Search results for: principal curve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1913

Search results for: principal curve

233 Geographic Origin Determination of Greek Rice (Oryza Sativa L.) Using Stable Isotopic Ratio Analysis

Authors: Anna-Akrivi Thomatou, Anastasios Zotos, Eleni C. Mazarakioti, Efthimios Kokkotos, Achilleas Kontogeorgos, Athanasios Ladavos, Angelos Patakas

Abstract:

It is well known that accurate determination of geographic origin to confront mislabeling and adulteration of foods is considered as a critical issue worldwide not only for the consumers, but also for producers and industries. Among agricultural products, rice (Oryza sativa L.) is the world’s third largest crop, providing food for more than half of the world’s population. Consequently, the quality and safety of rice products play an important role in people’s life and health. Despite the fact that rice is predominantly produced in Asian countries, rice cultivation in Greece is of significant importance, contributing to national agricultural sector income. More than 25,000 acres are cultivated in Greece, while rice exports to other countries consist the 0,5% of the global rice trade. Although several techniques are available in order to provide information about the geographical origin of rice, little data exist regarding the ability of these methodologies to discriminate rice production from Greece. Thus, the aim of this study is the comparative evaluation of stable isotope ratio methodology regarding its discriminative ability for geographical origin determination of rice samples produced in Greece compared to those from three other Asian countries namely Korea, China and Philippines. In total eighty (80) samples were collected from selected fields of Central Macedonia (Greece), during October of 2021. The light element (C, N, S) isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS) and the results obtained were analyzed using chemometric techniques, including principal components analysis (PCA). Results indicated that the 𝜹 15N and 𝜹 34S values of rice produced in Greece were more markedly influenced by geographical origin compared to the 𝜹 13C. In particular, 𝜹 34S values in rice originating from Greece was -1.98 ± 1.71 compared to 2.10 ± 1.87, 4.41 ± 0.88 and 9.02 ± 0.75 for Korea, China and Philippines respectively. Among stable isotope ratios studied, values of 𝜹 34S seem to be the more appropriate isotope marker to discriminate rice geographic origin between the studied areas. These results imply the significant capability of stable isotope ratio methodology for effective geographical origin discrimination of rice, providing a valuable insight into the control of improper or fraudulent labeling. Acknowledgement: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products.

Keywords: geographical origin, authenticity, rice, isotope ratio mass spectrometry

Procedia PDF Downloads 89
232 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions

Authors: Saif Alomari

Abstract:

The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.

Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters

Procedia PDF Downloads 142
231 The Composition of Biooil during Biomass Pyrolysis at Various Temperatures

Authors: Zoltan Sebestyen, Eszter Barta-Rajnai, Emma Jakab, Zsuzsanna Czegeny

Abstract:

Extraction of the energy content of lignocellulosic biomass is one of the possible pathways to reduce the greenhouse gas emission derived from the burning of the fossil fuels. The application of the bioenergy can mitigate the energy dependency of a country from the foreign natural gas and the petroleum. The diversity of the plant materials makes difficult the utilization of the raw biomass in power plants. This problem can be overcome by the application of thermochemical techniques. Pyrolysis is the thermal decomposition of the raw materials under inert atmosphere at high temperatures, which produces pyrolysis gas, biooil and charcoal. The energy content of these products can be exploited by further utilization. The differences in the chemical and physical properties of the raw biomass materials can be reduced by the use of torrefaction. Torrefaction is a promising mild thermal pretreatment method performed at temperatures between 200 and 300 °C in an inert atmosphere. The goal of the pretreatment from a chemical point of view is the removal of water and the acidic groups of hemicelluloses or the whole hemicellulose fraction with minor degradation of cellulose and lignin in the biomass. Thus, the stability of biomass against biodegradation increases, while its energy density increases. The volume of the raw materials decreases so the expenses of the transportation and the storage are reduced as well. Biooil is the major product during pyrolysis and an important by-product during torrefaction of biomass. The composition of biooil mostly depends on the quality of the raw materials and the applied temperature. In this work, thermoanalytical techniques have been used to study the qualitative and quantitative composition of the pyrolysis and torrefaction oils of a woody (black locust) and two herbaceous samples (rape straw and wheat straw). The biooil contains C5 and C6 anhydrosugar molecules, as well as aromatic compounds originating from hemicellulose, cellulose, and lignin, respectively. In this study, special emphasis was placed on the formation of the lignin monomeric products. The structure of the lignin fraction is different in the wood and in the herbaceous plants. According to the thermoanalytical studies the decomposition of lignin starts above 200 °C and ends at about 500 °C. The lignin monomers are present among the components of the torrefaction oil even at relatively low temperatures. We established that the concentration and the composition of the lignin products vary significantly with the applied temperature indicating that different decomposition mechanisms dominate at low and high temperatures. The evolutions of decomposition products as well as the thermal stability of the samples were measured by thermogravimetry/mass spectrometry (TG/MS). The differences in the structure of the lignin products of woody and herbaceous samples were characterized by the method of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). As a statistical method, principal component analysis (PCA) has been used to find correlation between the composition of lignin products of the biooil and the applied temperatures.

Keywords: pyrolysis, torrefaction, biooil, lignin

Procedia PDF Downloads 329
230 Real-Time Quantitative Polymerase Chain Reaction Assay for the Detection of microRNAs Using Bi-Directional Extension Sequences

Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee

Abstract:

MicroRNAs (miRNA) are a class of endogenous, single-stranded, small, and non-protein coding RNA molecules typically 20-25 nucleotides long. They are thought to regulate the expression of other genes in a broad range by binding to 3’- untranslated regions (3’-UTRs) of specific mRNAs. The detection of miRNAs is very important for understanding of the function of these molecules and in the diagnosis of variety of human diseases. However, detection of miRNAs is very challenging because of their short length and high sequence similarities within miRNA families. So, a simple-to-use, low-cost, and highly sensitive method for the detection of miRNAs is desirable. In this study, we demonstrate a novel bi-directional extension (BDE) assay. In the first step, a specific linear RT primer is hybridized to 6-10 base pairs from the 3’-end of a target miRNA molecule and then reverse transcribed to generate a cDNA strand. After reverse transcription, the cDNA was hybridized to the 3’-end which is BDE sequence; it played role as the PCR template. The PCR template was amplified in an SYBR green-based quantitative real-time PCR. To prove the concept, we used human brain total RNA. It could be detected quantitatively in the range of seven orders of magnitude with excellent linearity and reproducibility. To evaluate the performance of BDE assay, we contrasted sensitivity and specificity of the BDE assay against a commercially available poly (A) tailing method using miRNAs for let-7e extracted from A549 human epithelial lung cancer cells. The BDE assay displayed good performance compared with a poly (A) tailing method in terms of specificity and sensitivity; the CT values differed by 2.5 and the melting curve showed a sharper than poly (A) tailing methods. We have demonstrated an innovative, cost-effective BDE assay that allows improved sensitivity and specificity in detection of miRNAs. Dynamic range of the SYBR green-based RT-qPCR for miR-145 could be represented quantitatively over a range of 7 orders of magnitude from 0.1 pg to 1.0 μg of human brain total RNA. Finally, the BDE assay for detection of miRNA species such as let-7e shows good performance compared with a poly (A) tailing method in terms of specificity and sensitivity. Thus BDE proves a simple, low cost, and highly sensitive assay for various miRNAs and should provide significant contributions in research on miRNA biology and application of disease diagnostics with miRNAs as targets.

Keywords: bi-directional extension (BDE), microRNA (miRNA), poly (A) tailing assay, reverse transcription, RT-qPCR

Procedia PDF Downloads 166
229 Bituminous Geomembranes: Sustainable Products for Road Construction and Maintenance

Authors: Ines Antunes, Andrea Massari, Concetta Bartucca

Abstract:

Greenhouse gasses (GHG) role in the atmosphere has been well known since the 19th century; however, researchers have begun to relate them to climate changes only in the second half of the following century. From this moment, scientists started to correlate the presence of GHG such as CO₂ with the global warming phenomena. This has raised the awareness not only of those who were experts in this field but also of public opinion, which is becoming more and more sensitive to environmental pollution and sustainability issues. Nowadays the reduction of GHG emissions is one of the principal objectives of EU nations. The target is an 80% reduction of emissions in 2050 and to reach the important goal of carbon neutrality. Road sector is responsible for an important amount of those emissions (about 20%). The most part is due to traffic, but a good contribution is also given directly or indirectly from road construction and maintenance. Raw material choice and reuse of post-consumer plastic rather than a cleverer design of roads have an important contribution to reducing carbon footprint. Bituminous membranes can be successfully used as reinforcement systems in asphalt layers to improve road pavement performance against cracking. Composite materials coupling membranes with grids and/or fabrics should be able to combine improved tensile properties of the reinforcement with stress absorbing and waterproofing effects of membranes. Polyglass, with its brand dedicated to road construction and maintenance called Polystrada, has done more than this. The company's target was not only to focus sustainability on the final application but also to implement a greener mentality from the cradle to the grave. Starting from production, Polyglass has made important improvements finalized to increase efficiency and minimize waste. The installation of a trigeneration plant and the usage of selected production scraps inside the products as well as the reduction of emissions into the environment, are one of the main efforts of the company to reduce impact during final product build-up. Moreover, the benefit given by installing Polystrada products brings a significant improvement in road lifetime. This has an impact not only on the number of maintenance or renewal that needs to be done (build less) but also on traffic density due to works and road deviation in case of operations. During the end of the life of a road, Polystrada products can be 100% recycled and milled with classical systems used without changing the normal maintenance procedures. In this work, all these contributions were quantified in terms of CO₂ emission thanks to an LCA analysis. The data obtained were compared with a classical system or a standard production of a membrane. What it is possible to see is that the usage of Polyglass products for street maintenance and building gives a significant reduction of emissions in case of membrane installation under the road wearing course.

Keywords: CO₂ emission, LCA, maintenance, sustainability

Procedia PDF Downloads 65
228 Dose Saving and Image Quality Evaluation for Computed Tomography Head Scanning with Eye Protection

Authors: Yuan-Hao Lee, Chia-Wei Lee, Ming-Fang Lin, Tzu-Huei Wu, Chih-Hsiang Ko, Wing P. Chan

Abstract:

Computed tomography (CT) scan of the head is a good method for investigating cranial lesions. However, radiation-induced oxidative stress can be accumulated in the eyes and promote carcinogenesis and cataract. In this regard, we aimed to protect the eyes with barium sulfate shield(s) during CT scans and investigate the resultant image quality and radiation dose to the eye. Patients who underwent health examinations were selectively enrolled in this study in compliance with the protocol approved by the Ethics Committee of the Joint Institutional Review Board at Taipei Medical University. Participants’ brains were scanned with a water-based marker simultaneously by a multislice CT scanner (SOMATON Definition Flash) under a fixed tube current-time setting or automatic tube current modulation (TCM). The lens dose was measured by Gafchromic films, whose dose response curve was previously fitted using thermoluminescent dosimeters, with or without barium sulfate or bismuth-antimony shield laid above. For the assessment of image quality CT images at slice planes that exhibit the interested regions on the zygomatic, orbital and nasal bones of the head phantom as well as the water-based marker were used for calculating the signal-to-noise and contrast-to-noise ratios. The application of barium sulfate and bismuth-antimony shields decreased 24% and 47% of the lens dose on average, respectively. Under topogram-based TCM, the dose saving power of bismuth-antimony shield was mitigated whereas that of barium sulfate shield was enhanced. On the other hand, the signal-to-noise and contrast-to-noise ratios of DSCT images were decreased separately by barium sulfate and bismuth-antimony shield, resulting in an overall reduction of the CNR. In contrast, the integration of topogram-based TCM elevated signal difference between the ROIs on the zygomatic bones and eyeballs while preferentially decreasing the signal-to-noise ratios upon the use of barium sulfate shield. The results of this study indicate that the balance between eye exposure and image quality can be optimized by combining eye shields with topogram-based TCM on the multislice scanner. Eye shielding could change the photon attenuation characteristics of tissues that are close to the shield. The application of both shields on eye protection hence is not recommended for seeking intraorbital lesions.

Keywords: computed tomography, barium sulfate shield, dose saving, image quality

Procedia PDF Downloads 268
227 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach

Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier

Abstract:

Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.

Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube

Procedia PDF Downloads 154
226 A Review of How COVID-19 Has Created an Insider Fraud Pandemic and How to Stop It

Authors: Claire Norman-Maillet

Abstract:

Insider fraud, including its various synonyms such as occupational, employee or internal fraud, is a major financial crime threat whereby an employee defrauds (or attempts to defraud) their current, prospective, or past employer. ‘Employee’ covers anyone employed by the company, including contractors, directors, and part time staff; they may be a solo bad actor or working in collusion with others, whether internal or external. Insider fraud is even more of a concern given the impacts of the Coronavirus pandemic, which has generated multiple opportunities to commit insider fraud. Insider fraud is something that is not necessarily thought of as a significant financial crime threat; the focus of most academics and practitioners has historically been on that of ‘external fraud’ against businesses or entities where an individual or group has no professional ties. Without the face-to-face, ‘over the shoulder’ capabilities of staff being able to keep an eye on their employees, there is a heightened reliance on trust and transparency. With this, naturally, comes an increased risk of insider fraud perpetration. The objective of the research is to better understand how companies are impacted by insider fraud, and therefore how to stop it. This research will make both an original contribution and stimulate debate within the financial crime field. The financial crime landscape is never static – criminals are always creating new ways to perpetrate financial crime, and new legislation and regulations are implemented as attempts to strengthen controls, in addition to businesses doing what they can internally to detect and prevent it. By focusing on insider fraud specifically, the research will be more specific and will be of greater use to those in the field. To achieve the aims of the research, semi-structured interviews were conducted with 22 individuals who either work in financial services and deal with insider fraud or work within insider fraud perpetration in a recruitment or advisory capacity. This was to enable the sourcing of information from a wide range of individuals in a setting where they were able to elaborate on their answers. The principal recruitment strategy was engaging with the researcher’s network on LinkedIn. The interviews were then transcribed and analysed thematically. Main findings in the research suggest that insider fraud has been ignored owing to the denial of accepting the possibility that colleagues would defraud their employer. Whilst Coronavirus has led to a significant rise in insider fraud, this type of crime has been a major risk to businesses since their inception, however have never been given the financial or strategic backing required to be mitigated, until it's too late. Furthermore, Coronavirus should have led to companies tightening their access rights, controls and policies to mitigate the insider fraud risk. However, in most cases this has not happened. The research concludes that insider fraud needs to be given a platform upon which to be recognised as a threat to any company and given the same level of weighting and attention by Executive Committees and Boards as other types of economic crime.

Keywords: fraud, insider fraud, economic crime, coronavirus, Covid-19

Procedia PDF Downloads 68
225 Deconstructing and Reconstructing the Definition of Inhuman Treatment in International Law

Authors: Sonia Boulos

Abstract:

The prohibition on ‘inhuman treatment’ constitutes one of the central tenets of modern international human rights law. It is incorporated in principal international human rights instruments including Article 5 of the Universal Declaration of Human Rights, and Article 7 of the International Covenant on Civil and Political Rights. However, in the absence of any legislative definition of the term ‘inhuman’, its interpretation becomes challenging. The aim of this article is to critically analyze the interpretation of the term ‘inhuman’ in international human rights law and to suggest a new approach to construct its meaning. The article is composed of two central parts. The first part is a critical appraisal of the interpretation of the term ‘inhuman’ by supra-national human rights law institutions. It highlights the failure of supra-national institutions to provide an independent definition for the term ‘inhuman’. In fact, those institutions consistently fail to distinguish the term ‘inhuman’ from its other kin terms, i.e. ‘cruel’ and ‘degrading.’ Very often, they refer to these three prohibitions as ‘CIDT’, as if they were one collective. They were primarily preoccupied with distinguishing ‘CIDT’ from ‘torture.’ By blurring the conceptual differences between these three terms, supra-national institutions supplemented them with a long list of specific and purely descriptive subsidiary rules. In most cases, those subsidiary rules were announced in the absence of sufficient legal reasoning explaining how they were derived from abstract and evaluative standards embodied in the prohibitions collectively referred to as ‘CIDT.’ By opting for this option, supra-national institutions have created the risk for the development of an incoherent body of jurisprudence on those terms at the international level. They also have failed to provide guidance for domestic courts on how to enforce these prohibitions. While blurring the differences between the terms ‘cruel,’ ‘inhuman,’ and ‘degrading’ has consequences for the three, the term ‘inhuman’ remains the most impoverished one. It is easy to link the term ‘cruel’ to the clause on ‘cruel and unusual punishment’ originating from the English Bill of Rights of 1689. It is also easy to see that the term ‘degrading’ reflects a dignatarian ideal. However, when we turn to the term ‘inhuman’, we are left without any interpretative clue. The second part of the article suggests that the ordinary meaning of the word ‘inhuman’ should be our first clue. However, regaining the conceptual independence of the term ‘inhuman’ requires more than a mere reflection on the word-meaning of the term. Thus, the second part introduces philosophical concepts related to the understanding of what it means to be human. It focuses on ‘the capabilities approach’ and the notion of ‘human functioning’, introduced by Amartya Sen and further explored by Martha Nussbaum. Nussbaum’s work on the basic human capabilities is particularly helpful or even vital for understanding the moral and legal substance of the prohibition on ‘inhuman’ treatment.

Keywords: inhuman treatment, capabilities approach, human functioning, supra-national institutions

Procedia PDF Downloads 278
224 The Social Structuring of Mate Selection: Assortative Marriage Patterns in the Israeli Jewish Population

Authors: Naava Dihi, Jon Anson

Abstract:

Love, so it appears, is not socially blind. We show that partner selection is socially constrained, and the freedom to choose is limited by at least two major factors or capitals: on the one hand, material resources and education, locating the partners on a scale of personal achievement and economic independence. On the other, the partners' ascriptive belonging to particular ethnic, or origin, groups, differentiated by the groups' social prestige, as well as by their culture, history and even physical characteristics. However, the relative importance of achievement and ascriptive factors, as well as the overlap between them, varies from society to society, depending on the society's structure and the factors shaping it. Israeli social structure has been shaped by the waves of new immigrants who arrived over the years. The timing of their arrival, their patterns of physical settlement and their occupational inclusion or exclusion have together created a mosaic of social groups whose principal common feature has been the country of origin from which they arrived. The analysis of marriage patterns helps illuminate the social meanings of the groups and their borders. To the extent that ethnic group membership has meaning for individuals and influences their life choices, the ascriptive factor will gain in importance relative to the achievement factor in their choice of marriage partner. In this research, we examine Jewish Israeli marriage patterns by looking at the marriage choices of 5,041 women aged 15 to 49 who were single at the census in 1983, and who were married at the time of the 1995 census, 12 years later. The database for this study was a file linking respondents from the 1983 and the 1995 censuses. In both cases, 5 percent of household were randomly chosen, so that our sample includes about 4 percent of women in Israel in 1983. We present three basic analyses: (1) Who was still single in 1983, using personal and household data from the 1983 census (binomial model), (2) Who married between 1983 and a1995, using personal and household data from the 1983 census (binomial model), (3) What were the personal characteristics of the womens’ partners in 1995, using data from the 1995 census (loglinear model). We show (i) that material and cultural capital both operate to delay marriage and to increase the probability of remaining single; and (ii) while there is a clear association between ethnic group membership and education, endogamy and homogamy both operate as separate forces which constraint (but do not determine) the choice of marriage partner, and thus both serve to reproduce the current pattern of relationships, as well as identifying patterns of proximity and distance between the different groups.

Keywords: Israel, nuptiality, ascription, achievement

Procedia PDF Downloads 115
223 Learning to Transform, Transforming to Learn: An Exploration of Teacher Professional Learning in the 4Cs (Communication, Collaboration, Creativity and Critical Reflection) in the Primary (K-6) Setting

Authors: Susan E Orlovich

Abstract:

Ongoing, effective teacher professional learning is acknowledged as a critical influence on teacher practice. However, it is unclear whether the elements of effective professional learning result in transformed teacher practice in the classroom. This research project is interested in 4C teacher professional learning. The professional learning practices to assist teachers in transforming their practice to integrate the 4C capabilities seldom feature in the academic literature. The 4Cs are a shorthand way of representing the concepts of communication, collaboration, creativity, and critical reflection and refer to the capabilities needed for deeper learning, personal growth, and effective participation in society. The New South Wales curriculum review (2020) acknowledges that identifying, teaching, and assessing the 4C capabilities are areas of challenge for teachers. However, it also recognises that it is essential for teachers to build the confidence and capacity to understand, teach and assess the capabilities necessary for learners to thrive in the 21st century. This qualitative research project explores the professional learning experiences of sixteen teachers in four different primaries (K-6) settings in Sydney, Australia, who are learning to integrate, teach and assess the 4Cs. The project draws on the Theory of Practice Architecture as a framework to analyse and interpret teachers' experiences in each site. The sixteen participants in the study are teachers from four primary settings and include early career, experienced, and teachers in leadership roles (including the principal). In addition, some of the participants are also teachers who are learning within a Community of Practice (CoP) as their school setting is engaged in a 4C professional learning, Community of Practice. Qualitative and arts-informed research methods are utilised to examine the cultural-discursive, social-political, and material-economic practice arrangements of the site, explore how these arrangements may have shaped the professional learning experiences of teachers, and in turn, influence the teaching practices of the 4Cs in the setting. The research is in the data analysis stage (October 2022), with preliminary findings pending. The research objective is to investigate the elements of the professional learning experiences undertaken by teachers to teach the 4Cs in the primary setting. The lens of practice architectures theory is used to identify the influence of the practice architectures on critical praxis in each site and examine how the practice arrangements enable or constrain the teaching of 4C capabilities. This research aims to offer deep insight into the practice arrangements which may enable or constrain teacher professional learning in the 4Cs. Such insight from this study may contribute to a better understanding of the practices that enable teachers to transform their practice to achieve the integration, teaching, and assessment of the 4C capabilities.

Keywords: 4Cs, communication, collaboration, creativity, critical reflection, teacher professional learning

Procedia PDF Downloads 109
222 A Principal’s Role in Creating and Sustaining an Inclusive Environment

Authors: Yazmin Pineda Zapata

Abstract:

Leading a complete school and culture transformation can be a daunting task for any administrator. This is especially true when change agents are advocating for inclusive reform in their schools. As leaders embark on this journey, they must ascertain that an inclusive environment is not a place, a classroom, or a resource setting; it is a place of acceptance nurtured by supportive and meaningful learning opportunities where all students can thrive. A qualitative approach, phenomenology, was used to investigate principals’ actions and behaviors that supported inclusive schooling for students with disabilities. Specifically, this study sought to answer the following research question: How do leaders develop and maintain inclusive education? Fourteen K-12 principals purposefully selected from various sources (e.g., School Wide Integrated Framework for Transformation (SWIFT), The Maryland Coalition for Inclusive Education (MCIE), The Arc of Texas Inclusion Works organization, The Association for Persons with Severe Handicaps (TASH), the CAL State Summer Institute in San Marcos, and the PEAK Parent Center and/or other recognitions were interviewed individually using a semi-structured protocol. Upon completion of data collection, all interviews were transcribed and marked using A priori coding to analyze the responses and establish a correlation among Villa and Thousand’s five organizational supports to achieve inclusive educational reform: Vision, Skills, Incentives, Resources, and Action Plan. The findings of this study reveal the insights of principals who met specific criteria and whose schools had been highlighted as exemplary inclusive schools. Results show that by implementing the five organizational supports, principals were able to develop and sustain successful inclusive environments where both teachers and students were motivated, made capable, and supported through the redefinition and restructuring of systems within the school. Various key details of the five variables for change depict essential components within these systems, which include quality professional development, coaching and modeling of co-teaching strategies, collaborative co-planning, teacher leadership, and continuous stakeholder (e.g., teachers, students, support staff, and parents) involvement. The administrators in this study proved the valuable benefits of inclusive education for students with disabilities and their typically developing peers. Together, along with their teaching and school community, school leaders became capable stakeholders that promoted the vision of inclusion, planned a structured approach, and took action to make it a reality.

Keywords: Inclusive education, leaders, principals, shared-decision making, shared leadership, special education, sustainable change

Procedia PDF Downloads 73
221 Experimental Studies of the Reverse Load-Unloading Effect on the Mechanical, Linear and Nonlinear Elastic Properties of n-AMg6/C60 Nanocomposite

Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy, Vyacheslav M. Prokhorov

Abstract:

The paper presents the results of an experimental study of the effect of reverse mechanical load-unloading on the mechanical, linear, and nonlinear elastic properties of n-AMg6/C60 nanocomposite. Samples for experimental studies of n-AMg6/C60 nanocomposite were obtained by grinding AMg6 polycrystalline alloy in a planetary mill with 0.3 wt % of C60 fullerite in an argon atmosphere. The resulting product consisted of 200-500-micron agglomerates of nanoparticles. X-ray coherent scattering (CSL) method has shown that the average nanoparticle size is 40-60 nm. The resulting preform was extruded at high temperature. Modifications of C60 fullerite interferes the process of recrystallization at grain boundaries. In the samples of n-AMg6/C60 nanocomposite, the load curve is measured: the dependence of the mechanical stress σ on the strain of the sample ε under its multi-cycle load-unloading process till its destruction. The hysteresis dependence σ = σ(ε) was observed, and insignificant residual strain ε < 0.005 were recorded. At σ≈500 MPa and ε≈0.025, the sample was destroyed. The destruction of the sample was fragile. Microhardness was measured before and after destruction of the sample. It was found that the loading-unloading process led to an increase in its microhardness. The effect of the reversible mechanical stress on the linear and nonlinear elastic properties of the n-AMg6/C60 nanocomposite was studied experimentally by ultrasonic method on the automated complex Ritec RAM-5000 SNAP SYSTEM. In the n-AMg6/C60 nanocomposite, the velocities of the longitudinal and shear bulk waves were measured with the pulse method, and all the second-order elasticity coefficients and their dependence on the magnitude of the reversible mechanical stress applied to the sample were calculated. Studies of nonlinear elastic properties of the n-AMg6/C60 nanocomposite at reversible load-unloading of the sample were carried out with the spectral method. At arbitrary values of the strain of the sample (up to its breakage), the dependence of the amplitude of the second longitudinal acoustic harmonic at a frequency of 2f = 10MHz on the amplitude of the first harmonic at a frequency f = 5MHz of the acoustic wave is measured. Based on the results of these measurements, the values of the nonlinear acoustic parameter in the n-AMg6/C60 nanocomposite sample at different mechanical stress were determined. The obtained results can be used in solid-state physics, materials science, for development of new techniques for nondestructive testing of structural materials using methods of nonlinear acoustic diagnostics. This study was supported by the Russian Science Foundation (project №14-22-00042).

Keywords: nanocomposite, generation of acoustic harmonics, nonlinear acoustic parameter, hysteresis

Procedia PDF Downloads 151
220 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 156
219 Exploring the Relationship Between Helicobacter Pylori Infection and the Incidence of Bronchogenic Carcinoma

Authors: Jose R. Garcia, Lexi Frankel, Amalia Ardeljan, Sergio Medina, Ali Yasback, Omar Rashid

Abstract:

Background: Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that affects nearly half of the population worldwide and humans serve as the principal reservoir. Infection rates usually follow an inverse relationship with hygiene practices and are higher in developing countries than developed countries. Incidence varies significantly by geographic area, race, ethnicity, age, and socioeconomic status. H. pylori is primarily associated with conditions of the gastrointestinal tract such as atrophic gastritis and duodenal peptic ulcers. Infection is also associated with an increased risk of carcinogenesis as there is evidence to show that H. pylori infection may lead to gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. It is suggested that H. pylori infection may be considered as a systemic condition, leading to various novel associations with several different neoplasms such as colorectal cancer, pancreatic cancer, and lung cancer, although further research is needed. Emerging evidence suggests that H. pylori infection may offer protective effects against Mycobacterium tuberculosis as a result of non-specific induction of interferon- γ (IFN- γ). Similar methods of enhanced immunity may affect the development of bronchogenic carcinoma due to the antiproliferative, pro-apoptotic and cytostatic functions of IFN- γ. The purpose of this study was to evaluate the correlation between Helicobacter pylori infection and the incidence of bronchogenic carcinoma. Methods: The data was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate the patients infected versus patients not infected with H. pylori using ICD-10 and ICD-9 codes. Access to the database was granted by the Holy Cross Health, Fort Lauderdale for the purpose of academic research. Standard statistical methods were used. Results:-Between January 2010 and December 2019, the query was analyzed and resulted in 163,224 in both the infected and control group, respectively. The two groups were matched by age range and CCI score. The incidence of bronchogenic carcinoma was 1.853% with 3,024 patients in the H. pylori group compared to 4.785% with 7,810 patients in the control group. The difference was statistically significant (p < 2.22x10-16) with an odds ratio of 0.367 (0.353 - 0.383) with a confidence interval of 95%. The two groups were matched by treatment and incidence of cancer, which resulted in a total of 101,739 patients analyzed after this match. The incidence of bronchogenic carcinoma was 1.929% with 1,962 patients in the H. pylori and treatment group compared to 4.618% with 4,698 patients in the control group with treatment. The difference was statistically significant (p < 2.22x10-16) with an odds ratio of 0.403 (0.383 - 0.425) with a confidence interval of 95%.

Keywords: bronchogenic carcinoma, helicobacter pylori, lung cancer, pathogen-associated molecular patterns

Procedia PDF Downloads 183
218 Streamlining the Fuzzy Front-End and Improving the Usability of the Tools Involved

Authors: Michael N. O'Sullivan, Con Sheahan

Abstract:

Researchers have spent decades developing tools and techniques to aid teams in the new product development (NPD) process. Despite this, it is evident that there is a huge gap between their academic prevalence and their industry adoption. For the fuzzy front-end, in particular, there is a wide range of tools to choose from, including the Kano Model, the House of Quality, and many others. In fact, there are so many tools that it can often be difficult for teams to know which ones to use and how they interact with one another. Moreover, while the benefits of using these tools are obvious to industrialists, they are rarely used as they carry a learning curve that is too steep and they become too complex to manage over time. In essence, it is commonly believed that they are simply not worth the effort required to learn and use them. This research explores a streamlined process for the fuzzy front-end, assembling the most effective tools and making them accessible to everyone. The process was developed iteratively over the course of 3 years, following over 80 final year NPD teams from engineering, design, technology, and construction as they carried a product from concept through to production specification. Questionnaires, focus groups, and observations were used to understand the usability issues with the tools involved, and a human-centred design approach was adopted to produce a solution to these issues. The solution takes the form of physical toolkit, similar to a board game, which allows the team to play through an example of a new product development in order to understand the process and the tools, before using it for their own product development efforts. A complimentary website is used to enhance the physical toolkit, and it provides more examples of the tools being used, as well as deeper discussions on each of the topics, allowing teams to adapt the process to their skills, preferences and product type. Teams found the solution very useful and intuitive and experienced significantly less confusion and mistakes with the process than teams who did not use it. Those with a design background found it especially useful for the engineering principles like Quality Function Deployment, while those with an engineering or technology background found it especially useful for design and customer requirements acquisition principles, like Voice of the Customer. Products developed using the toolkit are added to the website as more examples of how it can be used, creating a loop which helps future teams understand how the toolkit can be adapted to their project, whether it be a small consumer product or a large B2B service. The toolkit unlocks the potential of these beneficial tools to those in industry, both for large, experienced teams and for inexperienced start-ups. It allows users to assess the market potential of their product concept faster and more effectively, arriving at the product design stage with technical requirements prioritized according to their customers’ needs and wants.

Keywords: new product development, fuzzy front-end, usability, Kano model, quality function deployment, voice of customer

Procedia PDF Downloads 108
217 Overcoming Obstacles in UHTHigh-protein Whey Beverages by Microparticulation Process: Scientific and Technological Aspects

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh, Seyed Jalal Razavi Zahedkolaei

Abstract:

Herein, a shelf stable (no refrigeration required) UHT processed, aseptically packaged whey protein drink was formulated by using a new strategy in microparticulate process. Applying thermal and two-dimensional mechanical treatments simultaneously, a modified protein (MWPC-80) was produced. Then the physical, thermal and thermodynamic properties of MWPC-80 were assessed using particle size analysis, dynamic temperature sweep (DTS), and differential scanning calorimetric (DSC) tests. Finally, using MWPC-80, a new RTD beverage was formulated, and shelf stability was assessed for three months at ambient temperature (25 °C). Non-isothermal dynamic temperature sweep was performed, and the results were analyzed by a combination of classic rate equation, Arrhenius equation, and time-temperature relationship. Generally, results showed that temperature dependency of the modified sample was significantly (Pvalue<0.05) less than the control one contained WPC-80. The changes in elastic modulus of the MWPC did not show any critical point at all the processed stages, whereas, the control sample showed two critical points during heating (82.5 °C) and cooling (71.10 °C) stages. Thermal properties of samples (WPC-80 & MWPC-80) were assessed using DSC with 4 °C /min heating speed at 20-90 °C heating range. Results did not show any thermal peak in MWPC DSC curve, which suggested high thermal resistance. On the other hands, WPC-80 sample showed a significant thermal peak with thermodynamic properties of ∆G:942.52 Kj/mol ∆H:857.04 Kj/mole and ∆S:-1.22Kj/mole°K. Dynamic light scattering was performed and results showed 0.7 µm and 15 nm average particle size for MWPC-80 and WPC-80 samples, respectively. Moreover, particle size distribution of MWPC-80 and WPC-80 were Gaussian-Lutresian and normal, respectively. After verification of microparticulation process by DTS, PSD and DSC analyses, a 10% why protein beverage (10% w/w/ MWPC-80, 0.6% w/w vanilla flavoring agent, 0.1% masking flavor, 0.05% stevia natural sweetener and 0.25% citrate buffer) was formulated and UHT treatment was performed at 137 °C and 4 s. Shelf life study did not show any jellification or precipitation of MWPC-80 contained beverage during three months storage at ambient temperature, whereas, WPC-80 contained beverage showed significant precipitation and jellification after thermal processing, even at 3% w/w concentration. Consumer knowledge on nutritional advantages of whey protein increased the request for using this protein in different food systems especially RTD beverages. These results could make a huge difference in this industry.

Keywords: high protein whey beverage, micropartiqulation, two-dimentional mechanical treatments, thermodynamic properties

Procedia PDF Downloads 74
216 Women’s Lived Expriences in Prison: A Study Conducted in Haramaya Correctional Facilities, Ethiopia. March 2023

Authors: Ramzi Bekri Umer

Abstract:

Aim: This study attempts to investigate the causes and difficulties with women’s incarceration as well as threat for their reintegration after release from prison with emphasis on the correctional facility of Haramaya city. Method and Methodology: Both quantitative and qualitative research methods were employed in this study; key informant interviews and participant observation were utilized to gather qualitative data, while crosssectional and descriptive research designs were used to gather quantitative data. Findings: This study shows that the women's incarceration was caused by their family histories, genderbased violence, illiteracy, and socioeconomic issues. The principal charges made against the female culprits were theft, vandalism, murder, and moral perversion. A poor quality of life in prison, concerns about family dissolution, emotional instability, financial difficulties, and a lack of spirituality were the main causes of unhappiness for the women behind bars, while social stigma, mistrust, and retaliation fears were the main obstacles to the women's ability to reintegrate into their families and communities. Theoretical Importance: This study involves incarcerated women at correctional center of Haramaya who committed various types of crimes. The local government sectors and non-governmental organization will gain from the study in order to create workable plans to reduce women's criminality and the growing number of female lawbreakers. Local communities and other governmental and nongovernmental partners will be able to support gender equality initiatives that seek to eradicate gender-based violence and discrimination, which worsen the criminality of women. Data Collection and Analysis Procedures: The quantitative and qualitative data were collected prospectively from a sample of 100 women prisoners. Quantitative data were analyzed using descriptive statistics, whereas, thematic analysis, were used for qualitative data. Question Answered: 1. What are the main causes women’s imprisonment in Haramaya city correctional facility. 2. What are the main obstacles of the women's ability to reintegrate into their families and communities after released from incarceration. Conclusion: The study concludes that incarcerated women experience a tremendous impact on their daily life. It highlights the importance of addressing factors such as family backgrounds, gender-based violence, illiteracy and socio-economic problem to decrease the number of women imprisonment. Detention environment, fear for family breakup, financial hardship and deprivation of spiritual life are the major sources of distress among the incarcerated women.

Keywords: Ethiopia, women prisoner, incarceration, reintegration

Procedia PDF Downloads 62
215 Transgenerational Impact of Intrauterine Hyperglycaemia to F2 Offspring without Pre-Diabetic Exposure on F1 Male Offspring

Authors: Jun Ren, Zhen-Hua Ming, He-Feng Huang, Jian-Zhong Sheng

Abstract:

Adverse intrauterine stimulus during critical or sensitive periods in early life, may lead to health risk not only in later life span, but also further generations. Intrauterine hyperglycaemia, as a major feature of gestational diabetes mellitus (GDM), is a typical adverse environment for both F1 fetus and F1 gamete cells development. However, there is scare information of phenotypic difference of metabolic memory between somatic cells and germ cells exposed by intrauterine hyperglycaemia. The direct transmission effect of intrauterine hyperglycaemia per se has not been assessed either. In this study, we built a GDM mice model and selected male GDM offspring without pre-diabetic phenotype as our founders, to exclude postnatal diabetic influence on gametes, thereby investigate the direct transmission effect of intrauterine hyperglycaemia exposure on F2 offspring, and we further compared the metabolic difference of affected F1-GDM male offspring and F2 offspring. A GDM mouse model of intrauterine hyperglycemia was established by intraperitoneal injection of streptozotocin after pregnancy. Pups of GDM mother were fostered by normal control mothers. All the mice were fed with standard food. Male GDM offspring without metabolic dysfunction phenotype were crossed with normal female mice to obtain F2 offspring. Body weight, glucose tolerance test, insulin tolerance test and homeostasis model of insulin resistance (HOMA-IR) index were measured in both generations at 8 week of age. Some of F1-GDM male mice showed impaired glucose tolerance (p < 0.001), none of F1-GDM male mice showed impaired insulin sensitivity. Body weight of F1-GDM mice showed no significance with control mice. Some of F2-GDM offspring exhibited impaired glucose tolerance (p < 0.001), all the F2-GDM offspring exhibited higher HOMA-IR index (p < 0.01 of normal glucose tolerance individuals vs. control, p < 0.05 of glucose intolerance individuals vs. control). All the F2-GDM offspring exhibited higher ITT curve than control (p < 0.001 of normal glucose tolerance individuals, p < 0.05 of glucose intolerance individuals, vs. control). F2-GDM offspring had higher body weight than control mice (p < 0.001 of normal glucose tolerance individuals, p < 0.001 of glucose intolerance individuals, vs. control). While glucose intolerance is the only phenotype that F1-GDM male mice may exhibit, F2 male generation of healthy F1-GDM father showed insulin resistance, increased body weight and/or impaired glucose tolerance. These findings imply that intrauterine hyperglycaemia exposure affects germ cells and somatic cells differently, thus F1 and F2 offspring demonstrated distinct metabolic dysfunction phenotypes. And intrauterine hyperglycaemia exposure per se has a strong influence on F2 generation, independent of postnatal metabolic dysfunction exposure.

Keywords: inheritance, insulin resistance, intrauterine hyperglycaemia, offspring

Procedia PDF Downloads 238
214 Low SPOP Expression and High MDM2 expression Are Associated with Tumor Progression and Predict Poor Prognosis in Hepatocellular Carcinoma

Authors: Chang Liang, Weizhi Gong, Yan Zhang

Abstract:

Purpose: Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate and poor prognosis worldwide. Murine double minute 2 (MDM2) regulates the tumor suppressor p53, increasing cancer risk and accelerating tumor progression. Speckle-type POX virus and zinc finger protein (SPOP), a key of subunit of Cullin-Ring E3 ligase, inhibits tumor genesis and progression by the ubiquitination of its downstream substrates. This study aimed to clarify whether SPOP and MDM2 are mutually regulated in HCC and the correlation between SPOP and MDM2 and the prognosis of HCC patients. Methods: First, the expression of SPOP and MDM2 in HCC tissues were detected by TCGA database. Then, 53 paired samples of HCC tumor and adjacent tissues were collected to evaluate the expression of SPOP and MDM2 using immunohistochemistry. Chi-square test or Fisher’s exact test were used to analyze the relationship between clinicopathological features and the expression levels of SPOP and MDM2. In addition, Kaplan‒Meier curve analysis and log-rank test were used to investigate the effects of SPOP and MDM2 on the survival of HCC patients. Last, the Multivariate Cox proportional risk regression model analyzed whether the different expression levels of SPOP and MDM2 were independent risk factors for the prognosis of HCC patients. Results: Bioinformatics analysis revealed the low expression of SPOP and high expression of MDM2 were related to worse prognosis of HCC patients. The relationship between the expression of SPOP and MDM2 and tumor stem-like features showed an opposite trend. The immunohistochemistry showed the expression of SPOP protein was significantly downregulated while MDM2 protein significantly upregulated in HCC tissue compared to that in para-cancerous tissue. Tumors with low SPOP expression were related to worse T stage and Barcelona Clinic Liver Cancer (BCLC) stage, but tumors with high MDM2 expression were related to worse T stage, M stage, and BCLC stage. Kaplan–Meier curves showed HCC patients with high SPOP expression and low MDM2 expression had better survival than those with low SPOP expression and high MDM2 expression (P < 0.05). A multivariate Cox proportional risk regression model confirmed that a high MDM2 expression level was an independent risk factor for poor prognosis in HCC patients (P <0.05). Conclusion: The expression of SPOP protein was significantly downregulated, while the expression of MDM2 significantly upregulated in HCC. The low expression of SPOP and high expression. of MDM2 were associated with malignant progression and poor prognosis of HCC patients, indicating a potential therapeutic target for HCC patients.

Keywords: hepatocellular carcinoma, murine double minute 2, speckle-type POX virus and zinc finger protein, ubiquitination

Procedia PDF Downloads 144
213 Prevalence of Antibiotic Resistant Enterococci in Treated Wastewater Effluent in Durban, South Africa and Characterization of Vancomycin and High-Level Gentamicin-Resistant Strains

Authors: S. H. Gasa, L. Singh, B. Pillay, A. O. Olaniran

Abstract:

Wastewater treatment plants (WWTPs) have been implicated as the leading reservoir for antibiotic resistant bacteria (ARB), including Enterococci spp. and antibiotic resistance genes (ARGs), worldwide. Enterococci are a group of clinically significant bacteria that have gained much attention as a result of their antibiotic resistance. They play a significant role as the principal cause of nosocomial infections and dissemination of antimicrobial resistance genes in the environment. The main objective of this study was to ascertain the role of WWTPs in Durban, South Africa as potential reservoirs for antibiotic resistant Enterococci (ARE) and their related ARGs. Furthermore, the antibiogram and resistance gene profile of Enterococci species recovered from treated wastewater effluent and receiving surface water in Durban were also investigated. Using membrane filtration technique, Enterococcus selective agar and selected antibiotics, ARE were enumerated in samples (influent, activated sludge, before chlorination and final effluent) collected from two WWTPs, as well as from upstream and downstream of the receiving surface water. Two hundred Enterococcus isolates recovered from the treated effluent and receiving surface water were identified by biochemical and PCR-based methods, and their antibiotic resistance profiles determined by the Kirby-Bauer disc diffusion assay, while PCR-based assays were used to detect the presence of resistance and virulence genes. High prevalence of ARE was obtained at both WWTPs, with values reaching a maximum of 40%. The influent and activated sludge samples contained the greatest prevalence of ARE with lower values observed in the before and after chlorination samples. Of the 44 vancomycin and high-level gentamicin-resistant isolates, 11 were identified as E. faecium, 18 as E. faecalis, 4 as E. hirae while 11 are classified as “other” Enterococci species. High-level aminoglycoside resistance for gentamicin (39%) and vancomycin (61%) was recorded in species tested. The most commonly detected virulence gene was the gelE (44%), followed by asa1 (40%), while cylA and esp were detected in only 2% of the isolates. The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(3')-IIIa, and ant(6')-Ia detected in 43%, 45% and 41% of the isolates, respectively. Positive correlation was observed between resistant phenotypes to high levels of aminoglycosides and presence of all aminoglycoside resistance genes. Resistance genes for glycopeptide: vanB (37%) and vanC-1 (25%), and macrolide: ermB (11%) and ermC (54%) were detected in the isolates. These results show the need for more efficient wastewater treatment and disposal in order to prevent the release of virulent and antibiotic resistant Enterococci species and safeguard public health.

Keywords: antibiogram, enterococci, gentamicin, vancomycin, virulence signatures

Procedia PDF Downloads 219
212 Development of Polylactic Acid Insert with a Cinnamaldehyde-Betacyclodextrin Complex for Cape Gooseberry (Physalis Peruviana L.) Packed

Authors: Gómez S. Jennifer, Méndez V. Camila, Moncayo M. Diana, Vega M. Lizeth

Abstract:

The cape gooseberry is a climacteric fruit; Colombia is one of the principal exporters in the world. The environmental condition of temperature and relative moisture decreases the titratable acidity and pH. These conditions and fruit maturation result in the fungal proliferation of Botrytis cinerea disease. Plastic packaging for fresh cape gooseberries was used for mechanical damage protection but created a suitable atmosphere for fungal growth. Beta-cyclodextrins are currently implemented as coatings for the encapsulation of hydrophobic compounds, for example, with bioactive compounds from essential oils such as cinnamaldehyde, which has a high antimicrobial capacity. However, it is a volatile substance. In this article, the casting method was used to obtain a polylactic acid (PLA) polymer film containing the beta-cyclodextrin-cinnamaldehyde inclusion complex, generating an insert that allowed the controlled release of the antifungal substance in packed cape gooseberries to decrease contamination by Botrytis cinerea in a latent state during storage. For the encapsulation technique, three ratios for the cinnamaldehyde: beta-cyclodextrin inclusion complex were proposed: (25:75), (40:60), and (50:50). Spectrophotometry, colorimetry in L*a*b* coordinate space and scanning electron microscopy (SEM) were made for the complex characterization. Subsequently, two ratios of tween and water (40:60) and (50:50) were used to obtain the polylactic acid (PLA) film. To determine mechanical and physical parameters of colourimetry in L*a*b* coordinate space, atomic force microscopy and stereoscopy were done to determine the transparency and flexibility of the film; for both cases, Statgraphics software was used to determine the best ratio in each of the proposed phases, where for encapsulation it was (50:50) with an encapsulation efficiency of 65,92%, and for casting the ratio (40:60) obtained greater transparency and flexibility that permitted its incorporation into the polymeric packaging. A liberation assay was also developed under ambient temperature conditions to evaluate the concentration of cinnamaldehyde inside the packaging through gas chromatography for three weeks. It was found that the insert had a controlled release. Nevertheless, a higher cinnamaldehyde concentration is needed to obtain the minimum inhibitory concentration for the fungus Botrytis cinerea (0.2g/L). The homogeneity of the cinnamaldehyde gas phase inside the packaging can be improved by considering other insert configurations. This development aims to impact emerging food preservation technologies with the controlled release of antifungals to reduce the affectation of the physico-chemical and sensory properties of the fruit as a result of contamination by microorganisms in the postharvest stage.

Keywords: antifungal, casting, encapsulation, postharvest

Procedia PDF Downloads 75
211 Improving Predictions of Coastal Benthic Invertebrate Occurrence and Density Using a Multi-Scalar Approach

Authors: Stephanie Watson, Fabrice Stephenson, Conrad Pilditch, Carolyn Lundquist

Abstract:

Spatial data detailing both the distribution and density of functionally important marine species are needed to inform management decisions. Species distribution models (SDMs) have proven helpful in this regard; however, models often focus only on species occurrences derived from spatially expansive datasets and lack the resolution and detail required to inform regional management decisions. Boosted regression trees (BRT) were used to produce high-resolution SDMs (250 m) at two spatial scales predicting probability of occurrence, abundance (count per sample unit), density (count per km2) and uncertainty for seven coastal seafloor taxa that vary in habitat usage and distribution to examine prediction differences and implications for coastal management. We investigated if small scale regionally focussed models (82,000 km2) can provide improved predictions compared to data-rich national scale models (4.2 million km2). We explored the variability in predictions across model type (occurrence vs abundance) and model scale to determine if specific taxa models or model types are more robust to geographical variability. National scale occurrence models correlated well with broad-scale environmental predictors, resulting in higher AUC (Area under the receiver operating curve) and deviance explained scores; however, they tended to overpredict in the coastal environment and lacked spatially differentiated detail for some taxa. Regional models had lower overall performance, but for some taxa, spatial predictions were more differentiated at a localised ecological scale. National density models were often spatially refined and highlighted areas of ecological relevance producing more useful outputs than regional-scale models. The utility of a two-scale approach aids the selection of the most optimal combination of models to create a spatially informative density model, as results contrasted for specific taxa between model type and scale. However, it is vital that robust predictions of occurrence and abundance are generated as inputs for the combined density model as areas that do not spatially align between models can be discarded. This study demonstrates the variability in SDM outputs created over different geographical scales and highlights implications and opportunities for managers utilising these tools for regional conservation, particularly in data-limited environments.

Keywords: Benthic ecology, spatial modelling, multi-scalar modelling, marine conservation.

Procedia PDF Downloads 77
210 Application of Geosynthetics for the Recovery of Located Road on Geological Failure

Authors: Rideci Farias, Haroldo Paranhos

Abstract:

The present work deals with the use of drainage geo-composite as a deep drainage and geogrid element to reinforce the base of the body of the landfill destined to the road pavement on geological faults in the stretch of the TO-342 Highway, between the cities of Miracema and Miranorte, in the State of Tocantins / TO, Brazil, which for many years was the main link between TO-010 and BR-153, after the city of Palmas, also in the state of Tocantins / TO, Brazil. For this application, geotechnical and geological studies were carried out by means of SPT percussion drilling, drilling and rotary drilling, to understand the problem, identifying the type of faults, filling material and the definition of the water table. According to the geological and geotechnical studies carried out, the area where the route was defined, passes through a zone of longitudinal fault to the runway, with strong breaking / fracturing, with presence of voids, intense alteration and with advanced argilization of the rock and with the filling up parts of the faults by organic and compressible soils leachate from other horizons. This geology presents as a geotechnical aggravating agent a medium of high hydraulic load and very low resistance to penetration. For more than 20 years, the region presented constant excessive deformations in the upper layers of the pavement, which after routine services of regularization, reconformation, re-compaction of the layers and application of the asphalt coating. The faults were quickly propagated to the surface of the asphalt pavement, generating a longitudinal shear, forming steps (unevenness), close to 40 cm, causing numerous accidents and discomfort to the drivers, since the geometric positioning was in a horizontal curve. Several projects were presented to the region's highway department to solve the problem. Due to the need for partial closure of the runway, the short time for execution, the use of geosynthetics was proposed and the most adequate solution for the problem was taken into account the movement of existing geological faults and the position of the water level in relation to several Layers of pavement and failure. In order to avoid any flow of water in the body of the landfill and in the filling material of the faults, a drainage curtain solution was used, carried out at 4.0 meters depth, with drainage geo-composite and as reinforcement element and inhibitor of the possible A geogrid of 200 kN / m of resistance was inserted at the base of the reconstituted landfill. Recent evaluations, after 13 years of application of the solution, show the efficiency of the technique used, supported by the geotechnical studies carried out in the area.

Keywords: geosynthetics, geocomposite, geogrid, road, recovery, geological failure

Procedia PDF Downloads 170
209 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation

Authors: Miguel Contreras, David Long, Will Bachman

Abstract:

Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.

Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models

Procedia PDF Downloads 205
208 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 93
207 A Preliminary in vitro Investigation of the Acetylcholinesterase and α-Amylase Inhibition Potential of Pomegranate Peel Extracts

Authors: Zoi Konsoula

Abstract:

The increasing prevalence of Alzheimer’s disease (AD) and diabetes mellitus (DM) constitutes them major global health problems. Recently, the inhibition of key enzyme activity is considered a potential treatment of both diseases. Specifically, inhibition of acetylcholinesterase (AChE), the key enzyme involved in the breakdown of the neurotransmitter acetylcholine, is a promising approach for the treatment of AD, while inhibition of α-amylase retards the hydrolysis of carbohydrates and, thus, reduces hyperglycemia. Unfortunately, commercially available AChE and α-amylase inhibitors are reported to possess side effects. Consequently, there is a need to develop safe and effective treatments for both diseases. In the present study, pomegranate peel (PP) was extracted using various solvents of increasing polarity, while two extraction methods were employed, the conventional maceration and the ultrasound assisted extraction (UAE). The concentration of bioactive phytoconstituents, such as total phenolics (TPC) and total flavonoids (TFC) in the prepared extracts was evaluated by the Folin-Ciocalteu and the aluminum-flavonoid complex method, respectively. Furthermore, the anti-neurodegenerative and anti-hyperglycemic activity of all extracts was determined using AChE and α-amylase inhibitory activity assays, respectively. The inhibitory activity of the extracts against AChE and α-amylase was characterized by estimating their IC₅₀ value using a dose-response curve, while galanthamine and acarbose were used as positive controls, respectively. Finally, the kinetics of AChE and α-amylase in the presence of the most inhibitory potent extracts was determined by the Lineweaver-Burk plot. The methanolic extract prepared using the UAE contained the highest amount of phytoconstituents, followed by the respective ethanolic extract. All extracts inhibited acetylcholinesterase in a dose-dependent manner, while the increased anticholinesterase activity of the methanolic (IC₅₀ = 32 μg/mL) and ethanolic (IC₅₀ = 42 μg/mL) extract was positively correlated with their TPC content. Furthermore, the activity of the aforementioned extracts was comparable to galanthamine. Similar results were obtained in the case of α-amylase, however, all extracts showed lower inhibitory effect on the carbohydrate hydrolyzing enzyme than on AChE, since the IC₅₀ value ranged from 84 to 100 μg/mL. Also, the α-amylase inhibitory effect of the extracts was lower than acarbose. Finally, the methanolic and ethanolic extracts prepared by UAE inhibited both enzymes in a mixed (competitive/noncompetitive) manner since the Kₘ value of both enzymes increased in the presence of extracts, while the Vmax value decreased. The results of the present study indicate that PP may be a useful source of active compounds for the management of AD and DM. Moreover, taking into consideration that PP is an agro-industrial waste product, its valorization could not only result in economic efficiency but also reduce the environmental pollution.

Keywords: acetylcholinesterase, Alzheimer’s disease, α-amylase, diabetes mellitus, pomegranate

Procedia PDF Downloads 122
206 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes

Authors: Angela U. Makolo

Abstract:

Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.

Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation

Procedia PDF Downloads 68
205 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 229
204 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 258