Search results for: initial input
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5253

Search results for: initial input

3573 Create a Dynamic Model in Project Control and Management

Authors: Hamed Saremi, Shahla Saremi

Abstract:

In this study, control and management of construction projects is evaluated through developing a dynamic model in which some means are used in order to evaluating planning assumptions and reviewing the effectiveness of some project control policies based on previous researches about time, cost, project schedule pressure management, source management, project control, adding elements and sub-systems from cost management such as estimating consumption budget from budget due to costs, budget shortage effects and etc. using sensitivity analysis, researcher has evaluated introduced model that during model simulation by VENSIM software and assuming optimistic times and adding information about doing job and changes rate and project is forecasted with 373 days (2 days sooner than forecasted) and final profit $ 1,960,670 (23% amount of contract) assuming 15% inflation rate in year and costs rate accordance with planned amounts and other input information and final profit.

Keywords: dynamic planning, cost, time, performance, project management

Procedia PDF Downloads 478
3572 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 146
3571 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 230
3570 French Keyboard Music Evolution from Baroque to Impressionism

Authors: Parham Bakhtiari

Abstract:

The aesthetic characteristics of French keyboard music created during different time periods are examined through the utilization of compositional methods and the nurturing of specific musical styles. This article investigates the changes in style of keyboard compositions created by French musicians, starting from the initial stages from the mid-1700s to the early 1900s. It explores connections from the past and comparing the keyboard compositions of François Couperin and Jean-Philippe Rameau in the Baroque era to those of Gabriel Fauré, Claude Debussy, and Maurice Ravel in the Impressionist era. The evolution of keyboard music in France, particularly for the piano which was a new instrument at the time, was greatly influenced by the French revolution. Hence, we will delve into this topic further. The article examines the development of a specific French fashion trend of keyboard music that were composed during this time when there was an increasing emphasis on technical proficiency and expression of a fresh group of young French music creators.

Keywords: music, keyboard, baroque, impressionism, performance

Procedia PDF Downloads 45
3569 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: reinforcement, silicon carbide, fly ash, red mud

Procedia PDF Downloads 159
3568 Research on Development and Accuracy Improvement of an Explosion Proof Combustible Gas Leak Detector Using an IR Sensor

Authors: Gyoutae Park, Seungho Han, Byungduk Kim, Youngdo Jo, Yongsop Shim, Yeonjae Lee, Sangguk Ahn, Hiesik Kim, Jungil Park

Abstract:

In this paper, we presented not only development technology of an explosion proof type and portable combustible gas leak detector but also algorithm to improve accuracy for measuring gas concentrations. The presented techniques are to apply the flame-proof enclosure and intrinsic safe explosion proof to an infrared gas leak detector at first in Korea and to improve accuracy using linearization recursion equation and Lagrange interpolation polynomial. Together, we tested sensor characteristics and calibrated suitable input gases and output voltages. Then, we advanced the performances of combustible gaseous detectors through reflecting demands of gas safety management fields. To check performances of two company's detectors, we achieved the measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated our instruments better in detecting accuracy other than detectors through experimental results.

Keywords: accuracy improvement, IR gas sensor, gas leak, detector

Procedia PDF Downloads 391
3567 Investigating Re-Use a Historical Masonry Arch Bridge

Authors: H. A. Erdogan

Abstract:

Historical masonry arch bridges built centuries ago have fulfilled their function until recent decades. However, from the beginning of 20th century, these bridges have remained inadequate as a result of increasing speed, size and capacity of the means of transport. Although new bridges have been built in many places, masonry bridges located within the city limits still need to be used. When the size and transportation loads of modern vehicles are taken into account, it is apparent that historical masonry arch bridges would be exposed to greater loads than their initial design loads. Because of that, many precautions taken either remain insufficient or damage these bridges. In this study, the history of Debbaglar Bridge, one of the historic bridges located in the city center of Aksaray/Turkey is presented and its existing condition is evaluated. Structural analysis of the bridge under present conditions and loads is explained. Moreover, the retrofit and restoration application prepared considering the analysis data is described.

Keywords: adaptive re-use, Aksaray debbaglar bridge, masonry bridge, reconstruction

Procedia PDF Downloads 310
3566 Grading of Emulsified Agarwood Oil Using Gel Electrophoresis Technique

Authors: Y. T. Boon, M. N. Naim, R. Zakaria, N. F. Abu Bakar, N. Ahmad, I. W. Lenggoro

Abstract:

In this study, encapsulation of agarwood oil with non-ionic surfactant, Tween 80 was prepared at critical micelle concentration of 0.0167 % v/v to produce the most stable nano-emulsion in aqueous. The encapsulation has minimized the bioactive compounds degradation in various pH conditions thus prolong their shelf life and maintained its initial oil grade. The oil grading of the prepared samples were conducted using the gel electrophoresis instead of using common analytical industrial grading such as gas chromatography- mass spectrometry (GC- MS). The grading method was chosen due to their unique zeta potential value after the encapsulation process. This paper demonstrates the feasibility of applying the electrophoresis principles to separate the encapsulated agarwood oil or grading of the emulsified agarwood oil. The results indicated that the grading process are potential to be further investigate based on their droplet size and zeta potential value at various pH condition when the droplet were migrate through polyacrylamide gel.

Keywords: electrophoretic mobility, essential oil, nanoemulsion, polyacrylamide gel electrophoresis, tween 80, zeta potential

Procedia PDF Downloads 380
3565 Viscoelastic Characterization of Bovine Trabecular Bone Samples

Authors: I. Ramirez D. Edgar, J. Angeles H. José, Ruiz C. Osvaldo, H. Jacobo A. Victor, Ortiz P. Armando

Abstract:

Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.

Keywords: bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties

Procedia PDF Downloads 489
3564 Effects of Unfamiliar Orthography on the Lexical Encoding of Novel Phonological Features

Authors: Asmaa Shehata

Abstract:

Prior research indicates that second language (L2) learners encounter difficulty in the distinguishing novel L2 contrasting sounds that are not contrastive in their native languages. L2 orthographic information, however, is found to play a positive role in the acquisition of non-native phoneme contrasts. While most studies have mainly involved a familiar written script (i.e., the Roman script), the influence of a foreign, unfamiliar script is still unknown. Therefore, the present study asks: Does unfamiliar L2 script play a role in creating distinct phonological representations of novel contrasting phonemes? It is predicted that subjects’ performance in the unfamiliar orthography group will outperform their counterparts’ performance in the control group. Thus, training that entails orthographic inputs can yield a significant improvement in L2 adult learners’ identification and lexical encoding of novel L2 consonant contrasts. Results are discussed in terms of their implications for the type of input introduced to L2 learners to improve their language learning.

Keywords: Arabic, consonant contrasts, foreign script, lexical encoding, orthography, word learning

Procedia PDF Downloads 256
3563 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 524
3562 Enzymatic Esterification of Sardine Oil Processed in Morocco

Authors: M. Kharroubi, Y. Rady, F. Bellali, S. Himmi

Abstract:

The global objective of this study is to upgrade the sardine oil processed in Morocco by using enzymatic solutions. The specific objective of this part of study is to optimize the various parameters involved in enzymatic deacidification of fish oil processed in Morocco: pressure, ratio of oil/novozymes 435, ratio of oil/glycerol, temperature. The best deacidification yields were obtained with: -A temperature of 70 °C; -A ratio -Oil/Glycerol: 2% (% P); -A ratio -Oil/Novozyme 435: 1% (% P); -A pressure: 15 to 25 mbar. On the other hand, the study of the effect of initial oil acidity showed that whatever the acidity of the oil studied (very acidic, or low acidic), the final yields are high. Acidity does not reduce the reaction efficiency. From an industrial point of view, this represents a competitive advantage to consider. This eco-friend enzymatic solution may allows Moroccan fish oil producers to achieve acid number values that meet the standard.

Keywords: sardine oil, enzymatic esterfication, desacidification, acid number

Procedia PDF Downloads 385
3561 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems

Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang

Abstract:

In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.

Keywords: fault detection, linear parameter varying, model predictive control, set theory

Procedia PDF Downloads 253
3560 Importance of Community Involvement in Tourism Development Activities

Authors: Lombuso P. Shabalala

Abstract:

This research paper investigates the importance of community involvement in tourism development activities from the initial stage. Community is defined as a group of people living in the same area and practicing common ownership and practices or with a commonality such as norms, religion, values, customs, or identity. Globalisation has restructured economic, political, and social relationships at the local level, which impacts community involvement in activities taking place in their own space. Although social relationships and interests are no longer limited to local communities, the power of place remains. Whereas, tourism is considered as an activity essential to the life of nations because of its direct effects on the social, cultural, educational, and economic sectors of national societies and their international relations. The existing literature has indicated that the four types of motivation in community involvement are best differentiated by identifying the unique ultimate goal for each motivation. In a nutshell, the ultimate goal for egoism is to increase one's own welfare; altruism is to increase the welfare of another individual or individuals; collectivism is aimed at increasing the welfare of a group, and the principlism is to uphold one or more moral principles. As a base of community involvement, each of these four forms of motivation exhibits its own strengths and weaknesses to be acknowledged. Purposive sampling was suitable to select the fourteen descendant group representatives. The representatives included chief/s, headman, senior descendants’ member, and members of the traditional council who descends from MWCHS. The qualitative research design was adopted for the study in the form of semi-structured interviews. Community development is a social process involving residents in activities designed to improve their quality of life. The key finding of the research is the importance of involving communities, in particular, the immediate community members from the initial stage of any proposed tourism development activity. Without a doubt, the immediate communities are well informed about the dynamics of the area (economically, politically, and socially). Therefore, the finding suggests that communities are in a better position to advise project managers on possible potential tourism developments activities that can address the real needs and benefit the community, instead of investing resources in a development that will not benefit or add any value in the lives of the targeted communities. It must be noted that the power of the place where the development will be implemented remains with the community. Furthermore, community support and buy-in are crucial to the success of prospective tourism development. In conclusion, it cannot be denied that community involvement comes with its own challenges, contrary to greater sustainable benefits that can be realized prior to articulation. The study suggests for project managers to ensure a fair and transparent community involvement process. Fair distribution of meaningful roles could secure trust and result in these communities to view the proposed development as their own.

Keywords: communities, development, involvement, tourism

Procedia PDF Downloads 190
3559 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies

Abstract:

With the world climate projected to warm and major cities in developing countries becoming increasingly populated and polluted, governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of an adaptable model of these risks. Simulations are performed using the EnergyPlus building physics software. An accurate metamodel is formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) are compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Keywords: neural networks, radial basis functions, metamodelling, python machine learning libraries

Procedia PDF Downloads 447
3558 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies

Authors: Paolo Russu

Abstract:

The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.

Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification

Procedia PDF Downloads 172
3557 Gas Systems of the Amadeus Basin, Australia

Authors: Chris J. Boreham, Dianne S. Edwards, Amber Jarrett, Justin Davies, Robert Poreda, Alex Sessions, John Eiler

Abstract:

The origins of natural gases in the Amadeus Basin have been assessed using molecular and stable isotope (C, H, N, He) systematics. A dominant end-member thermogenic, oil-associated gas is considered for the Ordovician Pacoota−Stairway sandstones of the Mereenie gas and oil field. In addition, an abiogenic end-member is identified in the latest Proterozoic lower Arumbera Sandstone of the Dingo gasfield, being most likely associated with radiolysis of methane with polymerisation to wet gases. The latter source assignment is based on a similar geochemical fingerprint derived from the laboratory gamma irradiation experiments on methane. A mixed gas source is considered for the Palm Valley gasfield in the Ordovician Pacoota Sandstone. Gas wetness (%∑C₂−C₅/∑C₁−C₅) decreases in the order Mereenie (19.1%) > Palm Valley (9.4%) > Dingo (4.1%). Non-produced gases at Magee-1 (23.5%; Late Proterozoic Heavitree Quartzite) and Mount Kitty-1 (18.9%; Paleo-Mesoproterozoic fractured granitoid basement) are very wet. Methane thermometry based on clumped isotopes of methane (¹³CDH₃) is consistent with the abiogenic origin for the Dingo gas field with methane formation temperature of 254ᵒC. However, the low methane formation temperature of 57°C for the Mereenie gas suggests either a mixed thermogenic-biogenic methane source or there is no thermodynamic equilibrium between the methane isotopomers. The shallow reservoir depth and present-day formation temperature below 80ᵒC would support microbial methanogenesis, but there is no accompanying alteration of the C- and H-isotopes of the wet gases and CO₂ that is typically associated with biodegradation. The Amadeus Basin gases show low to extremely high inorganic gas contents. Carbon dioxide is low in abundance (< 1% CO₂) and becomes increasing depleted in ¹³C from the Palm Valley (av. δ¹³C 0‰) to the Mereenie (av. δ¹³C -6.6‰) and Dingo (av. δ¹³C -14.3‰) gas fields. Although the wide range in carbon isotopes for CO₂ is consistent with multiple origins from inorganic to organic inputs, the most likely process is fluid-rock alteration with enrichment in ¹²C in the residual gaseous CO₂ accompanying progressive carbonate precipitation within the reservoir. Nitrogen ranges from low−moderate (1.7−9.9% N₂) abundance (Palm Valley av. 1.8%; Mereenie av. 9.1%; Dingo av. 9.4%) to extremely high abundance in Magee-1 (43.6%) and Mount Kitty-1 (61.0%). The nitrogen isotopes for the production gases have δ¹⁵N = -3.0‰ for Mereenie, -3.0‰ for Palm Valley and -7.1‰ for Dingo, suggest all being mixed inorganic and thermogenic nitrogen sources. Helium (He) abundance varies over a wide range from a low of 0.17% to one of the world’s highest at 9% (Mereenie av. 0.23%; Palm Valley av. 0.48%, Dingo av. 0.18%, Magee-1 6.2%; Mount Kitty-1 9.0%). Complementary helium isotopes (R/Ra = ³He/⁴Hesample / ³He/⁴Heair) range from 0.013 to 0.031 R/Ra, indicating a dominant crustal origin for helium with a sustained input of radiogenic 4He from the decomposition of U- and Th-bearing minerals, effectively diluting any original mantle helium input. The high helium content in the non-produced gases compared to the shallower producing wells most likely reflects their stratigraphic position relative to the Tonian Bitter Springs Group with the former below and the latter above an effective carbonate-salt seal.

Keywords: amadeus gas, thermogenic, abiogenic, C, H, N, He isotopes

Procedia PDF Downloads 195
3556 Utilization of Schnerr-Sauer Cavitation Model for Simulation of Cavitation Inception and Super Cavitation

Authors: Mohammadreza Nezamirad, Azadeh Yazdi, Sepideh Amirahmadian, Nasim Sabetpour, Amirmasoud Hamedi

Abstract:

In this study, the Reynolds-Stress-Navier-Stokes framework is utilized to investigate the flow inside the diesel injector nozzle. The flow is assumed to be multiphase as the formation of vapor by pressure drop is visualized. For pressure and velocity linkage, the coupled algorithm is used. Since the cavitation phenomenon inherently is unsteady, the quasi-steady approach is utilized for saving time and resources in the current study. Schnerr-Sauer cavitation model is used, which was capable of predicting flow behavior both at the initial and final steps of the cavitation process. Two different turbulent models were used in this study to clarify which one is more capable in predicting cavitation inception and super-cavitation. It was found that K-ε was more compatible with the Shnerr-Sauer cavitation model; therefore, the mentioned model is used for the rest of this study.

Keywords: CFD, RANS, cavitation, fuel, injector

Procedia PDF Downloads 209
3555 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks

Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi

Abstract:

Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.

Keywords: ionic liquid, neural networks, VLE, dilute solution

Procedia PDF Downloads 300
3554 Measuring Text-Based Semantics Relatedness Using WordNet

Authors: Madiha Khan, Sidrah Ramzan, Seemab Khan, Shahzad Hassan, Kamran Saeed

Abstract:

Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.

Keywords: Graphviz representation, semantic relatedness, similarity measurement, WordNet similarity

Procedia PDF Downloads 238
3553 An Investigation of Food Quality and Risks in Thailand: A Case of Inbound Senior Tourists

Authors: Kevin Wongleedee

Abstract:

Food quality and risks are major concerns for inbound senior tourists when visiting tourist destinations in Thailand. The purposes of this study were to investigate food quality and risks perceived by inbound senior tourists. This paper drew upon data collection from an inbound senior tourist survey conducted in Thailand during summer 2013. Summer time in Thailand is a high season for inbound tourists. It is also a high risk period in which a variety food safety issues and incidents have often occurred. The survey was structured primarily to obtain inbound senior tourists’ concerns toward a variety of food quality and risks they encountered during their trip in Thailand. A total of 400 inbound senior tourists were elicited as data input for mean and standard deviation. The findings revealed that inbound tourists rated the overall food quality at a high level and the three most important perceived food risks were 1) unclean physical cooking facility, 2) toxic chemical handling, and 3) unclean water.

Keywords: food quality, inbound senior tourists, risks, Thailand

Procedia PDF Downloads 397
3552 Soil-Structure Interaction in Stiffness and Strength Degrading Systems

Authors: Enrique Bazan-Zurita, Sittipong Jarernprasert, Jacobo Bielak

Abstract:

We study the effects of soil-structure interaction (SSI) on the inelastic seismic response of a single-degree-of-freedom system whose hysteretic behaviour exhibits stiffness and/or strength degrading characteristics. Two sets of accelerograms are used as seismic input: the first comprising 87 record from stiff to medium stiff sites in California, and the second comprising 66 records from the soft lakebed of Mexico City. This study focuses in three seismic response parameters: ductility demand, inter-story drift, and total lateral displacement. The results allow quantitative estimates of changes in such parameters in an SSI system in comparison with those corresponding to the associated fixed-base system. We found that degrading features affect significantly both the response of fixed-base structures and the impact of soil-structure interaction. We propose a procedure to incorporate the results of this and similar studies in seismic design regulations for SSI system with anticipated nonlinear degrading behaviour.

Keywords: inelastic, seismic, building, foundation, interaction

Procedia PDF Downloads 286
3551 Real-Time Lane Marking Detection Using Weighted Filter

Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan

Abstract:

Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.

Keywords: lane marking filter, lane detection, ADAS, LDWS

Procedia PDF Downloads 194
3550 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 386
3549 The Effectiveness of Using MS SharePoint for the Curriculum Repository System

Authors: Misook Ahn

Abstract:

This study examines the Institutional Curriculum Repository (ICR) developed with MS SharePoint. The purpose of using MS SharePoint is to organize, share, and manage the curriculum data. The ICR aims to build a centralized curriculum infrastructure, preserve all curriculum materials, and provide academic service to users (faculty, students, or other agencies). The ICR collection includes core language curriculum materials developed by each language school—foreign language textbooks, language survival kits, and audio files currently in or not in use at the schools. All core curriculum materials with audio and video files have been coded, collected, and preserved at the ICR. All metadata for the collected curriculum materials have been input by language, code, year, book type, level, user, version, and current status (in use/not in use). The qualitative content analysis, including the survey data, is used to evaluate the effectiveness of using MS SharePoint for the repository system. This study explains how to manage and preserve curriculum materials with MS SharePoint, along with challenges and suggestions for further research. This study will be beneficial to other universities or organizations considering archiving or preserving educational materials.

Keywords: digital preservation, ms sharepoint, repository, curriculum materials

Procedia PDF Downloads 105
3548 A Low Power and High-Speed Conditional-Precharge Sense Amplifier Based Flip-Flop Using Single Ended Latch

Authors: Guo-Ming Sung, Ramavath Naga Raju Naik

Abstract:

This paper presents a low power, high speed, sense-amplifier based flip-flop (SAFF). The flip-flop’s power con-sumption and delay are greatly reduced by employing a new conditionally precharge sense-amplifier stage and a single-ended latch stage. Glitch-free and contention-free latch operation is achieved by using a conditional cut-off strategy. The design uses fewer transistors, has a lower clock load, and has a simple structure, all of which contribute to a near-zero setup time. When compared to previous flip-flop structures proposed for similar input/output conditions, this design’s performance and overall PDP have improved. The post layout simulation of the circuit uses 2.91µW of power and has a delay of 65.82 ps. Overall, the power-delay product has seen some enhancements. Cadence Virtuoso Designing tool with CMOS 90nm technology are used for all designs.

Keywords: high-speed, low-power, flip-flop, sense-amplifier

Procedia PDF Downloads 162
3547 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN

Authors: Ajoy Kumar Das, Prasenjit Dey

Abstract:

Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.

Keywords: forced convection, square cylinder, nanofluid, neural network

Procedia PDF Downloads 321
3546 Knowledge Representation Based on Interval Type-2 CFCM Clustering

Authors: Lee Myung-Won, Kwak Keun-Chang

Abstract:

This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.

Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation

Procedia PDF Downloads 322
3545 Morpho-Dynamic Modelling of the Western 14 Km of the Togolese Coast

Authors: Sawsan Eissa, Omnia Kabbany

Abstract:

The coastline of Togo has been historically suffering from erosion for decades, which requires a solution to help control and reduce the erosion to allow for the development of the coastal area. A morpho-dynamic model using X-beach software was developed for the Western 14 Km of the Togolese coast. The model was coupled with the hydrodynamic module of DELFT 3D, flow, and the Wave module, SWAN. The data used as input included a recent bathymetric survey, a recent shoreline topographic survey, aerial photographs, ERA 5 water level and wave data, and recent test results of seabed samples. A number of scenarios were modeled: do nothing scenario, groynes, detached breakwaters system with different crest levels and alignments. The findings showed that groynes is not expected to be effective for protection against erosion, and that the best option is a system of detached breakwater, partially emerged-partially submerged couples with periodical maintenance.

Keywords: hydrodynamics, morphology, Togo, Delft3D, SWAN, XBeach, coastal erosion, detached breakwaters

Procedia PDF Downloads 68
3544 Endocardial Ultrasound Segmentation using Level Set method

Authors: Daoudi Abdelaziz, Mahmoudi Saïd, Chikh Mohamed Amine

Abstract:

This paper presents a fully automatic segmentation method of the left ventricle at End Systolic (ES) and End Diastolic (ED) in the ultrasound images by means of an implicit deformable model (level set) based on Geodesic Active Contour model. A pre-processing Gaussian smoothing stage is applied to the image, which is essential for a good segmentation. Before the segmentation phase, we locate automatically the area of the left ventricle by using a detection approach based on the Hough Transform method. Consequently, the result obtained is used to automate the initialization of the level set model. This initial curve (zero level set) deforms to search the Endocardial border in the image. On the other hand, quantitative evaluation was performed on a data set composed of 15 subjects with a comparison to ground truth (manual segmentation).

Keywords: level set method, transform Hough, Gaussian smoothing, left ventricle, ultrasound images.

Procedia PDF Downloads 465