Search results for: measurement accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6127

Search results for: measurement accuracy

4447 UKIYO-E: User Knowledge Improvement Based on Youth Oriented Entertainment, Art Appreciation Support by Interacting with Picture

Authors: Haruya Tamaki, Tsugunosuke Sakai, Ryuichi Yoshida, Ryohei Egusa, Shigenori Inagaki, Etsuji Yamaguchi, Fusako Kusunoki, Miki Namatame, Masanori Sugimoto, Hiroshi Mizoguchi

Abstract:

Art appreciation is important as part of children education. Art appreciation can enrich sensibility and creativity. To enrich sensibility and creativity, the children have to learning knowledge of picture such as social and historical backgrounds and author intention. High learning effect can acquire by actively learning. In short, it is important that encourage learning of the knowledge about pictures actively. It is necessary that children feel like interest to encourage learning of the knowledge about pictures actively. In a general art museum, comments on pictures are done through writing. Thus, we expect that this method cannot arouse the interest of the children in pictures, because children feel like boring. In brief, learning about the picture information is difficult. Therefore, we are developing an art-appreciation support system that will encourage learning of the knowledge about pictures actively by children feel like interest. This system uses that Interacting with Pictures to learning of the knowledge about pictures. To Interacting with Pictures, children have to utterance by themselves. We expect that will encourage learning of the knowledge about pictures actively by Interacting with Pictures. To more actively learning, children can choose who talking with by information that location and movement of the children. This system must be able to acquire real-time knowledge of the location, movement, and voice of the children. We utilize the Microsoft’s Kinect v2 sensor and its library, namely, Kinect for Windows SDK and Speech Platform SDK v11 for this purpose. By using these sensor and library, we can determine the location, movement, and voice of the children. As the first step of this system, we developed ukiyo-e game that use ukiyo-e to appreciation object. Ukiyo-e is a traditional Japanese graphic art that has influenced the western society. Therefore, we believe that the ukiyo-e game will be appreciated. In this study, we applied talking to pictures to learn information about the pictures because we believe that learning information about the pictures by talking to the pictures is more interesting than commenting on the pictures using only texts. However, we cannot confirm if talking to the pictures is more interesting than commenting using texts only. Thus, we evaluated through EDA measurement whether the user develops an interest in the pictures while talking to them using voice recognition or by commenting on the pictures using texts only. Hence, we evaluated that children have interest to picture while talking to them using voice recognition through EDA measurement. In addition, we quantitatively evaluate that enjoyed this game or not and learning information about the pictures for primary schoolchildren. In this paper, we summarize these two evaluation results.

Keywords: actively learning, art appreciation, EDA, Kinect V2

Procedia PDF Downloads 287
4446 Sustainable Organization for Sustainable Strategy: An Empirical Evidence

Authors: Lucia Varra, Marzia Timolo

Abstract:

The interest of scholars towards corporate sustainability has strengthened in recent years in parallel with the growing need to undertake paths of cultural and organizational change, as a way for greater competitiveness and stakeholders’ satisfaction. In fact, studies on the business sustainability, while on the one hand have integrated the three dimensions of sustainability that existed for some time in the economic approaches (economic, environmental and social dimensions), on the other hand did not give rise to an organic construct that puts together the aspects of strategic management with corporate social responsibility and even less with the organizational issues. Therefore some important questions remain open: Which organizational structure and which operational mechanisms are coherent or propitious to a sustainability strategy? Existing studies appear to be fragmented, although some aspects have shared importance: knowledge management, human resource, management, leadership, innovation, etc. The construction of a model of sustainable organization that supports the sustainability strategy no longer seems to be postponed, as is its connection with the main practices of measuring corporate social responsibility performance. The paper aims to identify the organizational characteristics of a sustainable corporate. To this end, from a theoretical point of view the work examines the main existing literary contributions and, from a practical point of view, it presents a business case referring to a service organization that for years has undertaken the sustainability strategy. This paper is divided into two parts: the first part concerns a review of the main articles on the strategic management topic and the main organizational issues raised by the literature, such as knowledge management, leadership, innovation, etc.; later, a modeling of the main variables examined by scholars and an integration of these with the international measurement standards of CSR is proposed. In the second part, using the methodology of the case study company, the hypotheses and the structure of the proposed model that aims to integrate the strategic issues with the organizational aspects and measurement of sustainability performance, are applied to an Italian company, which has some organizational and human resource management interventions are in place to align strategic decisions with the structure and operating mechanisms of the structure. The case presented supports the hypotheses of the model.

Keywords: CSR, strategic management, sustainable leadership, sustainable human resource management, sustainable organization

Procedia PDF Downloads 103
4445 Use of Nanoclay in Various Modified Polyolefins

Authors: Michael Tupý, Alice Tesaříková-Svobodová, Dagmar Měřínská, Vít Petránek

Abstract:

Polyethylene (PE), Polypropylene (PP), Polyethylene (vinyl acetate) (EVA) and Surlyn (modif-PE) nano composite samples were prepared with montmorillonite fillers Cloisite 93A and Dellite 67G. The amount of modified Na+ montmorillonite (MMT) was fixed to 5 % (w/w). For the compounding of polymer matrix and chosen nano fillers twin-screw kneader was used. The level of MMT intercalation or exfoliation in the nano composite systems was studied by transmission electron microscopy (TEM) observations. The properties of samples were evaluated by dynamical mechanical analysis (E* modulus at 30 °C) and by the measurement of tensile properties (stress and strain at break).

Keywords: polyethylene, polypropylene, polyethylene(vinyl acetate), clay, nanocomposite, montmorillonite

Procedia PDF Downloads 537
4444 The Interaction between Hydrogen and Surface Stress in Stainless Steel

Authors: Osamu Takakuwa, Yuta Mano, Hitoshi Soyama

Abstract:

This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.

Keywords: hydrogen embrittlement, residual stress, surface finishing, stainless steel

Procedia PDF Downloads 381
4443 Strategies for Synchronizing Chocolate Conching Data Using Dynamic Time Warping

Authors: Fernanda A. P. Peres, Thiago N. Peres, Flavio S. Fogliatto, Michel J. Anzanello

Abstract:

Batch processes are widely used in food industry and have an important role in the production of high added value products, such as chocolate. Process performance is usually described by variables that are monitored as the batch progresses. Data arising from these processes are likely to display a strong correlation-autocorrelation structure, and are usually monitored using control charts based on multiway principal components analysis (MPCA). Process control of a new batch is carried out comparing the trajectories of its relevant process variables with those in a reference set of batches that yielded products within specifications; it is clear that proper determination of the reference set is key for the success of a correct signalization of non-conforming batches in such quality control schemes. In chocolate manufacturing, misclassifications of non-conforming batches in the conching phase may lead to significant financial losses. In such context, the accuracy of process control grows in relevance. In addition to that, the main assumption in MPCA-based monitoring strategies is that all batches are synchronized in duration, both the new batch being monitored and those in the reference set. Such assumption is often not satisfied in chocolate manufacturing process. As a consequence, traditional techniques as MPCA-based charts are not suitable for process control and monitoring. To address that issue, the objective of this work is to compare the performance of three dynamic time warping (DTW) methods in the alignment and synchronization of chocolate conching process variables’ trajectories, aimed at properly determining the reference distribution for multivariate statistical process control. The power of classification of batches in two categories (conforming and non-conforming) was evaluated using the k-nearest neighbor (KNN) algorithm. Real data from a milk chocolate conching process was collected and the following variables were monitored over time: frequency of soybean lecithin dosage, rotation speed of the shovels, current of the main motor of the conche, and chocolate temperature. A set of 62 batches with durations between 495 and 1,170 minutes was considered; 53% of the batches were known to be conforming based on lab test results and experts’ evaluations. Results showed that all three DTW methods tested were able to align and synchronize the conching dataset. However, synchronized datasets obtained from these methods performed differently when inputted in the KNN classification algorithm. Kassidas, MacGregor and Taylor’s (named KMT) method was deemed the best DTW method for aligning and synchronizing a milk chocolate conching dataset, presenting 93.7% accuracy, 97.2% sensitivity and 90.3% specificity in batch classification, being considered the best option to determine the reference set for the milk chocolate dataset. Such method was recommended due to the lowest number of iterations required to achieve convergence and highest average accuracy in the testing portion using the KNN classification technique.

Keywords: batch process monitoring, chocolate conching, dynamic time warping, reference set distribution, variable duration

Procedia PDF Downloads 168
4442 Mapping Potential Soil Salinization Using Rule Based Object Oriented Image Analysis

Authors: Zermina Q., Wasif Y., Naeem S., Urooj S., Sajid R. A.

Abstract:

Land degradation, a leading environemtnal problem and a decrease in the quality of land has become a major global issue, caused by human activities. By land degradation, more than half of the world’s drylands are affected. The worldwide scope of main saline soils is approximately 955 M ha, whereas inferior salinization affected approximately 77 M ha. In irrigated areas, a total of 58% of these soils is found. As most of the vegetation types requires fertile soil for their growth and quality production, salinity causes serious problem to the production of these vegetation types and agriculture demands. This research aims to identify the salt affected areas in the selected part of Indus Delta, Sindh province, Pakistan. This particular mangroves dominating coastal belt is important to the local community for their crop growth. Object based image analysis approach has been adopted on Landsat TM imagery of year 2011 by incorporating different mathematical band ratios, thermal radiance and salinity index. Accuracy assessment of developed salinity landcover map was performed using Erdas Imagine Accuracy Assessment Utility. Rain factor was also considered before acquiring satellite imagery and conducting field survey, as wet soil can greatly affect the condition of saline soil of the area. Dry season considered best for the remote sensing based observation and monitoring of the saline soil. These areas were trained with the ground truth data w.r.t pH and electric condutivity of the soil samples. The results were obtained from the object based image analysis of Keti bunder and Kharo chan shows most of the region under low saline soil.Total salt affected soil was measured to be 46,581.7 ha in Keti Bunder, which represents 57.81 % of the total area of 80,566.49 ha. High Saline Area was about 7,944.68 ha (9.86%). Medium Saline Area was about 17,937.26 ha (22.26 %) and low Saline Area was about 20,699.77 ha (25.69%). Where as total salt affected soil was measured to be 52,821.87 ha in Kharo Chann, which represents 55.87 % of the total area of 94,543.54 ha. High Saline Area was about 5,486.55 ha (5.80 %). Medium Saline Area was about 13,354.72 ha (14.13 %) and low Saline Area was about 33980.61 ha (35.94 %). These results show that the area is low to medium saline in nature. Accuracy of the soil salinity map was found to be 83 % with the Kappa co-efficient of 0.77. From this research, it was evident that this area as a whole falls under the category of low to medium saline area and being close to coastal area, mangrove forest can flourish. As Mangroves are salt tolerant plant so this area is consider heaven for mangrove plantation. It would ultimately benefit both the local community and the environment. Increase in mangrove forest control the problem of soil salinity and prevent sea water to intrude more into coastal area. So deforestation of mangrove should be regularly monitored.

Keywords: indus delta, object based image analysis, soil salinity, thematic mapper

Procedia PDF Downloads 620
4441 Evaluation of the Inhibitive Effect of Novel Quinoline Schiff Base on Corrosion of Mild Steel in HCl Solution

Authors: Smita Jauhari, Bhupendra Mistry

Abstract:

Schiff base (E)-2-methyl-N-(tetrazolo[1,5-a]quinolin-4-ylmethylene)aniline (QMA) was synthesized, and its inhibitive effect for mild steel in 1M HCl solution was investigated by weight loss measurement and electrochemical tests.From the weight loss measurements and electrochemical tests, it was observed that the inhibition efficiency increases with the increase in the Schiff base concentration and reaches a maximum at the optimum concentration. This is further confirmed by the decrease in corrosion rate. It is found that the system follows Langmuir adsorption isotherm.

Keywords: Schiff base, acid corrosion, electrochemical impedance spectroscopy, polarization

Procedia PDF Downloads 367
4440 Preparation Control Information and Analyzing of Metering Gas System Based of Orifice Plate

Authors: A. Harrouz, A. Benatiallah, O. Harrouz

Abstract:

This paper presents the search for errors in the measurement instruments in a dynamic system of metering liquid or gas and sees the tolerance defined by the international standards and recommendations. We will implement a program on MATLAB/Simulink which is calculated based on the ISO-5167. This program will take the system parameters on considerations such as: the willingness plates, the size of the orifice, the given design conditions, reference conditions, find pressure drop for a given flow, or flow for a loss of given load. The results are considered very good and satisfactory because the errors identified of measuring instruments system are within the margin of error limit by the regulations.

Keywords: analyzing, control, gas, meters system

Procedia PDF Downloads 399
4439 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE

Authors: A. Lakrim, D. Tahri

Abstract:

This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.

Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model

Procedia PDF Downloads 407
4438 Optical and Surface Characteristics of Direct Composite, Polished and Glazed Ceramic Materials After Exposure to Tooth Brush Abrasion and Staining Solution

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Aim and background: esthetic and structural reconstruction of anterior teeth may require the application of different restoration material. In this regard combination of direct composite veneer and ceramic crown is a common treatment option. Despite the initial matching, their long term harmony in term of optical and surface characteristics is a matter of concern. The purpose of this study is to evaluate and compare optical and surface characteristic of direct composite polished and glazed ceramic materials after exposure to tooth brush abrasion and staining solution. Materials and Methods: ten 2 mm thick disk shape specimens were prepared from IPS empress direct composite and twenty specimens from IPS e.max CAD blocks. Composite specimens and ten ceramic specimens were polished by using D&Z composite and ceramic polishing kit. The other ten specimens of ceramic were glazed with glazing liquid. Baseline measurement of roughness, CIElab coordinate, and luminance were recorded. Then the specimens underwent thermocycling, tooth brushing, and coffee staining. Afterword, the final measurements were recorded. Color coordinate were used to calculate ΔE76, ΔE00, translucency parameter, and contrast ratio. Data were analyzed by One-way ANOVA and post hoc LSD test. Results: baseline and final roughness of the study group were not different. At baseline, the order of roughness for the study group were as follows: composite < glazed ceramic < polished ceramic, but after aging, no difference. Between ceramic groups was not detected. The comparison of baseline and final luminance was similar to roughness but in reverse order. Unlike differential roughness which was comparable between the groups, changes in luminance of the glazed ceramic group was higher than other groups. ΔE76 and ΔE00 in the composite group were 18.35 and 12.84, in the glazed ceramic group were 1.3 and 0.79, and in polished ceramic were 1.26 and 0.85. These values for the composite group were significantly different from ceramic groups. Translucency of composite at baseline was significantly higher than final, but there was no significant difference between these values in ceramic groups. Composite was more translucency than ceramic at baseline and final measurement. Conclusion: Glazed ceramic surface was smoother than polished ceramic. Aging did not change the roughness. Optical properties (color and translucency) of the composite were influenced by aging. Luminance of composite, glazed ceramic, and polished ceramic decreased after aging, but the reduction in glazed ceramic was more pronounced.

Keywords: ceramic, tooth-brush abrasion, staining solution, composite resin

Procedia PDF Downloads 185
4437 Surge in U. S. Citizens Expatriation: Testing Structual Equation Modeling to Explain the Underlying Policy Rational

Authors: Marco Sewald

Abstract:

Comparing present to past the numbers of Americans expatriating U. S. citizenship have risen. Even though these numbers are small compared to the immigrants, U. S. citizens expatriations have historically been much lower, making the uptick worrisome. In addition, the published lists and numbers from the U.S. government seems incomplete, with many not counted. Different branches of the U. S. government report different numbers and no one seems to know exactly how big the real number is, even though the IRS and the FBI both track and/or publish numbers of Americans who renounce. Since there is no single explanation, anecdotal evidence suggests this uptick is caused by global tax law and increased compliance burdens imposed by the U.S. lawmakers on U.S. citizens abroad. Within a research project the question arose about the reasons why a constant growing number of U.S. citizens are expatriating – the answers are believed helping to explain the underlying governmental policy rational, leading to such activities. While it is impossible to locate former U.S. citizens to conduct a survey on the reasons and the U.S. government is not commenting on the reasons given within the process of expatriation, the chosen methodology is Structural Equation Modeling (SEM), in the first step by re-using current surveys conducted by different researchers within the population of U. S. citizens residing abroad during the last years. Surveys questioning the personal situation in the context of tax, compliance, citizenship and likelihood to repatriate to the U. S. In general SEM allows: (1) Representing, estimating and validating a theoretical model with linear (unidirectional or not) relationships. (2) Modeling causal relationships between multiple predictors (exogenous) and multiple dependent variables (endogenous). (3) Including unobservable latent variables. (4) Modeling measurement error: the degree to which observable variables describe latent variables. Moreover SEM seems very appealing since the results can be represented either by matrix equations or graphically. Results: the observed variables (items) of the construct are caused by various latent variables. The given surveys delivered a high correlation and it is therefore impossible to identify the distinct effect of each indicator on the latent variable – which was one desired result. Since every SEM comprises two parts: (1) measurement model (outer model) and (2) structural model (inner model), it seems necessary to extend the given data by conducting additional research and surveys to validate the outer model to gain the desired results.

Keywords: expatriation of U. S. citizens, SEM, structural equation modeling, validating

Procedia PDF Downloads 222
4436 Surface Topography Measurement by Confocal Spectral Interferometry

Authors: A. Manallah, C. Meier

Abstract:

Confocal spectral interferometry (CSI) is an innovative optical method for determining microtopography of surfaces and thickness of transparent layers, based on the combination of two optical principles: confocal imaging, and spectral interferometry. Confocal optical system images at each instant a single point of the sample. The whole surface is reconstructed by plan scanning. The interference signal generated by mixing two white-light beams is analyzed using a spectrometer. In this work, five ‘rugotests’ of known standard roughnesses are investigated. The topography is then measured and illustrated, and the equivalent roughness is determined and compared with the standard values.

Keywords: confocal spectral interferometry, nondestructive testing, optical metrology, surface topography, roughness

Procedia PDF Downloads 277
4435 [Keynote Speech]: An Overview on the Effectiveness of Critical Thinking on Knowledge

Authors: Solehah Yaacob

Abstract:

The study focuses on revisiting the effectiveness of Critical Thinking in human mind capability as a major faculty in human life. The tool used as a measurement of this knowledge ability consists of several processes including experience and education background. To emphasize the `Overview` concept, the researcher highlights two major aspects of philosophical approach, they are; Divine Revelation Concept and Modern Scientific Theory. The research compares between the both parties to introduce the Divine Revelation into Modern Scientific theory. An analytical and critical study of the both concepts become the methodology of the discussion.

Keywords: critical thinking, knowledge, intellectual, language

Procedia PDF Downloads 440
4434 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 142
4433 Diagnostic Yield of CT PA and Value of Pre Test Assessments in Predicting the Probability of Pulmonary Embolism

Authors: Shanza Akram, Sameen Toor, Heba Harb Abu Alkass, Zainab Abdulsalam Altaha, Sara Taha Abdulla, Saleem Imran

Abstract:

Acute pulmonary embolism (PE) is a common disease and can be fatal. The clinical presentation is variable and nonspecific, making accurate diagnosis difficult. Testing patients with suspected acute PE has increased dramatically. However, the overuse of some tests, particularly CT and D-dimer measurement, may not improve care while potentially leading to patient harm and unnecessary expense. CTPA is the investigation of choice for PE. Its easy availability, accuracy and ability to provide alternative diagnosis has lowered the threshold for performing it, resulting in its overuse. Guidelines have recommended the use of clinical pretest probability tools such as ‘Wells score’ to assess risk of suspected PE. Unfortunately, implementation of guidelines in clinical practice is inconsistent. This has led to low risk patients being subjected to unnecessary imaging, exposure to radiation and possible contrast related complications. Aim: To study the diagnostic yield of CT PA, clinical pretest probability of patients according to wells score and to determine whether or not there was an overuse of CTPA in our service. Methods: CT scans done on patients with suspected P.E in our hospital from 1st January 2014 to 31st December 2014 were retrospectively reviewed. Medical records were reviewed to study demographics, clinical presentation, final diagnosis, and to establish if Wells score and D-Dimer were used correctly in predicting the probability of PE and the need for subsequent CTPA. Results: 100 patients (51male) underwent CT PA in the time period. Mean age was 57 years (24-91 years). Majority of patients presented with shortness of breath (52%). Other presenting symptoms included chest pain 34%, palpitations 6%, collapse 5% and haemoptysis 5%. D Dimer test was done in 69%. Overall Wells score was low (<2) in 28 %, moderate (>2 - < 6) in 47% and high (> 6) in 15% of patients. Wells score was documented in medical notes of only 20% patients. PE was confirmed in 12% (8 male) patients. 4 had bilateral PE’s. In high-risk group (Wells > 6) (n=15), there were 5 diagnosed PEs. In moderate risk group (Wells >2 - < 6) (n=47), there were 6 and in low risk group (Wells <2) (n=28), one case of PE was confirmed. CT scans negative for PE showed pleural effusion in 30, Consolidation in 20, atelactasis in 15 and pulmonary nodule in 4 patients. 31 scans were completely normal. Conclusion: Yield of CT for pulmonary embolism was low in our cohort at 12%. A significant number of our patients who underwent CT PA had low Wells score. This suggests that CT PA is over utilized in our institution. Wells score was poorly documented in medical notes. CT-PA was able to detect alternative pulmonary abnormalities explaining the patient's clinical presentation. CT-PA requires concomitant pretest clinical probability assessment to be an effective diagnostic tool for confirming or excluding PE. . Clinicians should use validated clinical prediction rules to estimate pretest probability in patients in whom acute PE is being considered. Combining Wells scores with clinical and laboratory assessment may reduce the need for CTPA.

Keywords: CT PA, D dimer, pulmonary embolism, wells score

Procedia PDF Downloads 233
4432 Lake Water Surface Variations and Its Influencing Factors in Tibetan Plateau in Recent 10 Years

Authors: Shanlong Lu, Jiming Jin, Xiaochun Wang

Abstract:

The Tibetan Plateau has the largest number of inland lakes with the highest elevation on the planet. These massive and large lakes are mostly in natural state and are less affected by human activities. Their shrinking or expansion can truly reflect regional climate and environmental changes and are sensitive indicators of global climate change. However, due to the sparsely populated nature of the plateau and the poor natural conditions, it is difficult to effectively obtain the change data of the lake, which has affected people's understanding of the temporal and spatial processes of lake water changes and their influencing factors. By using the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD09Q1 surface reflectance images as basic data, this study produced the 8-day lake water surface data set of the Tibetan Plateau from 2000 to 2012 at 250 m spatial resolution, with a lake water surface extraction method of combined with lake water surface boundary buffer analyzing and lake by lake segmentation threshold determining. Then based on the dataset, the lake water surface variations and their influencing factors were analyzed, by using 4 typical natural geographical zones of Eastern Qinghai and Qilian, Southern Qinghai, Qiangtang, and Southern Tibet, and the watersheds of the top 10 lakes of Qinghai, Siling Co, Namco, Zhari NamCo, Tangra Yumco, Ngoring, UlanUla, Yamdrok Tso, Har and Gyaring as the analysis units. The accuracy analysis indicate that compared with water surface data of the 134 sample lakes extracted from the 30 m Landsat TM (Thematic Mapper ) images, the average overall accuracy of the lake water surface data set is 91.81% with average commission and omission error of 3.26% and 5.38%; the results also show strong linear (R2=0.9991) correlation with the global MODIS water mask dataset with overall accuracy of 86.30%; and the lake area difference between the Second National Lake Survey and this study is only 4.74%, respectively. This study provides reliable dataset for the lake change research of the plateau in the recent decade. The change trends and influencing factors analysis indicate that the total water surface area of lakes in the plateau showed overall increases, but only lakes with areas larger than 10 km2 had statistically significant increases. Furthermore, lakes with area larger than 100 km2 experienced an abrupt change in 2005. In addition, the annual average precipitation of Southern Tibet and Southern Qinghai experienced significant increasing and decreasing trends, and corresponding abrupt changes in 2004 and 2006, respectively. The annual average temperature of Southern Tibet and Qiangtang showed a significant increasing trend with an abrupt change in 2004. The major reason for the lake water surface variation in Eastern Qinghai and Qilian, Southern Qinghai and Southern Tibet is the changes of precipitation, and that for Qiangtang is the temperature variations.

Keywords: lake water surface variation, MODIS MOD09Q1, remote sensing, Tibetan Plateau

Procedia PDF Downloads 231
4431 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application

Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior

Abstract:

Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.

Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks

Procedia PDF Downloads 171
4430 Effects of Concomitant Use of Metformin and Powdered Moringa Oleifera Leaves on Glucose Tolerance in Sprague-Dawley Rats

Authors: Emielex M. Aguilar, Kristen Angela G. Cruz, Czarina Joie L. Rivera, Francis Dave C. Tan, Gavino Ivan N. Tanodra, Dianne Katrina G. Usana, Mary Grace T. Valentin, Nico Albert S. Vasquez, Edwin Monico C. Wee

Abstract:

The risk of diabetes mellitus is increasing in the Philippines, with Metformin and Insulin as drugs commonly used for its management. The use of herbal medicines has grown increasingly, especially among the elderly population. Moringa oleifera or malunggay is one of the most common plants in the country, and several studies have shown the plant to exhibit a hypoglycemic property with its flavonoid content. This study aims to investigate the possible effects of concomitant use of Metformin and powdered M. oleifera leaves (PMOL) on blood glucose levels. Twenty male Sprague-Dawley rats were equally distributed into four groups. Fasting blood glucose levels of the rats were measured prior to experimentation. The following treatments were administered to the four groups, respectively: glucose only 2 g/kg; glucose 2 g/kg + Metformin 100 mg/kg; glucose 2 g/kg + PMOL 200 mg/kg; and glucose 2 g/kg + PMOL 200 mg/kg and Metformin 100 mg/kg. Blood glucose levels were determined on the 1st, 2nd, 3rd, and 4th hour post-treatment and compared between groups. Statistical analysis showed that the type of intervention did not show significance in the reduction of blood glucose levels when compared with the other groups (p=0.378), while the effect of time exhibited significance (p=0.000). The interaction between the type of intervention and time of blood glucose measurement was shown to be significant (p=0.024). Within each group, the control and PMOL-treated groups showed significant reduction in blood glucose levels over time with p-values of 0.000 and 0.000, respectively, while the Metformin-treated and the combination groups had p-values of 0.062 and 0.093, respectively, which are not significant. The descriptive data also showed that the mean total reduction of blood glucose levels of the Metformin and PMOL combination treatment group was lower than the PMOL-treated group alone, while the mean total reduction of blood glucose levels of the combination group was higher than the Metformin-treated group alone. Based on the results obtained, the combination of Metformin and PMOL did not significantly lower the blood glucose levels of the rats as compared to the other groups. However, the concomitant use of Metformin and PMOL may affect each other’s blood glucose lowering activity. Additionally, prolonged time of exposure and delay in the first blood glucose measurement after treatment could exhibit a significant effect in the blood glucose levels. Further studies are recommended regarding the effects of the concomitant use of the two agents on blood glucose levels.

Keywords: blood glucose levels, concomitant use, metformin, Moringa oleifera

Procedia PDF Downloads 415
4429 Detonating Culture, Statistic and Developmenet in Imo State of Nigeria

Authors: Ejikeme Ugiri

Abstract:

In an executive summary, UNESCO describes Framework for Cultural Statistics as a tool for organizing cultural statistics both nationally and internationally. This is based on conceptual foundation and a common understanding of culture that will enable the measurement of a wide range of cultural expressions. This means therefore that cultural expression in whatever guise has the potentiality of contributing reasonably to the development of a given society. The paper looked into the various tangible and intangible cultures in Imo State of Nigeria. Due to government’s insensitivity, there is need to remind ourselves of the need to pay adequate attention to the cultural heritage bequeathed to us by our forefathers for the sake of posterity. Documenting this information in written form therefore becomes imperative. The study concludes that culture if developed, could reasonably contribute to economic and social growth of the society.

Keywords: culture, detonation, development, statistics

Procedia PDF Downloads 470
4428 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 71
4427 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data

Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill

Abstract:

Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.

Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function

Procedia PDF Downloads 280
4426 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death

Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar

Abstract:

In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.

Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death

Procedia PDF Downloads 343
4425 Assessment of Image Databases Used for Human Skin Detection Methods

Authors: Saleh Alshehri

Abstract:

Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.

Keywords: image databases, image processing, pattern recognition, neural networks

Procedia PDF Downloads 272
4424 Facial Behavior Modifications Following the Diffusion of the Use of Protective Masks Due to COVID-19

Authors: Andreas Aceranti, Simonetta Vernocchi, Marco Colorato, Daniel Zaccariello

Abstract:

Our study explores the usefulness of implementing facial expression recognition capabilities and using the Facial Action Coding System (FACS) in contexts where the other person is wearing a mask. In the communication process, the subjects use a plurality of distinct and autonomous reporting systems. Among them, the system of mimicking facial movements is worthy of attention. Basic emotion theorists have identified the existence of specific and universal patterns of facial expressions related to seven basic emotions -anger, disgust, contempt, fear, sadness, surprise, and happiness- that would distinguish one emotion from another. However, due to the COVID-19 pandemic, we have come up against the problem of having the lower half of the face covered and, therefore, not investigable due to the masks. Facial-emotional behavior is a good starting point for understanding: (1) the affective state (such as emotions), (2) cognitive activity (perplexity, concentration, boredom), (3) temperament and personality traits (hostility, sociability, shyness), (4) psychopathology (such as diagnostic information relevant to depression, mania, schizophrenia, and less severe disorders), (5) psychopathological processes that occur during social interactions patient and analyst. There are numerous methods to measure facial movements resulting from the action of muscles, see for example, the measurement of visible facial actions using coding systems (non-intrusive systems that require the presence of an observer who encodes and categorizes behaviors) and the measurement of electrical "discharges" of contracting muscles (facial electromyography; EMG). However, the measuring system invented by Ekman and Friesen (2002) - "Facial Action Coding System - FACS" is the most comprehensive, complete, and versatile. Our study, carried out on about 1,500 subjects over three years of work, allowed us to highlight how the movements of the hands and upper part of the face change depending on whether the subject wears a mask or not. We have been able to identify specific alterations to the subjects’ hand movement patterns and their upper face expressions while wearing masks compared to when not wearing them. We believe that finding correlations between how body language changes when our facial expressions are impaired can provide a better understanding of the link between the face and body non-verbal language.

Keywords: facial action coding system, COVID-19, masks, facial analysis

Procedia PDF Downloads 80
4423 The Seller’s Sense: Buying-Selling Perspective Affects the Sensitivity to Expected-Value Differences

Authors: Taher Abofol, Eldad Yechiam, Thorsten Pachur

Abstract:

In four studies, we examined whether seller and buyers differ not only in subjective price levels for objects (i.e., the endowment effect) but also in their relative accuracy given objects varying in expected value. If, as has been proposed, sellers stand to accrue a more substantial loss than buyers do, then their pricing decisions should be more sensitive to expected-value differences between objects. This is implied by loss aversion due to the steeper slope of prospect theory’s value function for losses than for gains, as well as by loss attention account, which posits that losses increase the attention invested in a task. Both accounts suggest that losses increased sensitivity to relative values of different objects, which should result in better alignment of pricing decisions to the objective value of objects on the part of sellers. Under loss attention, this characteristic should only emerge under certain boundary conditions. In Study 1 a published dataset was reanalyzed, in which 152 participants indicated buying or selling prices for monetary lotteries with different expected values. Relative EV sensitivity was calculated for participants as the Spearman rank correlation between their pricing decisions for each of the lotteries and the lotteries' expected values. An ANOVA revealed a main effect of perspective (sellers versus buyers), F(1,150) = 85.3, p < .0001 with greater EV sensitivity for sellers. Study 2 examined the prediction (implied by loss attention) that the positive effect of losses on performance emerges particularly under conditions of time constraints. A published dataset was reanalyzed, where 84 participants were asked to provide selling and buying prices for monetary lotteries in three deliberations time conditions (5, 10, 15 seconds). As in Study 1, an ANOVA revealed greater EV sensitivity for sellers than for buyers, F(1,82) = 9.34, p = .003. Importantly, there was also an interaction of perspective by deliberation time. Post-hoc tests revealed that there were main effects of perspective both in the condition with 5s deliberation time, and in the condition with 10s deliberation time, but not in the 15s condition. Thus, sellers’ EV-sensitivity advantage disappeared with extended deliberation. Study 3 replicated the design of study 1 but administered the task three times to test if the effect decays with repeated presentation. The results showed that the difference between buyers and sellers’ EV sensitivity was replicated in repeated task presentations. Study 4 examined the loss attention prediction that EV-sensitivity differences can be eliminated by manipulations that reduce the differential attention investment of sellers and buyers. This was carried out by randomly mixing selling and buying trials for each participant. The results revealed no differences in EV sensitivity between selling and buying trials. The pattern of results is consistent with an attentional resource-based account of the differences between sellers and buyers. Thus, asking people to price, an object from a seller's perspective rather than the buyer's improves the relative accuracy of pricing decisions; subtle changes in the framing of one’s perspective in a trading negotiation may improve price accuracy.

Keywords: decision making, endowment effect, pricing, loss aversion, loss attention

Procedia PDF Downloads 347
4422 Measurement of Rheologic Properties of Soft Tissue (Muscle Tissue) by Device Called Myotonometer

Authors: Petr Sifta, Vaclav Bittner, Martin Kysela, Matej Kolar

Abstract:

The purpose of the research described in this work is to answer how to measure the rheologic (viscoelastic) properties tendo–deformational characteristics of soft tissue. The method would also resemble muscle palpation examination as it is known in clinical practice. For this purpose, an instrument with the working name “myotonometer” has been used. At present, there is lack of objective methods for assessing the muscle tone by viscous and elastic properties of soft tissue. That is why we decided to focus on creating or finding quantitative and qualitative methodology capable of specifying muscle tone.

Keywords: rheologic properties, tendo–deformational characteristics, viscosity, elasticity, hypertonus

Procedia PDF Downloads 623
4421 Texture Observation of Bending by XRD and EBSD Method

Authors: Takashi Sakai, Yuri Shimomura

Abstract:

The crystal orientation is a factor that affects the microscopic material properties. Crystal orientation determines the anisotropy of the polycrystalline material. And it is closely related to the mechanical properties of the material. In this paper, for pure copper polycrystalline material, two different methods; X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD); and the crystal orientation were analyzed. In the latter method, it is possible that the X-ray beam diameter is thicker as compared to the former, to measure the crystal orientation macroscopically relatively. By measurement of the above, we investigated the change in crystal orientation and internal tissues of pure copper.

Keywords: bending, electron backscatter diffraction, X-ray diffraction, microstructure, IPF map, orientation distribution function

Procedia PDF Downloads 330
4420 Gauging Floral Resources for Pollinators Using High Resolution Drone Imagery

Authors: Nicholas Anderson, Steven Petersen, Tom Bates, Val Anderson

Abstract:

Under the multiple-use management regime established in the United States for federally owned lands, government agencies have come under pressure from commercial apiaries to grant permits for the summer pasturing of honeybees on government lands. Federal agencies have struggled to integrate honeybees into their management plans and have little information to make regulations that resolve how many colonies should be allowed in a single location and at what distance sets of hives should be placed. Many conservation groups have voiced their concerns regarding the introduction of honeybees to these natural lands, as they may outcompete and displace native pollinating species. Assessing the quality of an area in regard to its floral resources, pollen, and nectar can be important when attempting to create regulations for the integration of commercial honeybee operations into a native ecosystem. Areas with greater floral resources may be able to support larger numbers of honeybee colonies, while poorer resource areas may be less resilient to introduced disturbances. Attempts are made in this study to determine flower cover using high resolution drone imagery to help assess the floral resource availability to pollinators in high elevation, tall forb communities. This knowledge will help in determining the potential that different areas may have for honeybee pasturing and honey production. Roughly 700 images were captured at 23m above ground level using a drone equipped with a Sony QX1 RGB 20-megapixel camera. These images were stitched together using Pix4D, resulting in a 60m diameter high-resolution mosaic of a tall forb meadow. Using the program ENVI, a supervised maximum likelihood classification was conducted to calculate the percentage of total flower cover and flower cover by color (blue, white, and yellow). A complete vegetation inventory was taken on site, and the major flowers contributing to each color class were noted. An accuracy assessment was performed on the classification yielding an 89% overall accuracy and a Kappa Statistic of 0.855. With this level of accuracy, drones provide an affordable and time efficient method for the assessment of floral cover in large areas. The proximal step of this project will now be to determine the average pollen and nectar loads carried by each flower species. The addition of this knowledge will result in a quantifiable method of measuring pollen and nectar resources of entire landscapes. This information will not only help land managers determine stocking rates for honeybees on public lands but also has applications in the agricultural setting, aiding producers in the determination of the number of honeybee colonies necessary for proper pollination of fruit and nut crops.

Keywords: honeybee, flower, pollinator, remote sensing

Procedia PDF Downloads 142
4419 The Short-Term Stress Indicators in Home and Experimental Dogs

Authors: Madara Nikolajenko, Jevgenija Kondratjeva

Abstract:

Stress is a response of the body to physical or psychological environmental stressors. Cortisol level in blood serum is determined as the main indicator of stress, but the blood collection, the animal preparation and other activities can cause unpleasant conditions and induce increase of these hormones. Therefore, less invasive methods are searched to determine stress hormone levels, for example, by measuring the cortisol level saliva. The aim of the study is to find out the changes of stress hormones in blood and saliva in home and experimental dogs in simulated short-term stress conditions. The study included clinically healthy experimental beagle dogs (n=6) and clinically healthy home American Staffordshire terriers (n=6). The animals were let into a fenced area to adapt. Loud drum sounds (in cooperation with 'Andžeja Grauda drum school') were used as a stressor. Blood serum samples were taken for sodium, potassium, glucose and cortisol level determination and saliva samples for cortisol determination only. Control parameters were taken immediately before the start of the stressor, and next samples were taken immediately after the stress. The last measurements were taken two hours after the stress. Electrolyte levels in blood serum were determined using direction selective electrode method (ILab Aries analyzer) and cortisol in blood serum and saliva using electrochemical luminescence method (Roche Diagnostics). Blood glucose level was measured with glucometer (ACCU-CHECK Active test strips). Cortisol level in the blood increased immediately after the stress in all home dogs (P < 0,05), but only in 33% (P < 0,05) of the experimental dogs. After two hours the measurement decreased in 83% (P < 0,05) of home dogs (in 50% returning to the control point) and in 83% (P < 0,05) of the experimental dogs. Cortisol in saliva immediately after the stress increased in 50% (P > 0,05) of home dogs and in 33% (P > 0,05) of the experimental dogs. After two hours in 83% (P > 0,05) of the home animals, the measurements decreased, only in 17% of the experimental dogs it decreased as well, while in 49% measurement was undetectable due to the lack of material. Blood sodium, potassium, and glucose measurements did not show any significant changes. The combination of short-term stress indicators, when, after the stressor, all indicators should immediately increase and decrease after two hours, confirmed in none of the animals. Therefore the authors can conclude that each animal responds to a stressful situation with different physiological mechanisms and hormonal activity. Cortisol level in saliva and blood is released with the different speed and is not an objective indicator of acute stress.

Keywords: animal behaivor, cortisol, short-term stress, stress indicators

Procedia PDF Downloads 270
4418 American Sign Language Recognition System

Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba

Abstract:

The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.

Keywords: sign language, computer vision, vision transformer, VGG16, CNN

Procedia PDF Downloads 44