Search results for: word-association behaviour
199 Effect of Fast Fashion on Urban Indian Consumer
Authors: Neha Dimri, Varsha Gupta
Abstract:
Purpose: Fast Fashion trend promotes consumption of low cost high fashion garments at a rapid rate. Frequent change in fashion trend results in higher disposability of Fast Fashion products. To cater for the Fast Fashion appetite of the present day consumer, fashion giants have ramped up production of garments, thus imposing a massive strain on the planet’s natural resources. Also, ethical issues related to cheaper methods of production are of concern. India being a large consumer base has a major role to play in proliferation of the Fast Fashion trend. This paper is an attempt to study the effect of fast fashion trends on the Indian consumer’s behaviour. It also attempts to ascertain the awareness of the consumer about the detrimental effect that the fast fashion trends manifest on the environment. Design /methodology/approach: The survey was conducted using a questionnaire targeted at a set of urban Indian consumers of varied age, profession and socio economic backgrounds. Trends regarding frequency of purchase, expenditure on clothing, disposal methods and awareness about environmental issues were analyzed using the obtained data. Findings: The result of the study indicates that urban Indian consumer has a strong affinity towards fast fashion trends, but is largely unaware of its detrimental effect on the environment and strain on natural resources. Research Limitation/implications: The sample size for survey was only of a hundred consumers, and the same could be expanded for a better estimate of trends. Also, the sample consumers were mostly urban. A big chunk of Indian fashion consumers reside in small towns and the same could be included in the survey. Practical implications: As the true cost of Fast Fashion in terms of environmental and ethical aspects is getting realized worldwide, a big market like India cannot remain isolated from this phenomenon. Globally there has been an increase in demand of ethically produced clothing. It is imperative that the Indian consumer be made aware about the unsustainable nature of Fast Fashion so that he can contribute towards conservation of natural resources and ethical production of garments. Originality/value The research attempts to ascertain consumption pattern of the Indian fashion consumer and also his awareness about the true cost and consequences of Fast Fashion. The inferences may be used by fashion giants to use ‘Green Marketing’ and ‘Social Marketing’ techniques to make the Indian consumer more aware about sustainable fashion and to market their own products as ‘Sustainable, Green and Ethical’.Keywords: consumption, disposable, fast fashion, Indian consumer
Procedia PDF Downloads 311198 Phenolic Content and Antioxidant Potential of Selected Nigerian Herbs and Spices: A Justification for Consumption and Use in the Food Industry
Authors: Amarachi Delight Onyemachi, Gregory Ikechukwu Onwuka
Abstract:
The growing consumer trend for natural ingredients, functional foods with health benefits and the perceived risk of carcinogenesis associated with synthetic antioxidants have forced food manufacturers to look for alternatives for producing healthy and safe food. Herbs and spices are cheap, natural and harmless sources of antioxidants which can delay and prevent lipid oxidation of food products and also confer its unique organoleptic properties and health benefits to food products. The Nigerian climate has been proven to be conducive for the production of spices and herbs and is blessed bountifully with a wide range of them. Five selected Nigerian herbs and spices Piper guieense, Xylopia aethopica, Gongronema latifolium and Ocimum gratissimum were evaluated for their ability to act as radical scavengers. The spices were extracted with 80% ethanol and evaluated using total phenolic capacity (TPC), DPPH (1,1-diph diphenyl-2-picrylhydrazyl radical) ABTS (2,2’azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)), total antioxidant capacity (TAC), reducing power (RP) assays. The TPC ranged from 5.33 µg GAE/mg (in Gongronema latifolium) to 15.55 µg GAE/mg (in Ocimum gratissimum). The DPPH and ABTS scavenging activity of the extracts ranged from 0.23-0.36 IC50 mg/ml and 2.32-7.25 Trolox equivalent % respectively. The TAC and RP of the extract ranged from 6.73-10.64 µg AAE/mg and 3.52-10.19 µg AAE/mg. The result of percentage yield of the extract ranged from as low as 9.94% in Gongronema latifolium and to as high as 23.85% in Xylopia aethopica. A very strong positive relationship existed between the total antioxidant capacity and total phenolic content of the tested herbs and spices (R2=0.96). All of the extracts exhibited different extent of strong antioxidant activity, high antioxidant activity was found in Ocimum gratissimum and Gongronema latifolium with the least. However, Gongronema latifolium possessed the highest total antioxidant capacity. These data confirm the appreciable antioxidant potentials and high phenolic content of Nigerian herbs and spices, thereby providing justification for their use in dishes and functional foods, prevention of cellular damage caused by free radicals and use as natural antioxidants in the food industry for prevention of lipid oxidation in food products. However, to utilize these natural antioxidants in food products, further analysis and studies of their behaviour in food systems at varying temperature, pH conditions and ionic concentrations should be carried out to displace the use of synthetic antioxidants like BHT and BHA.Keywords: Antioxidant, free radicals, herbs, phenolic, spices
Procedia PDF Downloads 256197 Formulation and Invivo Evaluation of Salmeterol Xinafoate Loaded MDI for Asthma Using Response Surface Methodology
Authors: Paresh Patel, Priya Patel, Vaidehi Sorathiya, Navin Sheth
Abstract:
The aim of present work was to fabricate Salmeterol Xinafoate (SX) metered dose inhaler (MDI) for asthma and to evaluate the SX loaded solid lipid nanoparticles (SLNs) for pulmonary delivery. Solid lipid nanoparticles can be used to deliver particles to the lungs via MDI. A modified solvent emulsification diffusion technique was used to prepare Salmeterol Xinafoate loaded solid lipid nanoparticles by using compritol 888 ATO as lipid, tween 80 as surfactant, D-mannitol as cryoprotecting agent and L-leucine was used to improve aerosolization behaviour. Box-Behnken design was applied with 17 runs. 3-D surface response plots and contour plots were drawn and optimized formulation was selected based on minimum particle size and maximum % EE. % yield, in vitro diffusion study, scanning electron microscopy, X-ray diffraction, DSC, FTIR also characterized. Particle size, zeta potential analyzed by Zetatrac particle size analyzer and aerodynamic properties was carried out by cascade impactor. Pre convulsion time was examined for control group, treatment group and compare with marketed group. MDI was evaluated for leakage test, flammability test, spray test and content per puff. By experimental design, particle size and % EE found to be in range between 119-337 nm and 62.04-76.77% by solvent emulsification diffusion technique. Morphologically, particles have spherical shape and uniform distribution. DSC & FTIR study showed that no interaction between drug and excipients. Zeta potential shows good stability of SLNs. % respirable fraction found to be 52.78% indicating reach to the deep part of lung such as alveoli. Animal study showed that fabricated MDI protect the lungs against histamine induced bronchospasm in guinea pigs. MDI showed sphericity of particle in spray pattern, 96.34% content per puff and non-flammable. SLNs prepared by Solvent emulsification diffusion technique provide desirable size for deposition into the alveoli. This delivery platform opens up a wide range of treatment application of pulmonary disease like asthma via solid lipid nanoparticles.Keywords: salmeterol xinafoate, solid lipid nanoparticles, box-behnken design, solvent emulsification diffusion technique, pulmonary delivery
Procedia PDF Downloads 451196 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids
Authors: Markus Rütten, Olaf Wünsch
Abstract:
Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.Keywords: heat transfer, thermo-viscous fluids, shear thinning, vortex shedding
Procedia PDF Downloads 297195 User Experience in Relation to Eye Tracking Behaviour in VR Gallery
Authors: Veslava Osinska, Adam Szalach, Dominik Piotrowski
Abstract:
Contemporary VR technologies allow users to explore virtual 3D spaces where they can work, socialize, learn, and play. User's interaction with GUI and the pictures displayed implicate perceptual and also cognitive processes which can be monitored due to neuroadaptive technologies. These modalities provide valuable information about the users' intentions, situational interpretations, and emotional states, to adapt an application or interface accordingly. Virtual galleries outfitted by specialized assets have been designed using the Unity engine BITSCOPE project in the frame of CHIST-ERA IV program. Users interaction with gallery objects implies the questions about his/her visual interests in art works and styles. Moreover, an attention, curiosity, and other emotional states are possible to be monitored and analyzed. Natural gaze behavior data and eye position were recorded by built-in eye-tracking module within HTC Vive headset gogle for VR. Eye gaze results are grouped due to various users’ behavior schemes and the appropriate perpetual-cognitive styles are recognized. Parallelly usability tests and surveys were adapted to identify the basic features of a user-centered interface for the virtual environments across most of the timeline of the project. A total of sixty participants were selected from the distinct faculties of University and secondary schools. Users’ primary knowledge about art and was evaluated during pretest and this way the level of art sensitivity was described. Data were collected during two months. Each participant gave written informed consent before participation. In data analysis reducing the high-dimensional data into a relatively low-dimensional subspace ta non linear algorithms were used such as multidimensional scaling and novel technique technique t-Stochastic Neighbor Embedding. This way it can classify digital art objects by multi modal time characteristics of eye tracking measures and reveal signatures describing selected artworks. Current research establishes the optimal place on aesthetic-utility scale because contemporary interfaces of most applications require to be designed in both functional and aesthetical ways. The study concerns also an analysis of visual experience for subsamples of visitors, differentiated, e.g., in terms of frequency of museum visits, cultural interests. Eye tracking data may also show how to better allocate artefacts and paintings or increase their visibility when possible.Keywords: eye tracking, VR, UX, visual art, virtual gallery, visual communication
Procedia PDF Downloads 42194 Periurban Landscape as an Opportunity Field to Solve Ecological Urban Conflicts
Authors: Cristina Galiana Carballo, Ibon Doval Martínez
Abstract:
Urban boundaries often result in a controversial limit between countryside and city in Europe. This territory is normally defined by the very limited land uses and the abundance of open space. The dimension and dynamics of peri-urbanization in the last decades have increased this land stock, which has influenced/impacted in several factors in terms of economic costs (maintenance, transport), ecological disturbances of the territory and changes in inhabitant´s behaviour. In an increasingly urbanised world and a growing urban population, cities also face challenges such as Climate Change. In this context, new near-future corrective trends including circular economies for local food supply or decentralised waste management became key strategies towards more sustainable urban models. Those new solutions need to be planned and implemented considering the potential conflict with current land uses. The city of Vitoria-Gasteiz (Basque Country, Spain) has triplicated land consumption per habitant in 10 years, resulting in a vast extension of low-density urban type confronting rural land and threatening agricultural uses, landscape and urban sustainability. Urban planning allows managing and optimum use allocation based on soil vocation and socio-ecosystem needs, while peri-urban space arises as an opportunity for developing different uses which do not match either within the compact city, not in open agricultural lands, such as medium-size agrocomposting systems or biomass plants. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Climate change and circular economy were identified as frameworks where to determine future land, soil vocation and urban planning requirements which eventually become estimations of required local food and renewable energy supply along with alternative waste management system´s implementation. By means of it, it has been developed an urban planning proposal which overcomes urban-non urban dichotomy in Vitoria-Gasteiz. The proposal aims to enhance rural system and improve urban sustainability performance through the normative recognition of an agricultural peri-urban belt.Keywords: landscape ecology, land-use management, periurban, urban planning
Procedia PDF Downloads 163193 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field
Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso
Abstract:
Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate
Procedia PDF Downloads 259192 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils
Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira
Abstract:
Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells
Procedia PDF Downloads 146191 An Interpretative Historical Analysis of Asylum and Refugee Policies and Attitudes to Australian Immigration Laws
Authors: Kamal Kithsiri Karunadasa Hewawasam Revulge
Abstract:
This paper is an interpretative historical analysis of Australian migration laws that examines asylum and refugee policies and attitudes in Australia. It looks at major turning points in Australian migration history, and in doing so, the researcher reviewed relevant literature on the aspects crucial to highlighting the current trend of Australian migration policies. The data was collected using secondary data from official government sources, including annual reports, media releases on immigration, inquiry reports, statistical information, and other available literature to identify critical historical events that significantly affected the systematic developments of asylum seekers and refugee policies in Australia and to look at the historical trends of official thinking. A reliance on using these official sources is justified as those are the most convincing sources to analyse the historical events in Australia. Additional literature provides us with critical analyses of the behaviour and culture of the Australian immigration administration. The analytical framework reviewed key Australian Government immigration policies since British colonization and the settlement era of 1787–the 1850s and to the present. The fundamental basis for doing so is that past events and incidents offer us clues and lessons relevant to the present day. Therefore, providing a perspective on migration history in Australia helps analyse how current policymakers' strategies developed and changed over time. Attention is also explicitly focused on Australian asylum and refugee policy internationally, as it helped to broaden the analysis. The finding proved a link between past events and adverse current Australian government policies towards asylum seekers and refugees. It highlighted that Australia's current migration policies are part of a carefully and deliberately planned pattern that arose from the occupation of Australia by early British settlers. In this context, the remarkable point is that the historical events of taking away children from their Australian indigenous parents, widely known as the 'stolen generation' reflected a model of assimilation, or a desire to absorb other cultures into Australian society by fully adopting the settlers' language, their culture, and losing indigenous people's traditions. Current Australian policies towards migrants reflect the same attitude. Hence, it could be argued that policies and attitudes towards asylum seekers and refugees, particularly so-called 'boat people' to some extent, still reflect Australia's earlier colonial and 'white Australia' history.Keywords: migration law, refugee law, international law, administrative law
Procedia PDF Downloads 83190 Obesity and Cancer: Current Scientific Evidence and Policy Implications
Authors: Martin Wiseman, Rachel Thompson, Panagiota Mitrou, Kate Allen
Abstract:
Since 1997 World Cancer Research Fund (WCRF) International and the American Institute for Cancer Research (AICR) have been at the forefront of synthesising and interpreting the accumulated scientific literature on the link between diet, nutrition, physical activity and cancer, and deriving evidence-based Cancer Prevention Recommendations. The 2007 WCRF/AICR 2nd Expert Report was a landmark in the analysis of evidence linking diet, body weight and physical activity to cancer and led to the establishment of the Continuous Update Project (CUP). In 2018, as part of the CUP, WCRF/AICR will publish a new synthesis of the current evidence and update the Cancer Prevention Recommendations. This will ensure that everyone - from policymakers and health professionals to members of the public - has access to the most up-to-date information on how to reduce the risk of developing cancer. Overweight and obesity play a significant role in cancer risk, and rates of both are increasing in many parts of the world. This session will give an overview of new evidence relating obesity to cancer since the 2007 report. For example, since the 2007 Report, the number of cancers for which obesity is judged to be a contributory cause has increased from seven to eleven. The session will also shed light on the well-established mechanisms underpinning obesity and cancer links. Additionally, the session will provide an overview of diet and physical activity related factors that promote positive energy imbalance, leading to overweight and obesity. Finally, the session will highlight how policy can be used to address overweight and obesity at a population level, using WCRF International’s NOURISHING Framework. NOURISHING formalises a comprehensive package of policies to promote healthy diets and reduce obesity and non-communicable diseases; it is a tool for policymakers to identify where action is needed and assess if an approach is sufficiently comprehensive. The framework brings together ten policy areas across three domains: food environment, food system, and behaviour change communication. The framework is accompanied by a regularly updated database providing an extensive overview of implemented government policy actions from around the world. In conclusion, the session will provide an overview of obesity and cancer, highlighting the links seen in the epidemiology and exploring the mechanisms underpinning these, as well as the influences that help determine overweight and obesity. Finally, the session will illustrate policy approaches that can be taken to reduce overweight and obesity worldwide.Keywords: overweight, obesity, nutrition, cancer, mechanisms, policy
Procedia PDF Downloads 157189 Consumer Over-Indebtedness in Germany: An Investigation of Key Determinants
Authors: Xiaojing Wang, Ann-Marie Ward, Tony Wall
Abstract:
The problem of over-indebtedness has increased since deregulation of the banking industry in the 1980s, and now it has become a major problem for most countries in Europe, including Germany. Consumer debt issues have attracted not only the attention of academics but also government and debt counselling institutions. Overall, this research aims to contribute to the knowledge gap regarding the causes of consumer over-indebtedness in Germany and to develop predictive models for assessing consumer over-indebtedness risk at consumer level. The situation of consumer over-indebtedness is serious in Germany. The relatively high level of social welfare support in Germany suggests that consumer debt problems are caused by other factors, other than just over-spending and income volatility. Prior literature suggests that the overall stability of the economy and level of welfare support for individuals from the structural environment contributes to consumers’ debt problems. In terms of cultural influence, the conspicuous consumption theory in consumer behaviour suggests that consumers would spend more than their means to be seen as similar profiles to consumers in a higher socio-economic class. This results in consumers taking on more debt than they can afford, and eventually becoming over-indebted. Studies have also shown that financial literacy is negatively related to consumer over-indebtedness risk. Whilst prior literature has examined structural and cultural influences respectively, no study has taken a collective approach. To address this gap, a model is developed to investigate the association between consumer over-indebtedness and proxies for influences from the structural and cultural environment based on the above theories. The model also controls for consumer demographic characteristics identified as being of influence in prior literature, such as gender and age, and adverse shocks, such as divorce or bereavement in the household. Benefiting from SOEP regional data, this study is able to conduct quantitative empirical analysis to test both structural and cultural influences at a localised level. Using German Socio-Economic Panel (SOEP) study data from 2006 to 2016, this study finds that social benefits, financial literacy and the existence of conspicuous consumption all contribute to being over-indebted. Generally speaking, the risk of becoming over-indebted is high when consumers are in a low-welfare community, have little awareness of their own financial situation and always over-spend. In order to tackle the problem of over-indebtedness, countermeasures can be taken, for example, increasing consumers’ financial awareness, and the level of welfare support. By analysing causes of consumer over-indebtedness in Germany, this study also provides new insights on the nature and underlying causes of consumer debt issues in Europe.Keywords: consumer, debt, financial literacy, socio-economic
Procedia PDF Downloads 211188 Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair
Authors: Anamika Paul, Sudipto Sarkar
Abstract:
The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment.Keywords: CFD, critical gap-ratio, splitter plate, wake-wake interactions, dilatant, pseudoplastic
Procedia PDF Downloads 112187 Modified Polysaccharide as Emulsifier in Oil-in-Water Emulsions
Authors: Tatiana Marques Pessanha, Aurora Perez-Gramatges, Regina Sandra Veiga Nascimento
Abstract:
Emulsions are commonly used in applications involving oil/water dispersions, where handling of interfaces becomes a crucial aspect. The use of emulsion technology has greatly evolved in the last decades to suit the most diverse uses, ranging from cosmetic products and biomedical adjuvants to complex industrial fluids. The stability of these emulsions is influenced by factors such as the amount of oil, size of droplets and emulsifiers used. While commercial surfactants are typically used as emulsifiers to reduce interfacial tension, and therefore increase emulsion stability, these organic amphiphilic compounds are often toxic and expensive. A suitable alternative for emulsifiers can be obtained from the chemical modification of polysaccharides. Our group has been working on modification of polysaccharides to be used as additives in a variety of fluid formulations. In particular, we have obtained promising results using chitosan, a natural and biodegradable polymer that can be easily modified due to the presence of amine groups in its chemical structure. In this way, it is possible to increase both the hydrophobic and hydrophilic character, which renders a water-soluble, amphiphilic polymer that can behave as an emulsifier. The aim of this work was the synthesis of chitosan derivatives structurally modified to act as surfactants in stable oil-in-water. The synthesis of chitosan derivatives occurred in two steps, the first being the hydrophobic modification with the insertion of long hydrocarbon chains, while the second step consisted in the cationization of the amino groups. All products were characterized by infrared spectroscopy (FTIR) and carbon magnetic resonance (13C-NMR) to evaluate the cationization and hydrofobization degrees. These modified polysaccharides were used to formulate oil-in water (O:W) emulsions with different oil/water ratios (i.e 25:75, 35:65, 60:40) using mineral paraffinic oil. The formulations were characterized according to the type of emulsion, density and rheology measurements, as well as emulsion stability at high temperatures. All emulsion formulations were stable for at least 30 days, at room temperature (25°C), and in the case of the high oil content emulsion (60:40), the formulation was also stable at temperatures up to 100°C. Emulsion density was in the range of 0.90-0.87 s.g. The rheological study showed a viscoelastic behaviour in all formulations at room temperature, which is in agreement with the high stability showed by the emulsions, since the polymer acts not only reducing interfacial tension, but also forming an elastic membrane at the oil/water interface that guarantees its integrity. The results obtained in this work are a strong evidence of the possibility of using chemically modified polysaccharides as environmentally friendly alternatives to commercial surfactants in the stabilization of oil-in water formulations.Keywords: emulsion, polymer, polysaccharide, stability, chemical modification
Procedia PDF Downloads 353186 Use of Cellulosic Fibres in Double Layer Porous Asphalt
Authors: Márcia Afonso, Marisa Dinis-Almeida, Cristina Fael
Abstract:
Climate change, namely precipitation patterns alteration, has led to extreme conditions such as floods and droughts. In turn, excessive construction has led to the waterproofing of the soil, increasing the surface runoff and decreasing the groundwater recharge capacity. The permeable pavements used in areas with low traffic lead to a decrease in the probability of floods peaks occurrence and the sediments reduction and pollutants transport, ensuring rainwater quality improvement. This study aims to evaluate the porous asphalt performance, developed in the laboratory, with addition of cellulosic fibres. One of the main objectives of cellulosic fibres use is to stop binder drainage, preventing its loss during storage and transport. Comparing to the conventional porous asphalt the cellulosic fibres addition improved the porous asphalt performance. The cellulosic fibres allowed the bitumen content increase, enabling retention and better aggregates coating and, consequently, a greater mixture durability. With this solution, it is intended to develop better practices of resilience and adaptation to the extreme climate changes and respond to the sustainability current demands, through the eco-friendly materials use. The mix design was performed for different size aggregates (with fine aggregates – PA1 and with coarse aggregates – PA2). The percentage influence of the fibres to be used was studied. It was observed that overall, the binder drainage decreases as the cellulose fibres percentage increases. It was found that the PA2 mixture obtained most binder drainage relative to PA1 mixture, irrespective of the fibres percentage used. Subsequently, the performance was evaluated through laboratory tests of indirect tensile stiffness modulus, water sensitivity, permeability and permanent deformation. The stiffness modulus for the two mixtures groups (with and without cellulosic fibres) presented very similar values between them. For the water sensitivity test it was observed that porous asphalt containing more fine aggregates are more susceptible to the water presence than mixtures with coarse aggregates. The porous asphalt with coarse aggregates have more air voids which allow water to pass easily leading to ITSR higher values. In the permeability test was observed that asphalt porous without cellulosic fibres presented had lower permeability than asphalt porous with cellulosic fibres. The resistance to permanent deformation results indicates better behaviour of porous asphalt with cellulosic fibres, verifying a bigger rut depth in porous asphalt without cellulosic fibres. In this study, it was observed that porous asphalt with bitumen higher percentages improve the performance to permanent deformation. This fact was only possible due to the bitumen retention by the cellulosic fibres.Keywords: binder drainage, cellulosic fibres, permanent deformation, porous asphalt
Procedia PDF Downloads 226185 Efficiency of Maritime Simulator Training in Oil Spill Response Competence Development
Authors: Antti Lanki, Justiina Halonen, Juuso Punnonen, Emmi Rantavuo
Abstract:
Marine oil spill response operation requires extensive vessel maneuvering and navigation skills. At-sea oil containment and recovery include both single vessel and multi-vessel operations. Towing long oil containment booms that are several hundreds of meters in length, is a challenge in itself. Boom deployment and towing in multi-vessel configurations is an added challenge that requires precise coordination and control of the vessels. Efficient communication, as a prerequisite for shared situational awareness, is needed in order to execute the response task effectively. To gain and maintain adequate maritime skills, practical training is needed. Field exercises are the most effective way of learning, but especially the related vessel operations are resource-intensive and costly. Field exercises may also be affected by environmental limitations such as high sea-state or other adverse weather conditions. In Finland, the seasonal ice-coverage also limits the training period to summer seasons only. In addition, environmental sensitiveness of the sea area restricts the use of real oil or other target substances. This paper examines, whether maritime simulator training can offer a complementary method to overcome the training challenges related to field exercises. The objective is to assess the efficiency and the learning impact of simulator training, and the specific skills that can be trained most effectively in simulators. This paper provides an overview of learning results from two oil spill response pilot courses, in which maritime navigational bridge simulators were used to train the oil spill response authorities. The simulators were equipped with an oil spill functionality module. The courses were targeted at coastal Fire and Rescue Services responsible for near shore oil spill response in Finland. The competence levels of the participants were surveyed before and after the course in order to measure potential shifts in competencies due to the simulator training. In addition to the quantitative analysis, the efficiency of the simulator training is evaluated qualitatively through feedback from the participants. The results indicate that simulator training is a valid and effective method for developing marine oil spill response competencies that complement traditional field exercises. Simulator training provides a safe environment for assessing various oil containment and recovery tactics. One of the main benefits of the simulator training was found to be the immediate feedback the spill modelling software provides on the oil spill behaviour as a reaction to response measures.Keywords: maritime training, oil spill response, simulation, vessel manoeuvring
Procedia PDF Downloads 172184 Strengthening by Assessment: A Case Study of Rail Bridges
Authors: Evangelos G. Ilias, Panagiotis G. Ilias, Vasileios T. Popotas
Abstract:
The United Kingdom has one of the oldest railway networks in the world dating back to 1825 when the world’s first passenger railway was opened. The network has some 40,000 bridges of various construction types using a wide range of materials including masonry, steel, cast iron, wrought iron, concrete and timber. It is commonly accepted that the successful operation of the network is vital for the economy of the United Kingdom, consequently the cost effective maintenance of the existing infrastructure is a high priority to maintain the operability of the network, prevent deterioration and to extend the life of the assets. Every bridge on the railway network is required to be assessed every eighteen years and a structured approach to assessments is adopted with three main types of progressively more detailed assessments used. These assessment types include Level 0 (standardized spreadsheet assessment tools), Level 1 (analytical hand calculations) and Level 2 (generally finite element analyses). There is a degree of conservatism in the first two types of assessment dictated to some extent by the relevant standards which can lead to some structures not achieving the required load rating. In these situations, a Level 2 Assessment is often carried out using finite element analysis to uncover ‘latent strength’ and improve the load rating. If successful, the more sophisticated analysis can save on costly strengthening or replacement works and avoid disruption to the operational railway. This paper presents the ‘strengthening by assessment’ achieved by Level 2 analyses. The use of more accurate analysis assumptions and the implementation of non-linear modelling and functions (material, geometric and support) to better understand buckling modes and the structural behaviour of historic construction details that are not specifically covered by assessment codes are outlined. Metallic bridges which are susceptible to loss of section size through corrosion have largest scope for improvement by the Level 2 Assessment methodology. Three case studies are presented, demonstrating the effectiveness of the sophisticated Level 2 Assessment methodology using finite element analysis against the conservative approaches employed for Level 0 and Level 1 Assessments. One rail overbridge and two rail underbridges that did not achieve the required load rating by means of a Level 1 Assessment due to the inadequate restraint provided by U-Frame action are examined and the increase in assessed capacity given by the Level 2 Assessment is outlined.Keywords: assessment, bridges, buckling, finite element analysis, non-linear modelling, strengthening
Procedia PDF Downloads 309183 A Quality Improvement Approach for Reducing Stigma and Discrimination against Young Key Populations in the Delivery of Sexual Reproductive Health and Rights Services
Authors: Atucungwiire Rwebiita
Abstract:
Introduction: In Uganda, provision of adolescent sexual reproductive health and rights (SRHR) services for key population is still hindered by negative attitudes, stigma and discrimination (S&D) at both the community and facility levels. To address this barrier, Integrated Community Based Initiatives (ICOBI) with support from SIDA is currently implementing a quality improvement (QI) innovative approach for strengthening the capacity of key population (KP) peer leaders and health workers to deliver friendly SRHR services without S&D. Methods: Our innovative approach involves continuous mentorship and coaching of 8 QI teams at 8 health facilities and their catchment areas. Each of the 8 teams (comprised of 5 health workers and 5 KP peer leaders) are facilitated twice a month by two QI Mentors in a 2-hour mentorship session over a period of 4 months. The QI mentors were provided a 2-weeks training on QI approaches for reducing S&D against young key populations in the delivery of SRHR Services. The mentorship sessions are guided by a manual where teams base to analyse root causes of S&D and develop key performance indicators (KPIs) in the 1st and 2nd second sessions respectively. The teams then develop action plans in the 3rd session and review implementation progress on KPIs at the end of subsequent sessions. The KPIs capture information on the attitude of health workers and peer leaders and the general service delivery setting as well as clients’ experience. A dashboard is developed to routinely track the KPIs for S&D across all the supported health facilities and catchment areas. After 4 months, QI teams share documented QI best practices and tested change packages on S&D in a learning and exchange session involving all the teams. Findings: The implementation of this approach is showing positive results. So far, QI teams have already identified the root causes of S&D against key populations including: poor information among health workers, fear of a perceived risk of infection, perceived links between HIV and disreputable behaviour. Others are perceptions that HIV & STIs are divine punishment, sex work and homosexuality are against religion and cultural values. They have also noted the perception that MSM are mentally sick and a danger to everyone. Eight QI teams have developed action plans to address the root causes of S&D. Conclusion: This approach is promising, offers a novel and scalable means to implement stigma-reduction interventions in facility and community settings.Keywords: key populations, sexual reproductive health and rights, stigma and discrimination , quality improvement approach
Procedia PDF Downloads 173182 Theoretical Study of Gas Adsorption in Zirconium Clusters
Authors: Rasha Al-Saedi, Anthony Meijer
Abstract:
The progress of new porous materials has increased rapidly over the past decade for use in applications such as catalysis, gas storage and removal of environmentally unfriendly species due to their high surface area and high thermal stability. In this work, a theoretical study of the zirconium-based metal organic framework (MOFs) were examined in order to determine their potential for gas adsorption of various guest molecules: CO2, N2, CH4 and H2. The zirconium cluster consists of an inner Zr6O4(OH)4 core in which the triangular faces of the Zr6- octahedron are alternatively capped by O and OH groups which bound to nine formate groups and three benzoate groups linkers. General formula is [Zr(μ-O)4(μ-OH)4(HCOO)9((phyO2C)3X))] where X= CH2OH, CH2NH2, CH2CONH2, n(NH2); (n = 1-3). Three types of adsorption sites on the Zr metal center have been studied, named according to capped chemical groups as the ‘−O site’; the H of (μ-OH) site removed and added to (μ-O) site, ‘–OH site’; (μ-OH) site removed, the ‘void site’ where H2O molecule removed; (μ-OH) from one site and H from other (μ-OH) site, in addition to no defect versions. A series of investigations have been performed aiming to address this important issue. First, density functional theory DFT-B3LYP method with 6-311G(d,p) basis set was employed using Gaussian 09 package in order to evaluate the gas adsorption performance of missing-linker defects in zirconium cluster. Next, study the gas adsorption behaviour on different functionalised zirconium clusters. Those functional groups as mentioned above include: amines, alcohol, amide, in comparison with non-substitution clusters. Then, dispersion-corrected density functional theory (DFT-D) calculations were performed to further understand the enhanced gas binding on zirconium clusters. Finally, study the water effect on CO2 and N2 adsorption. The small functionalized Zr clusters were found to result in good CO2 adsorption over N2, CH4, and H2 due to the quadrupole moment of CO2 while N2, CH4 and H2 weakly polar or non-polar. The adsorption efficiency was determined using the dispersion method where the adsorption binding improved as most of the interactions, for example, van der Waals interactions are missing with the conventional DFT method. The calculated gas binding strengths on the no defect site are higher than those on the −O site, −OH site and the void site, this difference is especially notable for CO2. It has been stated that the enhanced affinity of CO2 of no defect versions is most likely due to the electrostatic interactions between the negatively charged O of CO2 and the positively charged H of (μ-OH) metal site. The uptake of the gas molecule does not enhance in presence of water as the latter binds to Zr clusters more strongly than gas species which attributed to the competition on adsorption sites.Keywords: density functional theory, gas adsorption, metal- organic frameworks, molecular simulation, porous materials, theoretical chemistry
Procedia PDF Downloads 184181 Elasto-Plastic Analysis of Structures Using Adaptive Gaussian Springs Based Applied Element Method
Authors: Mai Abdul Latif, Yuntian Feng
Abstract:
Applied Element Method (AEM) is a method that was developed to aid in the analysis of the collapse of structures. Current available methods cannot deal with structural collapse accurately; however, AEM can simulate the behavior of a structure from an initial state of no loading until collapse of the structure. The elements in AEM are connected with sets of normal and shear springs along the edges of the elements, that represent the stresses and strains of the element in that region. The elements are rigid, and the material properties are introduced through the spring stiffness. Nonlinear dynamic analysis has been widely modelled using the finite element method for analysis of progressive collapse of structures; however, difficulties in the analysis were found at the presence of excessively deformed elements with cracking or crushing, as well as having a high computational cost, and difficulties on choosing the appropriate material models for analysis. The Applied Element method is developed and coded to significantly improve the accuracy and also reduce the computational costs of the method. The scheme works for both linear elastic, and nonlinear cases, including elasto-plastic materials. This paper will focus on elastic and elasto-plastic material behaviour, where the number of springs required for an accurate analysis is tested. A steel cantilever beam is used as the structural element for the analysis. The first modification of the method is based on the Gaussian Quadrature to distribute the springs. Usually, the springs are equally distributed along the face of the element, but it was found that using Gaussian springs, only up to 2 springs were required for perfectly elastic cases, while with equal springs at least 5 springs were required. The method runs on a Newton-Raphson iteration scheme, and quadratic convergence was obtained. The second modification is based on adapting the number of springs required depending on the elasticity of the material. After the first Newton Raphson iteration, Von Mises stress conditions were used to calculate the stresses in the springs, and the springs are classified as elastic or plastic. Then transition springs, springs located exactly between the elastic and plastic region, are interpolated between regions to strictly identify the elastic and plastic regions in the cross section. Since a rectangular cross-section was analyzed, there were two plastic regions (top and bottom), and one elastic region (middle). The results of the present study show that elasto-plastic cases require only 2 springs for the elastic region, and 2 springs for the plastic region. This showed to improve the computational cost, reducing the minimum number of springs in elasto-plastic cases to only 6 springs. All the work is done using MATLAB and the results will be compared to models of structural elements using the finite element method in ANSYS.Keywords: applied element method, elasto-plastic, Gaussian springs, nonlinear
Procedia PDF Downloads 225180 Valorization of Lignocellulosic Wastes– Evaluation of Its Toxicity When Used in Adsorption Systems
Authors: Isabel Brás, Artur Figueirinha, Bruno Esteves, Luísa P. Cruz-Lopes
Abstract:
The agriculture lignocellulosic by-products are receiving increased attention, namely in the search for filter materials that retain contaminants from water. These by-products, specifically almond and hazelnut shells are abundant in Portugal once almond and hazelnuts production is a local important activity. Hazelnut and almond shells have as main constituents lignin, cellulose and hemicelluloses, water soluble extractives and tannins. Along the adsorption of heavy metals from contaminated waters, water soluble compounds can leach from shells and have a negative impact in the environment. Usually, the chemical characterization of treated water by itself may not show environmental impact caused by the discharges when parameters obey to legal quality standards for water. Only biological systems can detect the toxic effects of the water constituents. Therefore, the evaluation of toxicity by biological tests is very important when deciding the suitability for safe water discharge or for irrigation applications. The main purpose of the present work was to assess the potential impacts of waters after been treated for heavy metal removal by hazelnut and almond shells adsorption systems, with short term acute toxicity tests. To conduct the study, water at pH 6 with 25 mg.L-1 of lead, was treated with 10 g of shell per litre of wastewater, for 24 hours. This procedure was followed for each bark. Afterwards the water was collected for toxicological assays; namely bacterial resistance, seed germination, Lemna minor L. test and plant grow. The effect in isolated bacteria strains was determined by disc diffusion method and the germination index of seed was evaluated using lettuce, with temperature and humidity germination control for 7 days. For aquatic higher organism, Lemnas were used with 4 days contact time with shell solutions, in controlled light and temperature. For terrestrial higher plants, biomass production was evaluated after 14 days of tomato germination had occurred in soil, with controlled humidity, light and temperature. Toxicity tests of water treated with shells revealed in some extent effects in the tested organisms, with the test assays showing a close behaviour as the control, leading to the conclusion that its further utilization may not be considered to create a serious risk to the environment.Keywords: lignocellulosic wastes, adsorption, acute toxicity tests, risk assessment
Procedia PDF Downloads 366179 Development of Perovskite Quantum Dots Light Emitting Diode by Dual-Source Evaporation
Authors: Antoine Dumont, Weiji Hong, Zheng-Hong Lu
Abstract:
Light emitting diodes (LEDs) are steadily becoming the new standard for luminescent display devices because of their energy efficiency and relatively low cost, and the purity of the light they emit. Our research focuses on the optical properties of the lead halide perovskite CsPbBr₃ and its family that is showing steadily improving performances in LEDs and solar cells. The objective of this work is to investigate CsPbBr₃ as an emitting layer made by physical vapor deposition instead of the usual solution-processed perovskites, for use in LEDs. The deposition in vacuum eliminates any risk of contaminants as well as the necessity for the use of chemical ligands in the synthesis of quantum dots. Initial results show the versatility of the dual-source evaporation method, which allowed us to create different phases in bulk form by altering the mole ratio or deposition rate of CsBr and PbBr₂. The distinct phases Cs₄PbBr₆, CsPbBr₃ and CsPb₂Br₅ – confirmed through XPS (x-ray photoelectron spectroscopy) and X-ray diffraction analysis – have different optical properties and morphologies that can be used for specific applications in optoelectronics. We are particularly focused on the blue shift expected from quantum dots (QDs) and the stability of the perovskite in this form. We already obtained proof of the formation of QDs through our dual source evaporation method with electron microscope imaging and photoluminescence testing, which we understand is a first in the community. We also incorporated the QDs in an LED structure to test the electroluminescence and the effect on performance and have already observed a significant wavelength shift. The goal is to reach 480nm after shifting from the original 528nm bulk emission. The hole transport layer (HTL) material onto which the CsPbBr₃ is evaporated is a critical part of this study as the surface energy interaction dictates the behaviour of the QD growth. A thorough study to determine the optimal HTL is in progress. A strong blue shift for a typically green emitting material like CsPbBr₃ would eliminate the necessity of using blue emitting Cl-based perovskite compounds and could prove to be more stable in a QD structure. The final aim is to make a perovskite QD LED with strong blue luminescence, fabricated through a dual-source evaporation technique that could be scalable to industry level, making this device a viable and cost-effective alternative to current commercial LEDs.Keywords: material physics, perovskite, light emitting diode, quantum dots, high vacuum deposition, thin film processing
Procedia PDF Downloads 161178 Medication Side Effects: Implications on the Mental Health and Adherence Behaviour of Patients with Hypertension
Authors: Irene Kretchy, Frances Owusu-Daaku, Samuel Danquah
Abstract:
Hypertension is the leading risk factor for cardiovascular diseases, and a major cause of death and disability worldwide. This study examined whether psychosocial variables influenced patients’ perception and experience of side effects of their medicines, how they coped with these experiences and the impact on mental health and medication adherence to conventional hypertension therapies. Methods: A hospital-based mixed methods study, using quantitative and qualitative approaches was conducted on hypertensive patients. Participants were asked about side effects, medication adherence, common psychological symptoms, and coping mechanisms with the aid of standard questionnaires. Information from the quantitative phase was analyzed with the Statistical Package for Social Sciences (SPSS) version 20. The interviews from the qualitative study were audio-taped with a digital audio recorder, manually transcribed and analyzed using thematic content analysis. The themes originated from participant interviews a posteriori. Results: The experiences of side effects – such as palpitations, frequent urination, recurrent bouts of hunger, erectile dysfunction, dizziness, cough, physical exhaustion - were categorized as no/low (39.75%), moderate (53.0%) and high (7.25%). Significant relationships between depression (x 2 = 24.21, P < 0.0001), anxiety (x 2 = 42.33, P < 0.0001), stress (x 2 = 39.73, P < 0.0001) and side effects were observed. A logistic regression model using the adjusted results for this association are reported – depression [OR = 1.9 (1.03 – 3.57), p = 0.04], anxiety [OR = 1.5 (1.22 – 1.77), p = < 0.001], and stress [OR = 1.3 (1.02 – 1.71), p = 0.04]. Side effects significantly increased the probability of individuals to be non-adherent [OR = 4.84 (95% CI 1.07 – 1.85), p = 0.04] with social factors, media influences and attitudes of primary caregivers further explaining this relationship. The personal adoption of medication modifying strategies, espousing the use of complementary and alternative treatments, and interventions made by clinicians were the main forms of coping with side effects. Conclusions: Results from this study show that contrary to a biomedical approach, the experience of side effects has biological, social and psychological interrelations. The result offers more support for the need for a multi-disciplinary approach to healthcare where all forms of expertise are incorporated into health provision and patient care. Additionally, medication side effects should be considered as a possible cause of non-adherence among hypertensive patients, thus addressing this problem from a Biopsychosocial perspective in any intervention may improve adherence and invariably control blood pressure.Keywords: biopsychosocial, hypertension, medication adherence, psychological disorders
Procedia PDF Downloads 371177 Global Dimensions of Shakespearean Cinema: A Study of Shakespearean Presence around the Globe
Authors: Rupali Chaudhary
Abstract:
Shakespeare has been widely revisited by dramatists, critics, filmmakers and scholars around the globe. Shakespeare's kaleidoscopic work has been borrowed and redesigned into resonant patterns by artists, thus weaving myriad manifestations to pick from. Along with adaptation into wholly verbal medium (e.g., translations) the practice of indigenization through performing arts has played a great role in amplifying the reach of plays. The proliferation of Shakespeare's oeuvre commenced with the spread of colonialism itself. The plays illustrating the core values of Western tradition were introduced in the colonies. Therefore, the colonial domination extended to cultural domination. The plays were translated and adapted by the locals at times as it is and sometimes intermingled with the altered landscape and culture. The present paper discusses the global dimensions of Shakespearean cinema along with the historical cinematic shift from silent era to spoken dialogue in multiple languages. The methodology followed is descriptive in nature, and related information is availed from related literature, i.e., books, research articles and films. America and Europe dominated the silent era Shakespearean film production, thereby giving the term 'global' a less broad meaning. Five nations that dominated silent Shakespearean cinema were the United States, England, Italy, France, and Germany. Gradually the work of the exemplary figure with artistic and literary greatness surpassed the boundaries of the colonies and became a global legacy. Presently apart from English speaking nations Shakespearean films have been shot or produced in many of non-Anglophone locales. The findings indicate that when discussing about global dimensions of Shakespearean cinema various factors can be considered: involvement of actors and directors of foreign origin, transportability and universal comprehensibility of visual imagery across geographical borders, commodification of art or West's use of it as a tool of cultural hegemony or promotion of international amity, propagation of interculturalism through individual director's cultural translations and localization of Western art. Understanding of Shakespeare as a global export also depends on how an individual Shakespearean film works. Shakespeare's global appeal for cinema does not reside alone in his exquisite writings, distinctive characters, the setting, the story and the plots that have nurtured cinema since the medium's formative years. Shakespeare's global cinematic appeal is present in the spirit of cinema itself, i.e., the moving images capturing human behaviour and emotions that the plays invoke in audiences.Keywords: adaptation, global dimensions, Shakespeare, Shakespearean cinema
Procedia PDF Downloads 134176 Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma
Authors: Rajat Dhawan, Hitendra K. Malik
Abstract:
Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials.Keywords: electronegative plasmas, plasma surface interaction positive ion density, sheath thickness
Procedia PDF Downloads 132175 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics
Authors: M. Khorshed Alam, H. Takaba
Abstract:
The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo
Procedia PDF Downloads 192174 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization
Authors: Aitor Bilbao, Dragos Axinte, John Billingham
Abstract:
The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation
Procedia PDF Downloads 275173 3D-Printing of Waveguide Terminations: Effect of Material Shape and Structuring on Their Characteristics
Authors: Lana Damaj, Vincent Laur, Azar Maalouf, Alexis Chevalier
Abstract:
Matched termination is an important part of the passive waveguide components. It is typically used at the end of a waveguide transmission line to prevent reflections and improve signal quality. Waveguide terminations (loads) are commonly used in microwave and RF applications. In traditional microwave architectures, usually, waveguide termination consists of a standard rectangular waveguide made by a lossy resistive material, and ended by shorting metallic plate. These types of terminations are used, to dissipate the energy as heat. However, these terminations may increase the size and the weight of the overall system. New alternative solution consists in developing terminations based on 3D-printing of materials. Designing such terminations is very challenging since it should meet the requirements imposed by the system. These requirements include many parameters such as the absorption, the power handling capability in addition to the cost, the size and the weight that have to be minimized. 3D-printing is a shaping process that enables the production of complex geometries. It allows to find best compromise between requirements. In this paper, a comparison study has been made between different existing and new shapes of waveguide terminations. Indeed, 3D printing of absorbers makes it possible to study not only standard shapes (wedge, pyramid, tongue) but also more complex topologies such as exponential ones. These shapes have been designed and simulated using CST MWS®. The loads have been printed using the carbon-filled PolyLactic Acid, conductive PLA from ProtoPasta. Since the terminations has been characterized in the X-band (from 8GHz to 12GHz), the rectangular waveguide standard WR-90 has been selected. The classical wedge shape has been used as a reference. First, all loads have been simulated with the same length and two parameters have been compared: the absorption level (level of |S11|) and the dissipated power density. This study shows that the concave exponential pyramidal shape has the better absorption level and the convex exponential pyramidal shape has the better dissipated power density level. These two loads have been printed in order to measure their properties. A good agreement between the simulated and measured reflection coefficient has been obtained. Furthermore, a study of material structuring based on the honeycomb hexagonal structure has been investigated in order to vary the effective properties. In the final paper, the detailed methodology and the simulated and measured results will be presented in order to show how 3D-printing can allow controlling mass, weight, absorption level and power behaviour.Keywords: additive manufacturing, electromagnetic composite materials, microwave measurements, passive components, power handling capacity (PHC), 3D-printing
Procedia PDF Downloads 21172 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability
Authors: Abdul Haq
Abstract:
The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis
Procedia PDF Downloads 66171 Exploring the Differences between Self-Harming and Suicidal Behaviour in Women with Complex Mental Health Needs
Authors: Sophie Oakes-Rogers, Di Bailey, Karen Slade
Abstract:
Female offenders are a uniquely vulnerable group, who are at high risk of suicide. Whilst the prevention of self-harm and suicide remains a key global priority, we need to better understand the relationship between these challenging behaviours that constitute a pressing problem, particularly in environments designed to prioritise safety and security. Method choice is unlikely to be random, and is instead influenced by a range of cultural, social, psychological and environmental factors, which change over time and between countries. A key aspect of self-harm and suicide in women receiving forensic care is the lack of free access to methods. At a time where self-harm and suicide rates continue to rise internationally, understanding the role of these influencing factors and the impact of current suicide prevention strategies on the use of near-lethal methods is crucial. This poster presentation will present findings from 25 interviews and 3 focus groups, which enlisted a Participatory Action Research approach to explore the differences between self-harming and suicidal behavior. A key element of this research was using the lived experiences of women receiving forensic care from one forensic pathway in the UK, and the staffs who care for them, to discuss the role of near-lethal self-harm (NLSH). The findings and suggestions from the lived accounts of the women and staff will inform a draft assessment tool, which better assesses the risk of suicide based on the lethality of methods. This tool will be the first of its kind, which specifically captures the needs of women receiving forensic services. Preliminary findings indicate women engage in NLSH for two key reasons and is determined by their history of self-harm. Women who have a history of superficial non-life threatening self-harm appear to engage in NLSH in response to a significant life event such as family bereavement or sentencing. For these women, suicide appears to be a realistic option to overcome their distress. This, however, differs from women who appear to have a lifetime history of NLSH, who engage in such behavior in a bid to overcome the grief and shame associated with historical abuse. NLSH in these women reflects a lifetime of suicidality and indicates they pose the greatest risk of completed suicide. Findings also indicate differences in method selection between forensic provisions. Restriction of means appears to play a role in method selection, and findings suggest it causes method substitution. Implications will be discussed relating to the screening of female forensic patients and improvements to the current suicide prevention strategies.Keywords: forensic mental health, method substitution, restriction of means, suicide
Procedia PDF Downloads 178170 A Conceptual Framework of the Individual and Organizational Antecedents to Knowledge Sharing
Authors: Muhammad Abdul Basit Memon
Abstract:
The importance of organizational knowledge sharing and knowledge management has been documented in numerous research studies in available literature, since knowledge sharing has been recognized as a founding pillar for superior organizational performance and a source of gaining competitive advantage. Built on this, most of the successful organizations perceive knowledge management and knowledge sharing as a concern of high strategic importance and spend huge amounts on the effective management and sharing of organizational knowledge. However, despite some very serious endeavors, many firms fail to capitalize on the benefits of knowledge sharing because of being unaware of the individual characteristics, interpersonal, organizational and contextual factors that influence knowledge sharing; simply the antecedent to knowledge sharing. The extant literature on antecedents to knowledge sharing, offers a range of antecedents mentioned in a number of research articles and research studies. Some of the previous studies about antecedents to knowledge sharing, studied antecedents to knowledge sharing regarding inter-organizational knowledge transfer; others focused on inter and intra organizational knowledge sharing and still others investigated organizational factors. Some of the organizational antecedents to KS can relate to the characteristics and underlying aspects of knowledge being shared e.g., specificity and complexity of the underlying knowledge to be transferred; others relate to specific organizational characteristics e.g., age and size of the organization, decentralization and absorptive capacity of the firm and still others relate to the social relations and networks of organizations such as social ties, trusting relationships, and value systems. In the same way some researchers have highlighted on only one aspect like organizational commitment, transformational leadership, knowledge-centred culture, learning and performance orientation and social network-based relationships in the organizations. A bulk of the existing research articles on antecedents to knowledge sharing has mainly discussed organizational or environmental factors affecting knowledge sharing. However, the focus, later on, shifted towards the analysis of individuals or personal determinants as antecedents for the individual’s engagement in knowledge sharing activities, like personality traits, attitude and self efficacy etc. For example, employees’ goal orientations (i.e. learning orientation or performance orientation is an important individual antecedent of knowledge sharing behaviour. While being consistent with the existing literature therefore, the antecedents to knowledge sharing can be classified as being individual and organizational. This paper is an endeavor to discuss a conceptual framework of the individual and organizational antecedents to knowledge sharing in the light of the available literature and empirical evidence. This model not only can help in getting familiarity and comprehension on the subject matter by presenting a holistic view of the antecedents to knowledge sharing as discussed in the literature, but can also help the business managers and especially human resource managers to find insights about the salient features of organizational knowledge sharing. Moreover, this paper can help provide a ground for research students and academicians to conduct both qualitative as well and quantitative research and design an instrument for conducting survey on the topic of individual and organizational antecedents to knowledge sharing.Keywords: antecedents to knowledge sharing, knowledge management, individual and organizational, organizational knowledge sharing
Procedia PDF Downloads 324