant difference, around 8.7kJ/kg and 8.2kJ/kg, respectively. In contrast, its strength capability is clearly pronounced, in which the foam-filled core outperforms the empty counterparts by around 33%. Finally, the results for empty and foam-filled cores were significantly superior to aluminum cores published in the literature.

Keywords: compressive strength, flax, honeycomb core, specific energy absorption

Procedia PDF Downloads 69
747 A Failure Criterion for Unsupported Boreholes in Poorly Cemented Granular Formations

Authors: Sam S. Hashemi

Abstract:

The breakage of bonding between sand particles and their dislodgment from the borehole wall are among the main factors resulting in a borehole failure in poorly cemented granular formations. The grain debonding usually precedes the borehole failure and it can be considered as a sign that the onset of the borehole collapse is imminent. Detecting the bonding breakage point and introducing an appropriate failure criterion will play an important role in borehole stability analysis. To study the influence of different factors on the initiation of sand bonding breakage at the borehole wall, a series of laboratory tests was designed and conducted on poorly cemented sand samples. The total absorbed strain energy per volume of material up to the point of the observed particle debonding was computed. The results indicated that the particle bonding breakage point at the borehole wall was reached both before and after the peak strength of the thick-walled hollow cylinder specimens depending on the stress path and cement content. Three different cement contents and two borehole sizes were investigated to study the influence of the bonding strength and scale on the particle dislodgment. Test results showed that the stress path has a significant influence on the onset of the sand bonding breakage. It was shown that for various stress paths, there is a near linear relationship between the absorbed energy and the normal effective mean stress.

Keywords: borehole stability, experimental studies, poorly cemented sands, total absorbed strain energy

Procedia PDF Downloads 193
746 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 252
745 Estimation of Genetic Diversity in Sorghum Accessions Using Agro-Mophological and Nutritional Traits

Authors: Maletsema Alina Mofokeng, Nemera Shargie

Abstract:

Sorghum is one of the most important cereal crops grown as a source of calories for many people in tropics and sub-tropics of the world. Proper characterisation and evaluation of crop germplasm is an important component for effective management of genetic resources and their utilisation in the improvement of the crop through plant breeding. The objective of the study was to estimate the genetic diversity present in sorghum accessions grown in South Africa using agro-morphological traits and some nutritional contents. The experiment was carried out in Potchefstroom. Data were subjected to correlations, principal components analysis, and hierarchical clustering using GenStat statistical software. There were highly significance differences among the accessions based on agro-morphological and nutritional quality traits. Grain yield was highly positively correlated with panicle weight. Plant height was highly significantly correlated with internode length, leaf length, leaf number, stem diameter, the number of nodes and starch content. The Principal component analysis revealed three most important PCs with a total variation of 78.6%. The protein content ranged from 7.7 to 14.7%, and starch ranged from 58.52 to 80.44%. The accessions that had high protein and starch content were AS16cyc and MP4277. There was vast genetic diversity observed among the accessions assessed that can be used by plant breeders to improve yield and nutritional traits.

Keywords: accessions, genetic diversity, nutritional quality, sorghum

Procedia PDF Downloads 249
744 Higher Education Internationalisation: The Case of Indonesia

Authors: Agustinus Bandur, Dyah Budiastuti

Abstract:

With the rapid development of information and communication technology (ICT) in globalisation era, higher education (HE) internationalisation has become a worldwide phenomenon. However, even though various studies have been widely published in existing literature, the settings of these studies were taken places in developed countries. Accordingly, the major purpose of this article is to explore the current trends of higher education internationalisation programs with particular reference to identify the benefits and challenges confronted by participating staff and students. For these purposes, ethnographic qualitative study with the usage of NVivo 11 software was applied in coding, analyzing, and visualization of non-numeric data gathered from interviews, videos, web contents, social media, and relevant documents. Purposive sampling technique was applied in this study with a total of ten high-ranked accredited government and private universities in Indonesia. On the basis of thematic and cross-case analyses, this study indicates that while Australia has led other countries in dual-degree programs, partner universities from Japan and Korea have the most frequent collaboration on student exchange programs. Meanwhile, most visiting scholars who have collaborated with the universities in this study came from the US, the UK, Japan, Australia, Netherlands, and China. Other European countries such as Germany, French, and Norway have also conducted joint research with Indonesian universities involved in this study. This study suggests that further supports of government policy and grants are required to overcome the challenges as well as strategic leadership and management roles to achieve high impacts of such programs on higher education quality.

Keywords: higher education, internationalisation, challenges, Indonesia

Procedia PDF Downloads 254
743 Nutritional Evaluation and the Importance of Traditional Vegetables That Sustain the Indigenous People of Malaysia

Authors: Rachel Thomas Tharmabalan

Abstract:

The growing unease over the matter of food security in the world is the result of a maturing realization that the genetic base of most human caloric intake from plants is dangerously narrow. Malaysia’s tropical rainforests have the potential to contribute to diet diversification and provide a source of nutrient-rich food as the Orang Asli communities in Malaysia have relied almost entirely on the jungle for food, fodder, medicine and fuel antithetical to what is happening today. This segregation of the Orang Asli from traditional lands and resources leads to severe loss of knowledge of biodiversity. In order to preserve these wild edibles, four different types of vegetables that are frequently consumed by the Orang Asli which consists of Rebu, Meranti, Saya and Pama were selected. These vegetables were then analysed to determine its proximate and mineral content to help ascertain claims and reaffirm the impact it can play in ensuring food and nutrition security, in addition to combating chronic diseases. From the results obtained, the Meranti had the highest crude fiber, iron and calcium content. Other minerals such as potassium, magnesium and copper were also found in varying content. These wild edibles could also contribute to education and bring awareness to younger generations as well as urban populations to start consuming more of these in their daily life as it could prevent various chronic diseases in Malaysia.

Keywords: food and nutrition security, Orang Asli, underutilized plants, wild edible food systems

Procedia PDF Downloads 140
742 Functional Yoghurt Enriched with Microencapsulated Olive Leaves Extract Powder Using Polycaprolactone via Double Emulsion/Solvent Evaporation Technique

Authors: Tamer El-Messery, Teresa Sanchez-Moya, Ruben Lopez-Nicolas, Gaspar Ros, Esmat Aly

Abstract:

Olive leaves (OLs), the main by-product of the olive oil industry, have a considerable amount of phenolic compounds. The exploitation of these compounds represents the current trend in food processing. In this study, OLs polyphenols were microencapsulated with polycaprolactone (PCL) and utilized in formulating novel functional yoghurt. PCL-microcapsules were characterized by scanning electron microscopy, and Fourier transform infrared spectrometry analysis. Their total phenolic (TPC), total flavonoid (TFC) contents, and antioxidant activities (DPPH, FRAP, ABTS), and polyphenols bioaccessibility were measured after oral, gastric, and intestinal steps of in vitro digestion. The four yoghurt formulations (containing 0, 25, 50, and 75 mg of PCL-microsphere/100g yoghurt) were evaluated for their pH, acidity, syneresis viscosity, and color during storage. In vitro digestion significantly affected the phenolic composition in non-encapsulated extract while had a lower impact on encapsulated phenolics. Higher protection was provided for encapsulated OLs extract, and their higher release was observed at the intestinal phase. Yoghurt with PCL-microsphere had lower viscosity, syneresis, and color parameters, as compared to control yoghurt. Thus, OLs represent a valuable and cheap source of polyphenols which can be successfully applied, in microencapsulated form, to formulate functional yoghurt.

Keywords: yoghurt quality attributes, olive leaves, phenolic and flavonoids compounds, antioxidant activity, polycaprolactone as microencapsulant

Procedia PDF Downloads 125
741 Combined Application of Rice-Straw Biochar and Poultry Manure Promotes Nutrient Uptake and Yield of Capsicum Frutescens

Authors: Fawibe O. O., Mustafa A. A., Oyelakin A. S., Dada O. A., Ojo E. S.

Abstract:

Field experiment was carried out during the cropping season of 2021 to examine the influence of the sole or combined application of rice-straw biochar and poultry manure on yield, nutrient uptake, and physiological attributes of Capsicum frutescens. The experiment was a randomized complete block design with five replicates. Treatments were 10 t/ha biochar (BC), 5 t/ha biochar + 5 t/ha poultry manure (BC+PM), 10 t/ha poultry manure (PM), and no amendment as the control (NA ). Parameters determined were fruit yield, aboveground biomass, macro and micro nutrients in leaves, antinutrients content, and pigments (chlorophyll a, chlorophyll b, and carotenoids) concentration. Data were analysed with one-way analysis of variance, while means were separated using Duncan’s Multiple Range Test at p<0.05. Soil amended with PM increased the nitrogen content of C. frutescens leaves by 40.9%, while polyphenol and phytic acid were reduced by 20.5% and 29.2%, respectively, compared with NA. Moreover, PM increased chlorophyll a and chlorophyll b by 91.9% and 16.4%, whereas proline was reduced by 31.3% compared with NA. However, PM and BC+PM had comparable influence on pigments, nutrients and antinutrients contents of C. frutescens. BC+PM significantly increased yield and aboveground biomass of C. frutescens by 52.9% and 99.2%, respectively, compared with NA. BC had no significant influence on the yield and nutrient uptake of C. frutescens compared with NA. In conclusion, sole application of poultry manure or combined with rice-straw biochar increased yield and nutrients availability in the leaves of C. frutescens.

Keywords: capsicum frutescens, biochar, nutrient uptake, poultry manure, organic amendment

Procedia PDF Downloads 80
740 Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil

Authors: Ahmad Idris, O.A. Uche, Ado Y Abdulfatah

Abstract:

Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC.

Keywords: laterite, OMC, compaction energy, moisture content

Procedia PDF Downloads 387
739 PM10 Chemical Characteristics in a Background Site at the Universidad Libre Bogotá

Authors: Laura X. Martinez, Andrés F. Rodríguez, Ruth A. Catacoli

Abstract:

One of the most important factors for air pollution is that the concentrations of PM10 maintain a constant trend, with the exception of some places where that frequently surpasses the allowed ranges established by Colombian legislation. The community that surrounds the Universidad Libre Bogotá is inhabited by a considerable number of students and workers, all of whom are possibly being exposed to PM10 for long periods of time while on campus. Thus, the chemical characterization of PM10 found in the ambient air at the Universidad Libre Bogotá was identified as a problem. A Hi-Vol sampler and EPA Test Method 5 were used to determine if the quality of air is adequate for the human respiratory system. Additionally, quartz fiber filters were utilized during sampling. Samples were taken three days a week during a dry period throughout the months of November and December 2015. The gravimetric analysis method was used to determine PM10 concentrations. The chemical characterization includes non-conventional carcinogenic pollutants. Atomic absorption spectrophotometry (AAS) was used for the determination of metals and VOCs were analyzed using the FTIR (Fourier transform infrared spectroscopy) method. In this way, concentrations of PM10, ranging from values of 13 µg/m3 to 66 µg/m3, were obtained; these values were below standard conditions. This evidence concludes that the PM10 concentrations during an exposure period of 24 hours are lower than the values established by Colombian law, Resolution 610 of 2010; however, when comparing these with the limits set by the World Health Organization (WHO), these concentrations could possibly exceed permissible levels.

Keywords: air quality, atomic absorption spectrophotometry, gas chromatography, particulate matter

Procedia PDF Downloads 239
738 Studies on Toxicity and Mechanical Properties of Nonmetallic Printed Circuit Boards Waste in Recycled HDPE Composites

Authors: Shantha Kumari Muniyandi, Johan Sohaili, Siti Suhaila Mohamad

Abstract:

The aim of this study was to investigate the suitability of reusing nonmetallic printed circuit boards (PCBs) waste in recycled HDPE (rHDPE) in terms of toxicity and mechanical properties. A series of X-ray Fluorescence Spectrometry (XRF) analysis tests have been conducted on raw nonmetallic PCBs waste to determine the chemical compositions. It can be seen that the nonmetallic PCBs approximately 72% of glass fiber reinforced epoxy resin materials such as SiO2, Al2O3, CaO, MgO, BaO, Na2O, and SrO, 9.4% of metallic materials such as CuO, SnO2, and Fe2O3, and 6.53% of Br. Total Threshold Limit Concentration (TTLC) and Toxicity Characteristic Leaching Procedure (TCLP) tests also have been done to study the toxicity characteristics of raw nonmetallic PCB powders, rHDPE/PCB and virgin HDPE for comparison purposes. For both of the testing, Cu was identified as the highest metal element contained in raw PCBs with the concentration of 905 mg/kg and 59.09 mg/L for TTLC and TCLP, respectively. However, once the nonmetallic PCB was filled in rHDPE composites, the concentrations of Cu were reduced to 134 mg/kg for TTLC and to 3 mg/L for TCLP testing. For mechanical properties testing, incorporation of 40 wt% nonmetallic PCB into rHDPE has increased the flexural modulus and flexural strength by 140% and 36%, respectively. While, Izod Impact strength decreased steadily with incorporation of 10 – 40 wt% nonmetallic PCBs.

Keywords: nonmetallic printed circuit board, recycled HDPE, composites, mechanical properties, total threshold limit concentration, toxicity characteristic leaching procedure

Procedia PDF Downloads 323
737 Changes in Amounts of Glycyrrhizin and Phenolic Compounds of Glycrrhiza glabra L. Seedlings Treated by Copper and Zinc Oxide

Authors: Roya Razavizadeh, Razieh Soltaninejad, Hakimeh Oloumi

Abstract:

Glycyrrhiza glabra L. (Licorice) is one of the oldest medicinal plants in Iran and secondary metabolites present in the plant root is used in food and pharmaceutical industries. With the use of heavy metals as elicitors, plant secondary metabolite production can be increased. In this study, the effects of the concentrations of 1 and 10 μM of zinc oxide and copper oxide on the contents of reducing sugars (as precursor of secondary metabolites), proline, glycyrrhizin, total phenolic compounds, flavonoids and anthocyanin in Glycyrrhiza glabra seedlings were investigated. Also, the correlation between the content of these metabolites in the treated seedlings was examined using Pearson's test. The amount of reducing sugars at concentration of 10 μM zinc oxide was decreased. Whereas, the amounts of proline and glycyrrhizin under treatment 1 and 10 μM copper oxide and 1 μM zinc oxide compared with the control plants was increased. The content of total phenolic compounds was increased with increasing concentrations of copper oxide. The highest amount of flavonoids was observed at concentrations of 1 and 10 μM copper oxide. Anthocyanin content was increased in concentration of 1 μM copper oxide. Also, the tannin content of the Glycyrrhiza glabra seedlings at concentrations of 10 μM zinc oxide was increased. Based on the result it seemed that at concentrations of 1 and 10 μM copper oxide the amount of glycyrrhizin, phenolic compounds, flavonoids, anthocyanins were significantly increased, whereas, zinc oxide had no significant impact on the levels of these metabolites.

Keywords: zinc oxide, copper oxide, phenolic compounds, licorice (glycyrrhiza glabra L.), glycyrrhizin

Procedia PDF Downloads 450
736 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure

Authors: Y. L. Hor, H. S. Chu, V. P. Bui

Abstract:

Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.

Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization

Procedia PDF Downloads 153
735 Sensory Gap Analysis on Port Wine Promotion and Perceptions

Authors: José Manue Carvalho Vieira, Mariana Magalhães, Elizabeth Serra

Abstract:

The Port Wine industry is essential to Portugal because it carries a tangible cultural heritage and for social and economic reasons. Positioned as a luxury product, brands need to pay more attention to the new generation's habits, preferences, languages, and sensory perceptions. Healthy lifestyles, anti-alcohol campaigns, and digitalisation of their buying decision process need to be better understood to understand the wine market in the future. The purpose of this study is to clarify the sensory perception gap between Port Wine descriptors promotion and the new generation's perceptions to help wineries to align their strategies. Based on the interpretivist approach - multiple methods and techniques (mixed-methods), different world views and different assumptions, and different data collection methods and analysis, this research integrated qualitative semi-structured interviews, Port Wine promotion contents, and social media perceptions mined by Sentiment Analysis Enginius algorithm. Findings confirm that Port Wine CEOs' strategies, brands' promotional content, and social perceptions are not sufficiently aligned. The central insight for Port Wine brands' managers is that there is a long and continuous work of understanding and associating their descriptors with the most relevant perceptual values and criteria of their targets to reposition (when necessary) and sustainably revitalise their brands. Finally, this study hypothesised a sensory gap that leads to a decrease in consumption, trying to find recommendations on how to transform it into an advantage for a better attraction towards the young age group (18-25).

Keywords: port wine, consumer habits, sensory gap analysis, wine marketing

Procedia PDF Downloads 224
734 The Higher Education System in Jordan: Philosophy and Premises Preparation

Authors: Ihsan Orsan Oglah Elrabbaei

Abstract:

This research stems from the philosophy of education notion, as it is a fundamental pillar within or component of the philosophy of education. It is the general framework that society takes towards the future in order to build its integrated educational system amid the variables that surround it, in order to prepare its members in all aspects of cognitive, skill, and behavioral life, so that there is a clear concept of the system of productive values, according to the vision of philosophy that defines its future roles, which can be found in the system of productive values. With the resignation, everything changes. As a result, the philosophy of education is anticipated to evolve in response to perceived changes in society in terms of the nature of its human and material resources. The study will answer the following questions: Has the philosophy of education changed to accommodate this change? Alternatively, is the change that occurs because of natural growth without education having a role in directing this change and being aware of it in order to fit with national, regional, and global changes? Were the national educational goals and curricula and their programs viewed through the lenses of interest? On the other hand, do things happen without realizing that the philosophy of education has changed and that it proceeds according to the natural rolling of the invisible impulse? The study concluded that we must reconsider the philosophy of education and redefine who is an educated person. In addition, to recognize all the values of the roles that the individual can play in his society, according to his abilities, and with respect. Moreover, building a new philosophy of education based on what society can look at and what it wants from a flexible future takes the concept of changing life values, their contents, diversity, and the roles of each individual in them.

Keywords: higher education system, jordan, philosophy, premises preparation.

Procedia PDF Downloads 81
733 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door

Authors: Emin Z. Mahmud

Abstract:

This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door – specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz.

Keywords: behaviour of masonry structures, Eurocode, frequency, masonry, shaking table test, strengthening

Procedia PDF Downloads 110
732 Mass Media Products Consumption Patterns in Rural South-South, Nigeria Communities

Authors: Inemesit Akpan Umoren, Aniekan James Akpan

Abstract:

Media practitioners and information managers have often erroneously operated on the premise that media messages are received as disseminated to the extent that audiences of whatever background assimilate the content uniformly. This does not subsist since media audiences are often segmented in terms of educational level, social category, place of residence, gender, among others. While those who are highly educated, live in urban areas and are of highest standing are more likely to have direct access to the media, those in the rural areas and of low education and standing, may not have direct or easy access. These, therefore, informed the study to establish the consumption patterns of mass media products by residents of rural communities in south-south, Nigeria. The study, which was anchored on the multi-step flow and social categories theories, adopted a survey research design and a sample of 383 using Mayer’s 1979 guide drawn from nine rural communities in the south-south, Nigeria states of Akwa Ibom, Rivers and Edo. Findings among others showed that while a negligible percentage is highly exposed to media messages of all types, a greater member depend on opinion leaders, social groups, drinking joints, among other such for filtered content. It was concluded that since rural or community media organizations are very vital in ensuring media content get to all audience without necessarily being passing through intermediaries. Among the recommendations was that information managers and media organizations should always have in mind the ruralites while packaging their contents even in the mainstream media.

Keywords: consumption, media, media product, pattern

Procedia PDF Downloads 127
731 Compositional Dependence of Hydroxylated Indium-Oxide on the Reaction Rate of CO2/H2 Reduction

Authors: Joel Y. Y. Loh, Geoffrey A. Ozin, Charles A. Mims, Nazir P. Kherani

Abstract:

A major goal in the emerging field of solar fuels is to realize an ‘artificial leaf’ – a material that converts light energy in the form of solar photons into chemical energy – using CO2 as a feedstock to generate useful chemical species. Enabling this technology will allow the greenhouse gas, CO2, emitted from energy and manufacturing production exhaust streams to be converted into valuable solar fuels or chemical products. Indium Oxide (In2O3) with surface hydroxyl (OH) groups have been shown to reduce CO2 in the presence of H2 to CO with a reaction rate of 15 μmol gcat−1 h−1. The likely mechanism is via a Frustrated Lewis Pair sites heterolytically splitting H2 to be absorbed and form protonic and hydric sites that can dissociate CO2. In this study, we investigate the dependence of oxygen composition of In2O3 on the CO2 reduction rate. In2O3-x films on quartz fiber paper were DC sputtered with an Indium target and varying O2/Ar plasma mixture. OH surface groups were then introduced by immersing the In2O3-x samples in KOH. We show that hydroxylated In2O3-x reduces more CO2 than non-hydroxylated groups and that a hydroxylated and higher O2/Ar ratio sputtered In2O3-x has a higher reaction rate of 45 μmol gcat-1 h-1. We show by electrical resistivity-temperature curves that H2 is adsorbed onto the surface of In2O3 whereas CO2 itself does not affect the indium oxide surface. We also present activation and ionization energy levels of the hydroxylated In2O3-x under vacuum, CO2 and H2 atmosphere conditions.

Keywords: solar fuels, photocatalysis, indium oxide nanoparticles, carbon dioxide

Procedia PDF Downloads 227