Search results for: potential intelligence
11075 A Conceptual Framework of Digital Twin for Homecare
Authors: Raja Omman Zafar, Yves Rybarczyk, Johan Borg
Abstract:
This article proposes a conceptual framework for the application of digital twin technology in home care. The main goal is to bridge the gap between advanced digital twin concepts and their practical implementation in home care. This study uses a literature review and thematic analysis approach to synthesize existing knowledge and proposes a structured framework suitable for homecare applications. The proposed framework integrates key components such as IoT sensors, data-driven models, cloud computing, and user interface design, highlighting the importance of personalized and predictive homecare solutions. This framework can significantly improve the efficiency, accuracy, and reliability of homecare services. It paves the way for the implementation of digital twins in home care, promoting real-time monitoring, early intervention, and better outcomes.Keywords: digital twin, homecare, older adults, healthcare, IoT, artificial intelligence
Procedia PDF Downloads 7111074 Identifying Applicant Potential Through Admissions Testing
Authors: Belinda Brunner
Abstract:
Objectives: Communicate common test constructs of well-known higher education admissions tests. Discuss influences on admissions test construct definition and design and discuss research on related to factors influencing success in academic study. Discuss how admissions tests can be used to identify relevant talent. Examine how admissions test can be used to facilitate educational mobility and inform selection decisions when the prerequisite curricula is not standardized Observations: Generally speaking, constructs of admissions tests can be placed along a continuum from curriculum-related knowledge to more general reasoning abilities. For example, subject-specific achievement tests are more closely aligned to a prescribed curriculum, while reasoning tests are typically not associated with a specific curriculum. This session will draw reference from the test-constructs of well-known international higher education admissions tests, such as the UK clinical aptitude test (UKCAT) which is used for medicine and dentistry admissions. Conclusions: The purpose of academic admissions testing is to identify potential students with the prerequisite skills set needed to succeed in the academic environment, but how can the test construct help achieve this goal? Determination of the appropriate test construct for tests used in the admissions selection decisions should be influenced by a number of factors, including the preceding academic curricula, other criteria influencing the admissions decision, and the principal purpose for testing. Attendees of this session will learn the types of aptitudes and knowledge that are assessed higher education admissions tests and will have the opportunity to gain insight into how careful and deliberate consideration of the desired test constructs can aid in identifying potential students with the greatest likelihood of success in medical school.Keywords: admissions, measuring success, selection, identify skills
Procedia PDF Downloads 48811073 Development of National Scale Hydropower Resource Assessment Scheme Using SWAT and Geospatial Techniques
Authors: Rowane May A. Fesalbon, Greyland C. Agno, Jodel L. Cuasay, Dindo A. Malonzo, Ma. Rosario Concepcion O. Ang
Abstract:
The Department of Energy of the Republic of the Philippines estimates that the country’s energy reserves for 2015 are dwindling– observed in the rotating power outages in several localities. To aid in the energy crisis, a national hydropower resource assessment scheme is developed. Hydropower is a resource that is derived from flowing water and difference in elevation. It is a renewable energy resource that is deemed abundant in the Philippines – being an archipelagic country that is rich in bodies of water and water resources. The objectives of this study is to develop a methodology for a national hydropower resource assessment using hydrologic modeling and geospatial techniques in order to generate resource maps for future reference and use of the government and other stakeholders. The methodology developed for this purpose is focused on two models – the implementation of the Soil and Water Assessment Tool (SWAT) for the river discharge and the use of geospatial techniques to analyze the topography and obtain the head, and generate the theoretical hydropower potential sites. The methodology is highly coupled with Geographic Information Systems to maximize the use of geodatabases and the spatial significance of the determined sites. The hydrologic model used in this workflow is SWAT integrated in the GIS software ArcGIS. The head is determined by a developed algorithm that utilizes a Synthetic Aperture Radar (SAR)-derived digital elevation model (DEM) which has a resolution of 10-meters. The initial results of the developed workflow indicate hydropower potential in the river reaches ranging from pico (less than 5 kW) to mini (1-3 MW) theoretical potential.Keywords: ArcSWAT, renewable energy, hydrologic model, hydropower, GIS
Procedia PDF Downloads 31311072 Assessment of Estrogenic Contamination and Potential Risk in Taihu Lake, China
Authors: Guanghua Lu, Zhenhua Yan
Abstract:
To investigate the estrogenic contamination and potential risk of Taihu Lake, eight active biomonitoring points in the northern section of Taihu Lake were set up and located in Wangyuhe River outlet (P1), Gonghu Bay (P2 and P3), Meiliang Bay (P4 and P5), Zhushan Bay (P6 and P7) and Lake Centre (P8). A suite of biomarkers in caged fish after in situ exposure for 28 days, coupled with six selected exogenous estrogens in water, were determined in May and December 2011. Six target estrogens, namely estrone (E1), 17b-estradiol (E2), ethinylestradiol (EE2), estriol (E3), diethylstilbestrol (DES) and bisphenol A (BPA), were quantified using UPLC/MS/MS. The concentrations of E1, E2, E3, EE2, DES and BPA ranged from ND to 3.61 ng/L, ND to 17.3 ng/L, ND to 1.65 ng/L, ND to 10.2 ng/L, ND to 34.6 ng/L, and 3.95 to 207 ng/L, respectively. BPA was detected at all sampling points at all test periods, E2 was detected at 95% of samples, E1 and EE2 was detected at 75% of samples, and E3 was detected only in December 2011 with quite low concentrations. Each individual estrogen concentration measured at each sampling point was multiplied by its relative potency to gain the estradiol equivalent (EEQ). The total EEQ values in all the monitoring points ranged from 5.69 to 17.8 ng/L in May 2011, and from 4.46 to 21.1 ng/L in December 2011. E2 and EE2 were thought to be the major causal agents responsible for the estrogenic activities. Serum vitellogenin and E2 levels, gonadal DNA damage, and gonadosomatic index were measured in the in situ exposed fish. An enhanced integrated biomarker response (EIBR) was calculated and used to evaluate potential feminization risk of fish in the polluted area of Taihu Lake. EIBR index showed good agreement with the observed total EEQ levels in water. Our results indicated that Gong bay and the lake center had a low estrogenic risk, whereas Wangyuhe River, Meiliang Bay, and Zhushan Bay might present a higher risk to fish.Keywords: active biomonitoring, estrogen, feminization risk, Taihu Lake
Procedia PDF Downloads 27711071 Open Source Software in Higher Education: Oman SQU Case Study
Authors: Amal S. Al-Badi, Ali H. Al-Badi
Abstract:
Many organizations are opting to adopt Open Source Software (OSS) as it is the current trend to rely on each other rather than on companies (Software vendors). It is a clear shift from organizations to individuals, the concept being to rely on collective participation rather than companies/vendors. The main objectives of this research are 1) to identify the current level of OSS usage in Sultan Qaboos University; 2) to identify the potential benefits of using OSS in educational institutes; 3) to identify the OSS applications that are most likely to be used within an educational institute; 4) to identify the existing and potential barriers to the successful adoption of OSS in education. To achieve these objectives a two-stage research method was conducted. First a rigorous literature review of previously published material was performed (interpretive/descriptive approach), and then a set of interviews were conducted with the IT professionals at Sultan Qaboos University in Oman in order to explore the extent and nature of their usage of OSS.Keywords: open source software, social software, e-learning 2.0, Web 2.0, connectivism, personal learning environment (PLE), OpenCourseWare
Procedia PDF Downloads 30511070 Moringa olifera Curate The Toxic Potential of CuO Nanoparticles in Oreochromis mossambicus
Authors: Farhat Jabeen, Muhammad Asad
Abstract:
The study assessed the curative potential of Moringa olifera seeds against copper oxide nanoparticles induced toxicity in Oreochromis mossambicus. In order to investigate the curative potential of M. olifera seeds, firstly we examine its chemical composition, secondary metabolites, and bioactive compounds including hydroxyl-cinnamic acids, flavanols and hydroxybenzoic acids through standard methods and high performance liquid chromatography. In current study, the potential sub-lethal toxic dose of CuO-NPs (0.12 mg/l) was investigated through pilot experiment and three non-lethal doses (low=32, medium=48 and high=96 mg/l) of M. olifera were selected on the basis of its LC50 value for O. mossambicus. The experimental fish, O. mossambicus (n=100 of approximately 20 g each) were procured from Manawan Fisheries Complex, Lahore, and acclimatized for two weeks in glass aquaria. Experiment was conducted in accordance with the guidelines of Institutional Animal Ethics Committee, Government College University Faisalabad, Pakistan. During acclimatization and experimental period, fish received the commercial fish feed at 2.5% body weight daily. In order to assess the curative effect of M. olifera against CuO NPs induced toxicity, O. mossambicus were randomly divided into five groups and were designated as control (C) without any treatment, positive control (G*) exposed to potential toxic dose of CuO-NPs at 0.12 mg/l, and three treated groups namely G1, G2, and G3 co-treated with 0.12 mg/l of CuO-NPs plus different doses of M. olifera seed extract at 32, 48, and 96 mg/l, respectively for 56 days. Fish were exposed to waterborne CuO NPs and M. olifera seed extract. CuO-NPs treatment was ceased after 28 days but the doses of M. olifera were continued for 56 days. Blood was taken after 28 and 56 days through caudal venipuncture. Liver and intestine were taken for oxidative stress and histological studies after 56 days. In M. olifera seeds, moisture contents, crude protein, lipids, carbohydrates and ash were recorded as 3.8, 37.83, 32.52, 46.12, and 7.75%, respectively on dry weight basis. Total energy was recorded as 627.36 kcal/100g. Qualitative analysis of M. olifera seeds showed the presence of terpenoids, saponins, flavonoids, alkaloids and phenolics, while its quantitative analysis showed the considerable amount of total phenolics, flavonoids, saponins, and alkaloids as 134.75, 170.15, 1.57, and 0.4 µg/mg, respectively. Analysis of bioactive compounds in M. olifera seeds showed the presence of hydroxy-cinnamic acids (6.07 µg/ml), flavanols (71.72 µg/ml), and hydroxyl benzoic acids (97.82 µg/ml). The results showed that M. oliefera seed extract at 48 and 56 mg/l was able to cure against the toxic effects of CuO-NPs. The significant changes were observed in G* and G1 for sero-hepatic enzymes, anti-oxidants and histological profile. The investigations of this study showed that M. olifera is a good curative agent against potential induced toxicity of CuO-NPs in O. mossambicus. The curative effect of M. olifera is attributed to the presence of higher amount of secondary metabolites and bioactive compounds. This study suggested the use of M. olifera to curate different ailments in fish and other organisms.Keywords: CuO nanoparticles, curative, Moringa olifera, Oreochromis mossambicus
Procedia PDF Downloads 14411069 Phytoplankton Community Composition in Laguna de Terminos, Mexico, and Its Relationship to Environmental Variables
Authors: Enrique Nunez L., Maria Cortes L., Sandra Laffon L., Ana M. Cupul V.
Abstract:
The phytoplankton community composition was studied in a tropical coastal lagoon of Mexico and relationships with environmental variables were evaluated. Six sites inside the tropical Terminos Lagoon were sampled in order to determine abundances and ecological indexes for phytoplankton from May to December 2017. Water samples were also collected to determine the values of pigments, nutrients, and water solids. Results showed that the composition and abundance of the phytoplankton community were influenced by physicochemical factors, nutrients, water solids, and climate seasons. Sixty-six species were identified as potential HAB producers (44.29% from total). However, abundances were not related to the occurrence of HAB during the study. Multidimensional ANOVA indicated no significant differences between sites while some months revealed significant differences. The canonical analysis suggested that environmental variables explained 49% of community variation of potential phytoplankton species producers of HAB.Keywords: phytoplankton, environment, lagoon, biodiversity
Procedia PDF Downloads 13911068 Surface Modification of Polyethylene Terephthalate Substrates via Direct Fluorination to Promote the Ag+ Ions Adsorption
Authors: Kohei Yamamoto, Jae-Ho Kim, Susumu Yonezawa
Abstract:
The surface of polyethylene terephthalate (PET) was modified with fluorine gas at 25 ℃ and 100 Torr for one h. Moreover, the effect of ethanol washing on surface modification was investigated in this study. The surface roughness of the fluorinated and washed PET samples was approximately six times larger than that (0.6 nm) of the untreated thing. The results of Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed that the bonds such as -C=O and -C-Hx derived from raw PET decreased and were converted into fluorinated bonds such as -CFx after surface fluorination. Even after washing with ethanol, the fluorinated bonds stably existed on the surface. These fluorinated bonds showed higher electronegativity according to the zeta potential results. The negative surface charges were increased by washing the ethanol, and it caused to increase in the number of polar groups such as -CHF- and -C-Fx. The fluorinated and washed surface of PET could promote the adsorption of Ag+ ions in AgNO₃ solution because of the increased surface roughness and the negatively charged surface.Keywords: Ag+ ions adsorption, polyethylene terephthalate, surface fluorination, zeta potential
Procedia PDF Downloads 12111067 Formulation and Characterization of Antimicrobial Chewing Gum Delivery of Some Herbal Extracts for Treatment of Periodontal Diseases
Authors: Reenu Yadav, Vidhi Guha, Udit N. Soni, Jay Ram Patel
Abstract:
Chewing gums are mobile novel drug delivery systems, with a potential for administering drugs either for local action or for systemic absorption via the buccal route. An antimicrobial chewing gum delivery system of the methanolic extracts of Beatea monosperma (barks and twigs), Cordia obliqua (leaves and seeds) and Cuminun cyminum (seeds) against periodontal diseases caused by some oral pathogens, was designed and characterized on various parameters.The results of the study support the traditional application of the plants and suggest, plant extracts possess compounds with antimicrobial properties that can be used as potential antimicrobial agents and gums can be a good carrier of herbal extracts. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations chewing gums including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges.Keywords: periodontal diseases, herbal chewing gum, herbal extracts, novel drug delivery systems
Procedia PDF Downloads 39411066 Hydraulic Analysis of Irrigation Approach Channel Using HEC-RAS Model
Authors: Muluegziabher Semagne Mekonnen
Abstract:
This study was intended to show the irrigation water requirements and evaluation of canal hydraulics steady state conditions to improve on scheme performance of the Meki-Ziway irrigation project. The methodology used was the CROPWAT 8.0 model to estimate the irrigation water requirements of five major crops irrigated in the study area. The results showed that for the whole existing and potential irrigation development area of 2000 ha and 2599 ha, crop water requirements were 3,339,200 and 4,339,090.4 m³, respectively. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. In this study Hydraulic Analysis of Irrigation Canals Using HEC-RAS Model was conducted in Meki-Ziway Irrigation Scheme. The HEC-RAS model was tested in terms of error estimation and used to determine canal capacity potential.Keywords: HEC-RAS, irrigation, hydraulic. canal reach, capacity
Procedia PDF Downloads 6011065 Artificial Intelligence and the Next Generation Journalistic Practice: Prospects, Issues and Challenges
Authors: Shola Abidemi Olabode
Abstract:
The technological revolution over the years has impacted journalistic practice. As a matter of fact, journalistic practice has evolved alongside technologies of every generation transforming news and reporting, entertainment, and politics. Alongside these developments, the emergence of new kinds of risks and harms associated with generative AI has become rife with implications for media and journalism. Despite their numerous benefits for research and development, generative AI technologies like ChatGPT introduce new practical, ethical, and regulatory complexities in the practice of media and journalism. This paper presents a preliminary overview of the new kinds of challenges and issues for journalism and media practice in the era of generative AI, the implications for Nigeria, and invites a consideration of methods to mitigate the evolving complexity. It draws mainly on desk-based research underscoring the literature in both developed and developing non-western contexts as a contribution to knowledge.Keywords: AI, journalism, media, online harms
Procedia PDF Downloads 8011064 Exposure to Nature: An Underutilized Component of Student Mental Health
Authors: Jeremy Bekker, Guy Salazar
Abstract:
Introduction: Nature-exposure interventions on university campuses may serve as an effective addition to overburdened counseling and student support centers. Nature-exposure interventions can work as a preventative well-being enhancement measure on campuses, which can be used adjacently with existing health resources. Specifically, this paper analyzes how spending time in nature impacts psychological well-being, cognitive functioning, and physical health. The poster covers the core findings and recommendations of this paper, which has been previously published in the BYU undergraduate psychology journal Intuition. Research Goals and Method: The goal of this paper was to outline the potential benefits of nature exposure for students’ physical health, mental well-being, and academic success. Another objective of this paper was to outline potential research-based interventions that use campus green spaces to improve student outcomes. Given that the core objective of this paper was to identify and establish research-based nature exposure interventions that could be used on college campuses, a broad literature review focused on these areas. Specifically, the databases Scopus and PsycINFO were used to screen for research focused on psychological well-being, physical health, cognitive functioning, and nature exposure interventions. Outcomes: Nature exposure has been shown to help increase positive affect, life satisfaction, happiness, coping ability and subjective well-being. Further, nature exposure has been shown to decrease negative affect, lower mental distress, reduce cognitive load, and decrease negative psychological symptoms. Finally, nature exposure has been shown to lead to better physical health. Findings and Recommendations: Potential interventions include adding green space to university buildings and grounds, dedicating already natural environments as nature restoration areas, and providing means for outdoor excursions. Potential limitations and suggested areas for future research are also addressed. Many campuses already contain green spaces, defined as any part of an environment that is predominately made of natural elements, and these green spaces comprise an untapped resource that is relatively cheap and simple.Keywords: nature exposure, preventative care, undergraduate mental health, well-being intervention
Procedia PDF Downloads 21511063 The Impact of Social Media on Urban E-planning: A Review of the Literature
Authors: Farnoosh Faal
Abstract:
The rapid growth of social media has brought significant changes to the field of urban e-planning. This study aims to review the existing literature on the impact of social media on urban e-planning processes. The study begins with a discussion of the evolution of social media and its role in urban e-planning. The review covers research on the use of social media for public engagement, citizen participation, stakeholder communication, decision-making, and monitoring and evaluation of urban e-planning initiatives. The findings suggest that social media has the potential to enhance public participation and improve decision-making in urban e-planning processes. Social media platforms such as Facebook, Twitter, and Instagram can provide a platform for citizens to engage with planners and policymakers, express their opinions, and provide feedback on planning proposals. Social media can also facilitate the collection and analysis of data, including real-time data, to inform urban e-planning decision-making. However, the literature also highlights some challenges associated with the use of social media in urban e-planning. These challenges include issues related to the representativeness of social media users, the quality of information obtained from social media, the potential for bias and manipulation of social media content, and the need for effective data management and analysis. The study concludes with recommendations for future research on the use of social media in urban e-planning. The recommendations include the need for further research on the impact of social media on equity and social justice in planning processes, the need for more research on effective strategies for engaging underrepresented groups, and the development of guidelines for the use of social media in urban e-planning processes. Overall, the study suggests that social media has the potential to transform urban e-planning processes but that careful consideration of the opportunities and challenges associated with its use is essential for effective and ethical planning practice.Keywords: social media, Urban e-planning, public participation, citizen engagement
Procedia PDF Downloads 23611062 The Potential of Sown Pastures as Feedstock for Biofuels in Brazil
Authors: Danilo G. De Quadros
Abstract:
Biofuels are a priority in the renewable energy agenda. The utilization of tropical grasses to ethanol production is a real opportunity to Brazil reaches the world’s leadership in biofuels production because there are 100 million hectares of sown pastures, which represent 20% of all land and 80% of agricultural areas. Basically, nowadays tropical grasses are used to raise livestock. The results obtained in this research could bring tremendous advance not only to national technology and economy but also to improve social and environmental aspects. Thus, the objective of this work was to estimate, through well-established international models, the potential of biofuels production using sown tropical pastures as feedstocks and to compare the results with sugarcane ethanol, considering state-of-art of conversion technology, advantages and limitations factors. There were used data from national and international literature about forage yield and biochemical conversion yield. Some scenarios were studied to evaluate potential advantages and limitations for cellulosic ethanol production, since non-food feedstock appeal to conversion strategies, passing through harvest, densification, logistics, environmental impacts (carbon and water cycles, nutrient recycling and biodiversity), and social aspects. If Brazil used only 1% of sown pastures to ethanol production by biochemical pathway, with average dry matter yield of 15 metric tons per hectare per year (there are results of 40 tons), resulted annually in 721 billion liters, that represents 10 times more than sugarcane ethanol projected by the Government in 2030. However, more research is necessary to take the results to commercial scale with competitive costs, considering many strategies and methods applied in ethanol production using cellulosic feedstock.Keywords: biofuels, biochemical pathway, cellulosic ethanol, sustainability
Procedia PDF Downloads 26311061 Quantifying the Rapid Urbanization Impact on Potential Stormwater Runoff of Dhaka City, Bangladesh
Authors: Md. Kumruzzaman, Anutosh Das, Md. Mosharraf Hossain
Abstract:
Historically, rapid urban growth activities are considered one of the main culprits behind urban floods or waterlogging. The increased unplanned urbanization of many areas of Dhaka has resulted in waterlogging, urban floods, and increasing groundwater depth. To determine potential groundwater recharge from precipitation, the study is being conducted to examine the changes in land use/land cover (LULC) and urban runoff extent based on the NRCS-CN from 2005–2021. Four kinds of land use are used to examine the LULC change: built-up, bare land, vegetation, and water body. These categories are used for the years 2005, 2010, 2015, and 2021. The built-up area is growing at a relatively fast rate: 7.43%, 17.4%, and 5.21%, respectively, between the years 2005 and 2010, 2010 and 2015, and 2015 and 2021. As the amount of impervious surface rose in Dhaka city, stormwater discharge increased from 2005 to 2021. In 2005, 2010, 2015, and 2021, heavy stormwater runoff regions made up around 24.873%, 32.616%, 49.118%, and 55.986% of the entire Dhaka city. Stormwater runoff accounted for around 53.738%, 55.092%, 63.472%, and 67.061% of the total rainfall in 2005, 2010, 2015, and 2021, respectively. Between 2005 and 2021, a significant portion of the natural land cover was altered because of the expanding impervious surface, which also harmed the natural drainage system. Due to careless growth, the potential for stormwater runoff and groundwater recharge in Dhaka city worsens every year. Concerning this situation, a sustainable urban drainage system (SUDS) can be the best possible solution for minimizing the stormwater runoff and groundwater recharge problem.Keywords: LULC, impervious surface, stormwater runoff, groundwater recharge, SUDS
Procedia PDF Downloads 8011060 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 12711059 Human Interaction Skills and Employability in Courses with Internships: Report of a Decade of Success in Information Technology
Authors: Filomena Lopes, Miguel Magalhaes, Carla Santos Pereira, Natercia Durao, Cristina Costa-Lobo
Abstract:
The option to implement curricular internships with undergraduate students is a pedagogical option with some good results perceived by academic staff, employers, and among graduates in general and IT (Information Technology) in particular. Knowing that this type of exercise has never been so relevant, as one tries to give meaning to the future in a landscape of rapid and deep changes. We have as an example the potential disruptive impact on the jobs of advances in robotics, artificial intelligence and 3-D printing, which is a focus of fierce debate. It is in this context that more and more students and employers engage in the pursuit of career-promoting responses and business development, making their investment decisions of training and hiring. Three decades of experience and research in computer science degree and in information systems technologies degree at the Portucalense University, Portuguese private university, has provided strong evidence of its advantages. The Human Interaction Skills development as well as the attractiveness of such experiences for students are topics assumed as core in the Ccnception and management of the activities implemented in these study cycles. The objective of this paper is to gather evidence of the Human Interaction Skills explained and valued within the curriculum internship experiences of IT students employability. Data collection was based on the application of questionnaire to intern counselors and to students who have completed internships in these undergraduate courses in the last decade. The trainee supervisor, responsible for monitoring the performance of IT students in the evolution of traineeship activities, evaluates the following Human Interaction Skills: Motivation and interest in the activities developed, interpersonal relationship, cooperation in company activities, assiduity, ease of knowledge apprehension, Compliance with norms, insertion in the work environment, productivity, initiative, ability to take responsibility, creativity in proposing solutions, and self-confidence. The results show that these undergraduate courses promote the development of Human Interaction Skills and that these students, once they finish their degree, are able to initiate remunerated work functions, mainly by invitation of the institutions in which they perform curricular internships. Findings obtained from the present study contribute to widen the analysis of its effectiveness in terms of future research and actions in regard to the transition from Higher Education pathways to the Labour Market.Keywords: human interaction skills, employability, internships, information technology, higher education
Procedia PDF Downloads 28911058 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination
Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq
Abstract:
Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing
Procedia PDF Downloads 9011057 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage
Authors: L. Ramirez, E. Guillén, J. Sánchez
Abstract:
Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.Keywords: analytics, telemedicine, internet of things, cloud computing
Procedia PDF Downloads 32511056 Pharmacological Activities and Potential Uses of Cyperus Rotundus: A Review
Authors: Arslan Masood Pirzada, Muhammad Naeem, Hafiz Haider Ali, Muhammad Latif, Aown Sammar Raza, Asad Hussain Bukhari, Muhammad Saqib, Muhammad Ijaz
Abstract:
Cyperus rotundus (Cyperaceae), a medicinal herb, is being traditionally used as a home remedy for the treatment of various clinical conditions like diarrhea, diabetic, pyretic, inflammation, malaria, and for treating stomach and bowel disorders. Its current status is one of the most widespread, troublesome, and economically damaging agronomic weeds, growing wildly in various tropical and sub-tropical regions of the world. Tuber and rhizomes of Cyperus rotundus possess a higher concentration of active ingredients in the form of essential oils, phenolic acids, ascorbic acids and flavonoids, responsible for its remedial properties. Exploitation of any medicinal plant application depends on the crucial and comprehensive information about the therapeutic potential of a plant. Researchers have evaluated and characterized the significance of Cyperus rotundus as an anti-androgenic, anti-bacterial, anti-cancerous, anti-convulsant, anti-diabetic, anti-diarrheal, anti-genotoxic, anti-inflammatory, anti-lipidemic, anti-malarial, anti-mutagenic, anti-obesity, anti-oxidant, anti-uropathogenic, hepato-, cardio-, neuroprotective, and nootropic agent. This paper comprises a broad review to summarize the current state of knowledge about chemical constituents, potential economic uses and therapeutic aspects of Cyperus rotundus that will aid in the development of bioethanol and modern herbal medicine through latest technologies that will promote the ability of this plant in the cure of many clinical disorders.Keywords: purple nutsedge, chemical composition, economic uses, therapeutic values, future directions
Procedia PDF Downloads 51411055 Unlocking Justice: Exploring the Power and Challenges of DNA Analysis in the Criminal Justice System
Authors: Sandhra M. Pillai
Abstract:
This article examines the relevance, difficulties, and potential applications of DNA analysis in the criminal justice system. A potent tool for connecting suspects to crime sites, clearing the innocent of wrongdoing, and resolving cold cases, DNA analysis has transformed forensic investigations. The scientific foundations of DNA analysis, including DNA extraction, sequencing, and statistical analysis, are covered in the article. To guarantee accurate and trustworthy findings, it also discusses the significance of quality assurance procedures, chain of custody, and DNA sample storage. DNA analysis has significantly advanced science, but it also brings up substantial moral and legal issues. To safeguard individual rights and uphold public confidence, privacy concerns, possible discrimination, and abuse of DNA information must be properly addressed. The paper also emphasises the effects of the criminal justice system on people and communities while highlighting the necessity of equity, openness, and fair access to DNA testing. The essay describes the obstacles and future directions for DNA analysis. It looks at cutting-edge technology like next-generation sequencing, which promises to make DNA analysis quicker and more affordable. To secure the appropriate and informed use of DNA evidence, it also emphasises the significance of multidisciplinary collaboration among scientists, law enforcement organisations, legal experts, and policymakers. In conclusion, DNA analysis has enormous potential for improving the course of criminal justice. We can exploit the potential of DNA technology while respecting the ideals of justice, fairness, and individual rights by navigating the ethical, legal, and societal issues and encouraging discussion and collaboration.Keywords: DNA analysis, DNA evidence, reliability, validity, legal frame, admissibility, ethical considerations, impact, future direction, challenges
Procedia PDF Downloads 6411054 Academic Staff Perspective of Adoption of Augmented Reality in Teaching Practice to Support Students Learning Remotely in a Crisis Time in Higher
Authors: Ebtisam Alqahtani
Abstract:
The purpose of this study is to investigate academic staff perspectives on using Augmented Reality in teaching practice to support students learning remotely during the COVID pandemic. the study adopted the DTPB theoretical model to guide the identification of key potential factors that could motivate academic staff to use or not use AR in teaching practices. A mixing method design was adopted for a better understanding of the study problem. A survey was completed by 851 academic staff, and this was followed by interviews with 20 academic staff. Statistical analyses were used to assess the survey data, and thematic analysis was used to assess the interview data. The study finding indicates that 75% of academic staff were aware of AR as a pedagogical tool, and they agreed on the potential benefits of AR in teaching and learning practices. However, 36% of academic staff use it in teaching and learning practice, and most of them agree with most of the potential barriers to adopting AR in educational environments. In addition, the study results indicate that 91% of them are planning to use it in the future. The most important factors that motivated them to use it in the future are the COVID pandemic factor, hedonic motivation factor, and academic staff attitude factor. The perceptions of academic staff differed according to the universities they attended, the faculties they worked in, and their gender. This study offers further empirical support for the DTPB model, as well as recommendations to help higher education implement technology in its educational environment based on the findings of the study. It is unprecedented the study the necessity of the use of AR technologies in the time of Covid-19. Therefore, the contribution is both theoretical and practiceKeywords: higher education, academic staff, AR technology as pedological tools, teaching and learning practice, benefits of AR, barriers of adopting AR, and motivating factors to adopt AR
Procedia PDF Downloads 12811053 Evaluation of Radio Protective Potential of Indian Bamboo Leaves
Authors: Mansi Patel, Priti Mehta
Abstract:
Background: Ionizing radiations have detrimental effects on humans, and the growing technological encroachment has increased human exposure to it enormously. So, the safety issues have emphasized researchers to develop radioprotector from natural resources having minimal toxicity. A substance having anti-inflammatory, antioxidant, and immunomodulatory activity can be a potential candidate for radioprotection. One such plant with immense potential i.e. Bamboo was selected for the present study. Purpose: The study aims to evaluate the potential of Indian bamboo leaves for protection against the clastogenic effect of gamma radiation. Methods: The protective effect of bamboo leaf extract against gamma radiation-induced genetic damage in human peripheral blood lymphocytes (HPBLs) was evaluated in vitro using Cytokinesis blocked micronuclei assay (CBMN). The blood samples were pretreated with varying concentration of extract 30 min before the radiation exposure (4Gy & 6Gy). The reduction in the frequency of micronuclei was observed for the irradiated and control groups. The effect of various concentration of bamboo leaf extract (400,600,800 mg/kg) on the development of radiation induced sickness and altered mortality in mice exposed to 8 Gy of whole-body gamma radiation was studied. The developed symptoms were clinically scored by multiple endpoints for 30 days. Results: Treatment of HPBLs with varying concentration of extract before exposure to a different dose of γ- radiation resulted in significant (P < 0.0001) decline of radiation induced micronuclei. It showed dose dependent and concentration driven activity. The maximum protection ~ 70% was achieved at nine µg/ml concentration. Extract treated whole body irradiated mice showed 50%, 83.3% and 100% survival for 400, 600, and 800mg/kg with 1.05, 0.43 and 0 clinical score respectively when compared to Irradiated mice having 6.03 clinical score and 0% survival. Conclusion: Our findings indicate bamboo leaf extract reduced the radiation induced cytogenetic damage. It has also increased the survival ratio and reduced the radiation induced sickness and mortality when exposed to a lethal dose of gamma radiation.Keywords: bamboo leaf extract, Cytokinesis blocked micronuclei (CBMN) assay, ionizing radiation, radio protector
Procedia PDF Downloads 14511052 Potential of Castor Bean (Ricinus Communis L.) for Phytoremediation of Soils Contaminated with Heavy Metals
Authors: Violina Angelova, Mariana Perifanova-Nemska, Krasimir Ivanov
Abstract:
The aim of this research was to investigate the potential for the use of Ricinus communis L. (castor oil plant) to remediate metal-polluted sites. This study was performed in industrially polluted soils containing high concentrations of Zn, Pb and Cd, situated at different distances (0.3, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness, the castor oil plants were gathered and the contents of heavy metals in their different parts – roots, stems, leaves and seeds, were determined after dry ashing. Physico-chemical characterization, total, DTPA extractable and water-soluble metals in rhizospheric soil samples were carried. Translocation factors (TFs) were also determined. The quantitative measurements were carried out with ICP. A soxhlet extraction was used for the extraction of the oil, using hexane as solvent. The oil was recovered by simple distillation of the solvent. The residual oil obtained was investigated for physicochemical parameters and fatty acid composition. Bioaccumulation factor and translocation factor values (BAF and TF > 1) were greater than one suggesting efficient accumulation in the shoot. The castor oil plant may be preferred as a good candidate for phytoremediation (phytoextraction). These results indicate that R. communis has good potential for removing Pb from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for Pb. The concentrations of heavy metals in the oil were low as seed coats accumulated the highest concentrations of Cd and Pb. In addition, the result of the fatty acid composition analysis confirms the oil to be of good quality and can be used for industrial purposes such as cosmetics, soaps and paint.Keywords: castor bean, heavy metals, phytoremediation, polluted soils
Procedia PDF Downloads 24111051 Evaluation of the Ability of COVID-19 Infected Sera to Induce Netosis Using an Ex-Vivo NETosis Monitoring Tool
Authors: Constant Gillot, Pauline Michaux, Julien Favresse, Jean-Michel Dogné, Jonathan Douxfils
Abstract:
Introduction: NETosis has emerged as a crucial yet paradoxical factor in severe COVID-19 cases. While neutrophil extracellular traps (NETs) help contain and eliminate viral particles, excessive NET formation can lead to hyperinflammation, exacerbating tissue damage and acute respiratory distress syndrome (ARDS). Aims: This study evaluates the relationship between COVID-19-infected sera and NETosis using an ex-vivo model. Methods: Sera from 8 post-admission COVID-19 patients, after receiving corticoid therapy, were used to induce NETosis in neutrophils from a healthy donor. NET formation was tracked using fluorescent markers for DNA and neutrophil elastase (NE) every 2 minutes for 8 hours. The results were expressed as a percentage of DNA/NE released over time. Key metrics, including T50 (time to 50% release) and AUC (area under the curve), representing total NETosis potential), were calculated. A 27-cytokine screening kit was used to assess the cytokine composition of the sera. Results: COVID-19 sera induced NETosis based on their cytokine profile. The AUC of NE and DNA release decreased with time following corticoid therapy, showing a significant reduction in 6 of the 8 patients (p<0.05). T50 also decreased in parallel with AUC for both markers. Cytokines concentration decrease with time after therapy administration. There is correlation between 14 cytokines concentration and NE release. Conclusion: This ex-vivo model successfully demonstrated the induction of NETosis by COVID-19 sera using two markers. A clear decrease in NETosis potential was observed over time with glucocorticoid therapy. This model can be a valuable tool for monitoring NETosis and investigating potential NETosis inducers and inhibitors.Keywords: NETosis, COVID-19, cytokine storm, biomarkers
Procedia PDF Downloads 2011050 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics
Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova
Abstract:
We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.Keywords: cybersecurity, epidemiology, cyber epidemiology, malware
Procedia PDF Downloads 10811049 In Exploring Local Community Empowerment and Participation in Blue Tourism Activities
Authors: Philasande Runeli, Lynn Jonas
Abstract:
Empowerment suggests participation is working collaboratively towards shared objectives, obtaining resources and critically analysing one’s social and political differences are all necessary steps in the empowering process. The aim of leadership empowerment is to give a team the resources and encouragement they need to work more productively together. This study explores potential ways to increase local empowerment and participation in blue tourism activities in an urban coastal context in South Africa. Blue tourism, which refers to the application of sustainability practices to tourism activities in coastal and marine settings, has the potential to significantly improve socioeconomic conditions in coastal communities. However, people's engagement in these activities remain restricted. The study uses a constructivist research paradigm and employs a qualitative method, conducting semi-structured interviews with community members from three different communities gaining in-depth perspectives from them. The study's goal is to identify impediments and potential for community participation in blue tourism, as well as offering practical solutions for promoting long-term and inclusive participation. Initial key findings highlight critical barriers to participation, emphasising the importance of skills development, policy alignment with local needs, and public-private partnerships as key components of community empowerment. This study offers policymakers and stakeholders recommendations for promoting inclusive blue tourism initiatives. The recommended initiatives emphasise the significance of skills development, infrastructure investment, and sustainable tourism models in ensuring economic empowerment and environmental conservation in urban coastal communities in developing states.Keywords: blue tourism, community empowerment and participation, sustainable tourism models, inclusive participation
Procedia PDF Downloads 2011048 Electrochemistry and Performance of Bryophylum pinnatum Leaf (BPL) Electrochemical Cell
Authors: M. A. Mamun, M. I. Khan, M. H. Sarker, K. A. Khan, M. Shajahan
Abstract:
The study was carried out to investigate on an innovative invention, Pathor Kuchi Leaf (PKL) cell, which is fueled with PKL sap of widely available plant called Bryophyllum pinnatum as an energy source for use in PKL battery to generate electricity. This battery, a primary source of electricity, has several order of magnitude longer shelf-lives than the traditional Galvanic cell battery, is still under investigation. In this regard, we have conducted some experiments using various instruments including Atomic Absorption Spectrophotometer (AAS), Ultra-Violet Visible spectrophotometer (UV-Vis), pH meter, Ampere-Volt-Ohm Meter (AVO Meter), etc. The AAS, UV-Vis, and pH-metric analysis data provided that the potential and current were produced as the Zn electrode itself acts as reductant while Cu2+ and H+ ions are behaving as the oxidant. The significant influence of secondary salt on current and potential leads to the dissociation of weak organic acids in PKL juice, and subsequent enrichment to the reactant ions by the secondary salt effects. However, the liquid junction potential was not as great as minimized with the opposite transference of organic acid anions and H+ ions as their dissimilar ionic mobilities. Moreover, the large value of the equilibrium constant (K) implies the big change in Gibbs free energy (∆G), the more electromotive force works in electron transfer during the forward electrochemical reaction which coincides with the fast reduction of the weight of zinc plate, revealed the additional electrical work in the presence of PKL sap. This easily fabricated high-performance PKL battery can show an excellent promise during the off-peak across the countryside.Keywords: Atomic Absorption Spectrophotometer (AAS), Bryophylum Pinnatum Leaf (BPL), electricity, electrochemistry, organic acids
Procedia PDF Downloads 32511047 The Impact of Formulate and Implementation Strategy for an Organization to Better Financial Consequences in Malaysian Private Hospital
Authors: Naser Zouri
Abstract:
Purpose: Measures of formulate and implementation strategy shows amount of product rate-market based strategic management category such as courtesy, competence, and compliance to reach the high loyalty of financial ecosystem. Despite, it solves the market place error intention to fair trade organization. Finding: Finding shows the ability of executives’ level of management to motivate and better decision-making to solve the treatments in business organization. However, it made ideal level of each interposition policy for a hypothetical household. Methodology/design. Style of questionnaire about the data collection was selected to survey of both pilot test and real research. Also, divide of questionnaire and using of Free Scale Semiconductor`s between the finance employee was famous of this instrument. Respondent`s nominated basic on non-probability sampling such as convenience sampling to answer the questionnaire. The way of realization costs to performed the questionnaire divide among the respondent`s approximately was suitable as a spend the expenditure to reach the answer but very difficult to collect data from hospital. However, items of research survey was formed of implement strategy, environment, supply chain, employee from impact of implementation strategy on reach to better financial consequences and also formulate strategy, comprehensiveness strategic design, organization performance from impression on formulate strategy and financial consequences. Practical Implication: Dynamic capability approach of formulate and implement strategy focuses on the firm-specific processes through which firms integrate, build, or reconfigure resources valuable for making a theoretical contribution. Originality/ value of research: Going beyond the current discussion, we show that case studies have the potential to extend and refine theory. We present new light on how dynamic capabilities can benefit from case study research by discovering the qualifications that shape the development of capabilities and determining the boundary conditions of the dynamic capabilities approach. Limitation of the study :Present study also relies on survey of methodology for data collection and the response perhaps connection by financial employee was difficult to responds the question because of limitation work place.Keywords: financial ecosystem, loyalty, Malaysian market error, dynamic capability approach, rate-market, optimization intelligence strategy, courtesy, competence, compliance
Procedia PDF Downloads 30411046 Kinetics of Growth Rate of Microalga: The Effect of Carbon Dioxide Concentration
Authors: Retno Ambarwati Sigit Lestari
Abstract:
Microalga is one of the organisms that can be considered ideal and potential for raw material of bioenergy production, because the content of lipids in microalga is relatively high. Microalga is an aquatic organism that produces complex organic compounds from inorganic molecules using carbon dioxide as a carbon source, and sunlight for energy supply. Microalga-CO₂ fixation has potential advantages over other carbon captures and storage approaches, such as wide distribution, high photosynthetic rate, good environmental adaptability, and ease of operation. The rates of growth and CO₂ capture of microalga are influenced by CO₂ concentration and light intensity. This study quantitatively investigates the effects of CO₂ concentration on the rates of growth and CO₂ capture of a type of microalga, cultivated in bioreactors. The works include laboratory experiments as well as mathematical modelling. The mathematical models were solved numerically and the accuracy of the model was tested by the experimental data. It turned out that the mathematical model proposed can well quantitatively describe the growth and CO₂ capture of microalga, in which the effects of CO₂ concentration can be observed.Keywords: Microalga, CO2 concentration, photobioreactor, mathematical model
Procedia PDF Downloads 125