Search results for: driver drowsiness detection
2252 Public Bus Transport Passenger Safety Evaluations in Ghana: A Phenomenological Constructivist Exploration
Authors: Enoch F. Sam, Kris Brijs, Stijn Daniels, Tom Brijs, Geert Wets
Abstract:
Notwithstanding the growing body of literature that recognises the importance of personal safety to public transport (PT) users, it remains unclear what PT users consider regarding their safety. In this study, we explore the criteria PT users in Ghana use to assess bus safety. This knowledge will afford a better understanding of PT users’ risk perceptions and assessments which may contribute to theoretical models of PT risk perceptions. We utilised phenomenological research methodology, with data drawn from 61 purposively sampled participants. Data collection (through focus group discussions and in-depth interviews) and analyses were done concurrently to the point of saturation. Our inductive data coding and analyses through the constant comparison and content analytic techniques resulted in 4 code categories (conceptual dimensions), 27 codes (safety items/criteria), and 100 quotations (data segments). Of the number of safety criteria participants use to assess bus safety, vehicle condition, driver’s marital status, and transport operator’s safety records were the most considered. With each criterion, participants rightly demonstrated its respective relevance to bus safety. These findings imply that investment in and maintenance of safer vehicles, and responsible and safety-conscious drivers, and prioritization of passengers’ safety are key-targets for public bus/minibus operators in Ghana.Keywords: safety evaluations, public bus/minibus, passengers, phenomenology, Ghana
Procedia PDF Downloads 3422251 Application of Flow Cytometry for Detection of Influence of Abiotic Stress on Plants
Authors: Dace Grauda, Inta Belogrudova, Alexei Katashev, Linda Lancere, Isaak Rashal
Abstract:
The goal of study was the elaboration of easy applicable flow cytometry method for detection of influence of abiotic stress factors on plants, which could be useful for detection of environmental stresses in urban areas. The lime tree Tillia vulgaris H. is a popular tree species used for urban landscaping in Europe and is one of the main species of street greenery in Riga, Latvia. Tree decline and low vitality has observed in the central part of Riga. For this reason lime trees were select as a model object for the investigation. During the period of end of June and beginning of July 12 samples from different urban environment locations as well as plant material from a greenhouse were collected. BD FACSJazz® cell sorter (BD Biosciences, USA) with flow cytometer function was used to test viability of plant cells. The method was based on changes of relative fluorescence intensity of cells in blue laser (488 nm) after influence of stress factors. SpheroTM rainbow calibration particles (3.0–3.4 μm, BD Biosciences, USA) in phosphate buffered saline (PBS) were used for calibration of flow cytometer. BD PharmingenTM PBS (BD Biosciences, USA) was used for flow cytometry assays. The mean fluorescence intensity information from the purified cell suspension samples was recorded. Preliminary, multiple gate sizes and shapes were tested to find one with the lowest CV. It was found that low CV can be obtained if only the densest part of plant cells forward scatter/side scatter profile is analysed because in this case plant cells are most similar in size and shape. The young pollen cells in one nucleus stage were found as the best for detection of influence of abiotic stress. For experiments only fresh plant material was used– the buds of Tillia vulgaris with diameter 2 mm. For the cell suspension (in vitro culture) establishment modified protocol of microspore culture was applied. The cells were suspended in the MS (Murashige and Skoog) medium. For imitation of dust of urban area SiO2 nanoparticles with concentration 0.001 g/ml were dissolved in distilled water. Into 10 ml of cell suspension 1 ml of SiO2 nanoparticles suspension was added, then cells were incubated in speed shaking regime for 1 and 3 hours. As a stress factor the irradiation of cells for 20 min by UV was used (Hamamatsu light source L9566-02A, L10852 lamp, A10014-50-0110), maximum relative intensity (100%) at 365 nm and at ~310 nm (75%). Before UV irradiation the suspension of cells were placed onto a thin layer on a filter paper disk (diameter 45 mm) in a Petri dish with solid MS media. Cells without treatment were used as a control. Experiments were performed at room temperature (23-25 °C). Using flow cytometer BS FACS Software cells plot was created to determine the densest part, which was later gated using oval-shaped gate. Gate included from 95 to 99% of all cells. To determine relative fluorescence of cells logarithmic fluorescence scale in arbitrary fluorescence units were used. 3x103 gated cells were analysed from the each sample. The significant differences were found among relative fluorescence of cells from different trees after treatment with SiO2 nanoparticles and UV irradiation in comparison with the control.Keywords: flow cytometry, fluorescence, SiO2 nanoparticles, UV irradiation
Procedia PDF Downloads 4172250 Characterization and Pcr Detection of Selected Strains of Psychrotrophic Bacteria Isolated From Raw Milk
Authors: Kidane workelul, Li xu, Xiaoyang Pang, Jiaping Lv
Abstract:
Dairy products are exceptionally ideal media for the growth of microorganisms because of their high nutritional content. There are several ways that milk might get contaminated throughout the milking process, including how the raw milk is transported and stored, as well as how long it is kept before being processed. Psychrotrophic bacteria are among the one which can deteriorate the quality of milk mainly their heat resistance proteas and lipase enzyme. For this research purpose 8 selected strains of Psychrotrophic bacteria (Entrococcus hirae, Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas putida, Exiguobacterium indicum, Pseudomonas paralactice, Acinetobacter indicum, Serratia liquefacients)are chosen and try to determine their characteristics based on the research methodology protocol. Thus, the 8 selected strains are cultured, plated incubate, extracted their genomic DNA and genome DNA was amplified, the purpose of the study was to identify their Psychrotrophic properties, lipase hydrolysis positive test, their optimal incubation temperature, designed primer using the noble strain P,flourescens conserved region area in target with lipA gene, optimized primer specificity as well as sensitivity and PCR detection for lipase positive strains using the design primers. Based on the findings both the selected 8 strains isolated from stored raw milk are Psychrotrophic bacteria, 6 of the selected strains except the 2 strains are positive for lipase hydrolysis, their optimal temperature is 20 to 30 OC, the designed primer specificity is very accurate and amplifies for those strains only with lipase positive but could not amplify for the others. Thus, the result is promising and could help in detecting the Psychrotrophic bacteria producing heat resistance enzymes (lipase) at early stage before the milk is processed and this will safe production loss for the dairy industry.Keywords: dairy industry, heat-resistant, lipA, milk, primer and psychrotrophic
Procedia PDF Downloads 682249 Thermally Stable Crystalline Triazine-Based Organic Polymeric Nanodendrites for Mercury(2+) Ion Sensing
Authors: Dimitra Das, Anuradha Mitra, Kalyan Kumar Chattopadhyay
Abstract:
Organic polymers, constructed from light elements like carbon, hydrogen, nitrogen, oxygen, sulphur, and boron atoms, are the emergent class of non-toxic, metal-free, environmental benign advanced materials. Covalent triazine-based polymers with a functional triazine group are significant class of organic materials due to their remarkable stability arising out of strong covalent bonds. They can conventionally form hydrogen bonds, favour π–π contacts, and they were recently revealed to be involved in interesting anion–π interactions. The present work mainly focuses upon the development of a single-crystalline, highly cross-linked triazine-based nitrogen-rich organic polymer with nanodendritic morphology and significant thermal stability. The polymer has been synthesized through hydrothermal treatment of melamine and ethylene glycol resulting in cross-polymerization via condensation-polymerization reaction. The crystal structure of the polymer has been evaluated by employing Rietveld whole profile fitting method. The polymer has been found to be composed of monoclinic melamine having space group P21/a. A detailed insight into the chemical structure of the as synthesized polymer has been elucidated by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopic analysis. X-Ray Photoelectron Spectroscopic (XPS) analysis has also been carried out for further understanding of the different types of linkages required to create the backbone of the polymer. The unique rod-like morphology of the triazine based polymer has been revealed from the images obtained from Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Interestingly, this polymer has been found to selectively detect mercury (Hg²⁺) ions at an extremely low concentration through fluorescent quenching with detection limit as low as 0.03 ppb. The high toxicity of mercury ions (Hg²⁺) arise from its strong affinity towards the sulphur atoms of biological building blocks. Even a trace quantity of this metal is dangerous for human health. Furthermore, owing to its small ionic radius and high solvation energy, Hg²⁺ ions remain encapsulated by water molecules making its detection a challenging task. There are some existing reports on fluorescent-based heavy metal ion sensors using covalent organic frameworks (COFs) but reports on mercury sensing using triazine based polymers are rather undeveloped. Thus, the importance of ultra-trace detection of Hg²⁺ ions with high level of selectivity and sensitivity has contemporary significance. A plausible sensing phenomenon by the polymer has been proposed to understand the applicability of the material as a potential sensor. The impressive sensitivity of the polymer sample towards Hg²⁺ is the very first report in the field of highly crystalline triazine based polymers (without the introduction of any sulphur groups or functionalization) towards mercury ion detection through photoluminescence quenching technique. This crystalline metal-free organic polymer being cheap, non-toxic and scalable has current relevance and could be a promising candidate for Hg²⁺ ion sensing at commercial level.Keywords: fluorescence quenching , mercury ion sensing, single-crystalline, triazine-based polymer
Procedia PDF Downloads 1402248 Forensic Applications of Quantum Dots
Authors: Samaneh Nabavi, Hadi Shirzad, Somayeh Khanjani, Shirin Jalili
Abstract:
Quantum dots (QDs) are semiconductor nanocrystals that exhibit intrinsic optical and electrical properties that are size dependent due to the quantum confinement effect. Quantum confinement is brought about by the fact that in bulk semiconductor material the electronic structure consists of continuous bands, and that as the size of the semiconductor material decreases its radius becomes less than the Bohr exciton radius (the distance between the electron and electron-hole) and discrete energy levels result. As a result QDs have a broad absorption range and a narrow emission which correlates to the band gap energy (E), and hence QD size. QDs can thus be tuned to give the desired wavelength of fluorescence emission.Due to their unique properties, QDs have attracted considerable attention in different scientific areas. Also, they have been considered for forensic applications in recent years. The ability of QDs to fluoresce up to 20 times brighter than available fluorescent dyes makes them an attractive nanomaterial for enhancing the visualization of latent fingermarks, or poorly developed fingermarks. Furthermore, the potential applications of QDs in the detection of nitroaromatic explosives, such as TNT, based on directive fluorescence quenching of QDs, electron transfer quenching process or fluorescence resonance energy transfer have been paid to attention. DNA analysis is associated tightly with forensic applications in molecular diagnostics. The amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. Accordingly, highly sensitive detection of human genomic DNA is an essential issue for forensic study. QDs have also a variety of advantages as an emission probe in forensic DNA quantification.Keywords: forensic science, quantum dots, DNA typing, explosive sensor, fingermark analysis
Procedia PDF Downloads 8582247 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1352246 Gender Differences in Wrist Kinematics and the Impact of Club Choice on Collegiate Golfers
Authors: Ka Hin Kevin Lee, Jacob Lindh, Yue Qing LI
Abstract:
The biomechanics of golf swing performance are increasingly being investigated to better understand the relationship between gender and equipment choices. Gender-based variations in swing mechanics, particularly wrist kinematics, are thought to have a substantial influence on performance. While current studies show gender differences in wrist motions and the impact of club selection, there is little study on amateur collegiate golfers. This demography provides a unique perspective, spanning professional and leisure activity and providing significant biomechanical aspects. This study looks into gender differences in wrist kinematics during golf swings, specifically angular velocities (yaw, pitch, and roll) and the impact of club choice. Ten undergraduate golfers (five male and five female) took part in the study, each doing five swings with a 7-iron and a driver. Participants used their own clubs to guarantee familiarity and minimize variation. Xsens MTw Awinda wireless motion sensors were mounted on their forearms and wrists, gathering high-resolution motion data at 100 Hz. A thorough calibration procedure was used to synchronise sensor data with individual stances. The trial replicated real-world playing settings, with players told to take full-power swings. Data were processed and analysed in MATLAB, with angular velocity profiles extracted for each swing.Keywords: biomechanics, sports, performance, gender, wrist, kinematics
Procedia PDF Downloads 212245 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials
Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff
Abstract:
In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.Keywords: redox enzyme, nanomaterials, biosensors, electrical communication
Procedia PDF Downloads 4582244 Pond Site Diagnosis: Monoclonal Antibody-Based Farmer Level Tests to Detect the Acute Hepatopancreatic Necrosis Disease in Shrimp
Authors: B. T. Naveen Kumar, Anuj Tyagi, Niraj Kumar Singh, Visanu Boonyawiwat, A. H. Shanthanagouda, Orawan Boodde, K. M. Shankar, Prakash Patil, Shubhkaramjeet Kaur
Abstract:
Early mortality syndrome (EMS)/Acute Hepatopancreatic Necrosis Disease (AHPND) has emerged as a major obstacle for the shrimp farming around the world. It is caused by a strain of Vibrio parahaemolyticus. The possible preventive and control measure is, early and rapid detection of the pathogen in the broodstock, post-larvae and monitoring the shrimp during the culture period. Polymerase chain reaction (PCR) based early detection methods are good, but they are costly, time taking and requires a sophisticated laboratory. The present study was conducted to develop a simple, sensitive and rapid diagnostic farmer level kit for the reliable detection of AHPND in shrimp. A panel of monoclonal antibodies (MAbs) were raised against the recombinant Pir B protein (rPirB). First, an immunodot was developed by using MAbs G3B8 and Mab G3H2 which showed specific reactivity to purified r-PirB protein with no cross-reactivity to other shrimp bacterial pathogens (AHPND free Vibrio parahaemolyticus (Indian strains), V. anguillarum, WSSV, Aeromonas hydrophila, and Aphanomyces invadans). Immunodot developed using Mab G3B8 is more sensitive than that with the Mab G3H2. However, immunodot takes almost 2.5 hours to complete with several hands-on steps. Therefore, the flow-through assay (FTA) was developed by using a plastic cassette containing the nitrocellulose membrane with absorbing pads below. The sample was dotted in the test zone on the nitrocellulose membrane followed by continuos addition of five solutions in the order of i) blocking buffer (BSA) ii) primary antibody (MAb) iii) washing Solution iv) secondary antibody and v) chromogen substrate (TMB) clear purple dots against a white background were considered as positive reactions. The FTA developed using MAbG3B8 is more sensitive than that with MAb G3H2. In FTA the two MAbs showed specific reactivity to purified r-PirB protein and not to other shrimp bacterial pathogens. The FTA is simple to farmer/field level, sensitive and rapid requiring only 8-10 min for completion. Tests can be developed to kits, which will be ideal for use in biosecurity, for the first line of screening (at the port or pond site) and during monitoring and surveillance programmes overall for the good management practices to reduce the risk of the disease.Keywords: acute hepatopancreatic necrosis disease, AHPND, flow-through assay, FTA, farmer level, immunodot, pond site, shrimp
Procedia PDF Downloads 1802243 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface
Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff
Abstract:
In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface
Procedia PDF Downloads 3312242 Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Joshue Perez, Javier Araluce
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.Keywords: gesture detection, mediapipe, multiperceptron layer, robot operating system
Procedia PDF Downloads 1092241 Frames as Interests and Goals: The Case of MedTech Entrepreneurs' Capital Raising Strategies in Australia
Authors: Joelle Hawa, Michael Gilding
Abstract:
The role of interest as a driver of action has been an on-going debate in the sociological sciences. This paper shows evidence as to how economic actors frame their environment in terms of interests and goals to take action. It introduces the concept of 'dynamic actor compass', a cognitive tool that is socially contingent and allows economic actors to navigate their environment, evaluate the level of alignment of interests and goals with other players, and decide whether or not they are willing to rely on, collaborate or partner with others in the field. The paper builds on Kaplan’s model of framing contests and integrates Max Weber’s interests, and ideas construct as well as Beckert’s concept of fictional expectations. The author illustrates this conceptual framework in the case of MedTech entrepreneurs’ capital raising activities in Australia. The study adopts a grounded theory methodology, running in-depth interviews with 24 MedTech entrepreneurs in order to examine their decision-making processes and actions to finance their innovation trajectory. The findings show that participants take into account material and ideal interests and goals that they impose adapt or negotiate with other actors in their environment. These interactions affect the way MedTech entrepreneurs perceive other funders in the field, influencing their capital raising strategies.Keywords: expectations, financing innovation, frames, goals, interest-oriented action, managerial cognition
Procedia PDF Downloads 1442240 Analysis of Real Time Seismic Signal Dataset Using Machine Learning
Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.
Abstract:
Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection
Procedia PDF Downloads 1322239 Advanced Mouse Cursor Control and Speech Recognition Module
Authors: Prasad Kalagura, B. Veeresh kumar
Abstract:
We constructed an interface system that would allow a similarly paralyzed user to interact with a computer with almost full functional capability. A real-time tracking algorithm is implemented based on adaptive skin detection and motion analysis. The clicking of the mouse is activated by the user's eye blinking through a sensor. The keyboard function is implemented by voice recognition kit.Keywords: embedded ARM7 processor, mouse pointer control, voice recognition
Procedia PDF Downloads 5802238 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 3192237 High Sensitivity Crack Detection and Locating with Optimized Spatial Wavelet Analysis
Authors: A. Ghanbari Mardasi, N. Wu, C. Wu
Abstract:
In this study, a spatial wavelet-based crack localization technique for a thick beam is presented. Wavelet scale in spatial wavelet transformation is optimized to enhance crack detection sensitivity. A windowing function is also employed to erase the edge effect of the wavelet transformation, which enables the method to detect and localize cracks near the beam/measurement boundaries. Theoretical model and vibration analysis considering the crack effect are first proposed and performed in MATLAB based on the Timoshenko beam model. Gabor wavelet family is applied to the beam vibration mode shapes derived from the theoretical beam model to magnify the crack effect so as to locate the crack. Relative wavelet coefficient is obtained for sensitivity analysis by comparing the coefficient values at different positions of the beam with the lowest value in the intact area of the beam. Afterward, the optimal wavelet scale corresponding to the highest relative wavelet coefficient at the crack position is obtained for each vibration mode, through numerical simulations. The same procedure is performed for cracks with different sizes and positions in order to find the optimal scale range for the Gabor wavelet family. Finally, Hanning window is applied to different vibration mode shapes in order to overcome the edge effect problem of wavelet transformation and its effect on the localization of crack close to the measurement boundaries. Comparison of the wavelet coefficients distribution of windowed and initial mode shapes demonstrates that window function eases the identification of the cracks close to the boundaries.Keywords: edge effect, scale optimization, small crack locating, spatial wavelet
Procedia PDF Downloads 3602236 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions
Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka
Abstract:
Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68
Procedia PDF Downloads 1372235 Suggestion of Methodology to Detect Building Damage Level Collectively with Flood Depth Utilizing Geographic Information System at Flood Disaster in Japan
Authors: Munenari Inoguchi, Keiko Tamura
Abstract:
In Japan, we were suffered by earthquake, typhoon, and flood disaster in 2019. Especially, 38 of 47 prefectures were affected by typhoon #1919 occurred in October 2019. By this disaster, 99 people were dead, three people were missing, and 484 people were injured as human damage. Furthermore, 3,081 buildings were totally collapsed, 24,998 buildings were half-collapsed. Once disaster occurs, local responders have to inspect damage level of each building by themselves in order to certificate building damage for survivors for starting their life reconstruction process. At that disaster, the total number to be inspected was so high. Based on this situation, Cabinet Office of Japan approved the way to detect building damage level efficiently, that is collectively detection. However, they proposed a just guideline, and local responders had to establish the concrete and infallible method by themselves. Against this issue, we decided to establish the effective and efficient methodology to detect building damage level collectively with flood depth. Besides, we thought that the flood depth was relied on the land height, and we decided to utilize GIS (Geographic Information System) for analyzing the elevation spatially. We focused on the analyzing tool of spatial interpolation, which is utilized to survey the ground water level usually. In establishing the methodology, we considered 4 key-points: 1) how to satisfy the condition defined in the guideline approved by Cabinet Office for detecting building damage level, 2) how to satisfy survivors for the result of building damage level, 3) how to keep equitability and fairness because the detection of building damage level was executed by public institution, 4) how to reduce cost of time and human-resource because they do not have enough time and human-resource for disaster response. Then, we proposed a methodology for detecting building damage level collectively with flood depth utilizing GIS with five steps. First is to obtain the boundary of flooded area. Second is to collect the actual flood depth as sampling over flooded area. Third is to execute spatial analysis of interpolation with sampled flood depth to detect two-dimensional flood depth extent. Fourth is to divide to blocks by four categories of flood depth (non-flooded, over the floor to 100 cm, 100 cm to 180 cm and over 180 cm) following lines of roads for getting satisfaction from survivors. Fifth is to put flood depth level to each building. In Koriyama city of Fukushima prefecture, we proposed the methodology of collectively detection for building damage level as described above, and local responders decided to adopt our methodology at typhoon #1919 in 2019. Then, we and local responders detect building damage level collectively to over 1,000 buildings. We have received good feedback that the methodology was so simple, and it reduced cost of time and human-resources.Keywords: building damage inspection, flood, geographic information system, spatial interpolation
Procedia PDF Downloads 1282234 Deployment of Information and Communication Technology (ICT) to Reduce Occurrences of Terrorism in Nigeria
Authors: Okike Benjamin
Abstract:
Terrorism is the use of violence and threat to intimidate or coerce a person, group, society or even government especially for political purposes. Terrorism may be a way of resisting government by some group who may feel marginalized. It could also be a way of expressing displeasure over the activities of government. On 26th December, 2009, US placed Nigeria as a terrorist nation. Recently, the occurrences of terrorism in Nigeria have increased considerably. In Jos, Plateau state, Nigeria, there was a bomb blast which claimed many lives on the eve of 2010 Christmas. Similarly, there was another bomb blast in Mugadishi (Sani Abacha) Barracks Mammy market on the eve of 2011 New Year. For some time now, it is no longer news that bomb exploded in some Northern part of Nigeria. About 25 years ago, stopping terrorism in America by the Americans relied on old-fashioned tools such as strict physical security at vulnerable places, intelligence gathering by government agents, or individuals, vigilance on the part of all citizens, and a sense of community in which citizens do what could be done to protect each other. Just as technology has virtually been used to better the way many other things are done, so also this powerful new weapon called computer technology can be used to detect and prevent terrorism not only in Nigeria, but all over the world. This paper will x-ray the possible causes and effects of bomb blast, which is an act of terrorism and suggest ways in which Explosive Detection Devices (EDDs) and computer software technology could be deployed to reduce the occurrences of terrorism in Nigeria. This become necessary with the abduction of over 200 schoolgirls in Chibok, Borno State from their hostel by members of Boko Haram sect members on 14th April, 2014. Presently, Barrack Obama and other world leaders have sent some of their military personnel to help rescue those innocent schoolgirls whose offence is simply seeking to acquire western education which the sect strongly believe is forbidden.Keywords: terrorism, bomb blast, computer technology, explosive detection devices, Nigeria
Procedia PDF Downloads 2642233 Distribution and Risk Assessment of Phthalates in Water and Sediment of Omambala River, Anambra State, Nigeria, in Wet Season
Authors: Ogbuagu Josephat Okechukwu, Okeke Abuchi Princewill, Arinze Rosemary Uche, Tabugbo Ifeyinwa Blessing, Ogbuagu Adaora Stellamaris
Abstract:
Phthalates or Phthalate esters (PAEs), categorized as an endocrine disruptor and persistent organic pollutants, are known for their environmental contamination and toxicological effects. In this study, the concentration of selected phthalates was determined across the sampling site to investigate their occurrence and the ecological and health risk assessment they pose to the environment. Water and sediment samples were collected following standard procedures. Solid phase and ultrasonic methods were used to extract seven different PAEs, which were analyzed by Gas Chromatography with Mass Detector (GCMS). The analytical average recovery was found to be within the range of 83.4% ± 2.3%. The results showed that PAEs were detected in six out of seven samples with a high percentage of detection rate in water. Di-n-butyl phthalate (DPB) and disobutyl phthalates (DiBP) showed a greater detection rate compared to other PAE monomers. The concentration of PEs was found to be higher in sediment samples compared to water samples due to the fact that sediments serve as a sink for most persistent organic pollutants. The concentrations of PAEs in water samples and sediments ranged from 0.00 to 0.23 mg/kg and 0.00 to 0.028 mg/l, respectively. Ecological risk assessment using the risk quotient method (RQ) reveals that the estimated environmental risk caused by phthalates lies within the moderate level as RQ ranges from 0.1 to 1.0, whereas the health risk assessment caused by phthalates on estimating the average daily dose reveals that the ingestion of phthalates was found to be approaching permissible limit which can cause serious carcinogenic occurrence in the human system with time due to excess accumulation.Keywords: phthalates, endocrine disruptor, risk assessment, ecological risk, health risk
Procedia PDF Downloads 812232 Barrier to Implementing Public-Private Mix Approach for Tuberculosis Case Management in Nepal
Authors: R. K. Yadav, S. Baral, H. R. Paudel, R. Basnet
Abstract:
The Public-Private Mix (PPM) approach is a strategic initiative that involves engaging all private and public healthcare providers in the fight against tuberculosis using international healthcare standards. For tuberculosis control in Nepal, the PPM approach could be a milestone. This study aimed to explore the barriers to a public-private mix approach in the management of tuberculosis cases in Nepal. A total of 20 respondents participated in the study. Barriers to PPM were identified in the following three themes: 1) Obstacles related to TB case detection, 2) Obstacles related to patients, and 3) Obstacles related to the healthcare system. PPM implementation was challenged by following subthemes that included staff turnover, low private sector participation in workshops, a lack of training, poor recording and reporting, insufficient joint monitoring and supervision, poor financial benefit, lack of coordination and collaboration, and non-supportive TB-related policies and strategies. The study concludes that numerous barriers exist in the way of effective implementation of the PPM approach, including TB cases detection barriers such as knowledge of TB diagnosis and treatment, HW attitude, workload, patient-related barriers such as knowledge of TB, self-medication practice, stigma and discrimination, financial status, and health system-related barriers such as staff turnover and poor engagement of the private sector in workshops, training, recording, and re-evaluation. Government stakeholders must work together with private sector stakeholders to perform joint monitoring and supervision. Private practitioners should receive training and orientation, and presumptive TB patients should be given adequate time and counseling as well as motivation to visit a government health facility.Keywords: barrier, tuberculosis, case finding, PPM, nepal
Procedia PDF Downloads 1132231 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa
Authors: Adesuyi Ayodeji Steve, Zahn Munch
Abstract:
This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.Keywords: change detection, land cover, modis, NDVI
Procedia PDF Downloads 4042230 Examining the Role of Soil pH on the Composition and Abundance of Nitrite Oxidising Bacteria
Authors: Mansur Abdulrasheed, Hussein I. Ibrahim, Ahmed F. Umar
Abstract:
Nitrification, the microbial oxidation of ammonia to nitrate (NO3-) via nitrite (NO2-) is a vital process in the biogeochemical nitrogen cycle and is performed by two distinct functional groups; ammonia oxidisers (comprised of ammonia oxidising bacteria (AOB) and ammonia oxidising archaea (AOA)) and nitrite oxidising bacteria. Autotrophic nitrification is said to occur in acidic soils, even though most laboratory cultures of isolated ammonia and nitrite oxidising bacteria fail to grow below neutral pH. Published studies revealed that soil pH is a major driver for determining the distribution and abundance of AOB and AOA. To determine whether distinct populations of nitrite oxidising bacteria within the lineages of Nitrospira and Nitrobacter are adapted to a particular range of pH as observed in ammonia oxidising organisms, the community structure of Nitrospira-like and Nitrobacter-like NOB were examined across a pH gradient (4.5–7.5) by amplifying nitrite oxido-reductase (nxrA) and 16S rRNA genes followed by denaturing gradient gel electrophoresis (DGGE). The community structure of both Nitrospira and Nitrobacter changed with soil pH, with distinct populations observed in acidic and neutral soils. The abundance of Nitrospira-like 16S rRNA and Nitrobacter-like nxrA gene copies contrasted across the pH gradient. Nitrobacter-like nxrA gene abundance decreased with increasing soil pH, whereas Nitrospira-like 16S rRNA gene abundance increased with increasing pH. Findings indicated that abundance and distributions of soil NOB is influence by soil pH.Keywords: nitrospira, nitrobacter, nitrite-oxidizing bacteria, nitrification, pH, soil
Procedia PDF Downloads 3052229 Modelling the Effect of Physical Environment Factors on Child Pedestrian Severity Collisions in Malaysia: A Multinomial Logistic Regression Analysis
Authors: Muhamad N. Borhan, Nur S. Darus, Siti Z. Ishak, Rozmi Ismail, Siti F. M. Razali
Abstract:
Children are at the greater risk to be involved in road traffic collisions due to the complex interaction of various elements in our transportation system. It encompasses interactions between the elements of children and driver behavior along with physical and social environment factors. The present study examined the effect between the collisions severity and physical environment factors on child pedestrian collisions. The severity of collisions is categorized into four injury outcomes: fatal, serious injury, slight injury, and damage. The sample size comprised of 2487 cases of child pedestrian-vehicle collisions in which children aged 7 to 12 years old was involved in Malaysia for the years 2006-2015. A multinomial logistic regression was applied to establish the effect between severity levels and physical environment factors. The results showed that eight contributing factors influence the probability of an injury road surface material, traffic system, road marking, control type, lighting condition, type of location, land use and road surface condition. Understanding the effect of physical environment factors may contribute to the improvement of physical environment design and decrease the collision involvement.Keywords: child pedestrian, collisions, primary school, road injuries
Procedia PDF Downloads 1672228 Molecular Interactions Driving RNA Binding to hnRNPA1 Implicated in Neurodegeneration
Authors: Sakina Fatima, Joseph-Patrick W. E. Clarke, Patricia A. Thibault, Subha Kalyaanamoorthy, Michael Levin, Aravindhan Ganesan
Abstract:
Heteronuclear ribonucleoprotein (hnRNPA1 or A1) is associated with the pathology of different diseases, including neurological disorders and cancers. In particular, the aggregation and dysfunction of A1 have been identified as a critical driver for neurodegeneration (NDG) in Multiple Sclerosis (MS). Structurally, A1 includes a low-complexity domain (LCD) and two RNA-recognition motifs (RRMs), and their interdomain coordination may play a crucial role in A1 aggregation. Previous studies propose that RNA-inhibitors or nucleoside analogs that bind to RRMs can potentially prevent A1 self-association. Therefore, molecular-level understanding of the structures, dynamics, and nucleotide interactions with A1 RRMs can be useful for developing therapeutics for NDG in MS. In this work, a combination of computational modelling and biochemical experiments were employed to analyze a set of RNA-A1 RRM complexes. Initially, the atomistic models of RNA-RRM complexes were constructed by modifying known crystal structures (e.g., PDBs: 4YOE and 5MPG), and through molecular docking calculations. The complexes were optimized using molecular dynamics simulations (200-400 ns), and their binding free energies were computed. The binding affinities of the selected complexes were validated using a thermal shift assay. Further, the most important molecular interactions that contributed to the overall stability of the RNA-A1 RRM complexes were deduced. The results highlight that adenine and guanine are the most suitable nucleotides for high-affinity binding with A1. These insights will be useful in the rational design of nucleotide-analogs for targeting A1 RRMs.Keywords: hnRNPA1, molecular docking, molecular dynamics, RNA-binding proteins
Procedia PDF Downloads 1242227 The Impact of Fiscal Policy on Gross Domestic Product under Contributions of Level of External Debt in Developing Countries
Authors: Zohreh Bang Tavakoli, Shuktika Chatterjee
Abstract:
This study investigates the fiscal policy impact on countries’ economic growth in developing countries with a different external debt level. The fiscal policy effectiveness has been re-emphasized in the global financial crisis of 2008 with the external debt as its new contemporary driver (Ruščáková and Semančíková, 2016). According to Bouakez, (2014 ) different theories have proposed the economic consequence of fiscal policy, specifically for developing countries. However, fiscal policy literature is lacking research regarding the fiscal policy’s effectiveness with the external debt’s contributions through comprehensive study (Canh, 2018). Also, according to scholars, high levels of external debt will influence economic growth. First, through foreign resources and channel of investment in which high level of debt decreases the amount of foreign investment in the developing countries. Second, through the deterioration of foreign investors and fiscal policies related to a high level of debt (Cordella, et.al., 2010). Therefore, this study proposed that only countries with a low external debt level and appropriate fiscal policies and good quality institutions can gain the proper quantity and quality of foreign investors, which will help the economic growth. For this, this research is examining the impact of fiscal policy on developing countries' economic growth in the situation of different external debt levels.Keywords: fiscal policy, external debt, gross domestic product, developing countries
Procedia PDF Downloads 1642226 Use of the Occupational Repetitive Action Method in Different Productive Sectors: A Literature Review 2007-2018
Authors: Aanh Eduardo Dimate-Garcia, Diana Carolina Rodriguez-Romero, Edna Yuliana Gonzalez Rincon, Diana Marcela Pardo Lopez, Yessica Garibello Cubillos
Abstract:
Musculoskeletal disorders (MD) are the new epidemic of chronic diseases, are multifactorial and affect the different productive sectors. Although there are multiple instruments to evaluate the static and dynamic load, the method of repetitive occupational action (OCRA) seems to be an attractive option. Objective: It is aimed to analyze the use of the OCRA method and the prevalence of MD in workers of various productive sectors according to the literature (2007-2018). Materials and Methods: A literature review (following the PRISMA statement) of studies aimed at assessing the level of biomechanical risk (OCRA) and the prevalence of MD in the databases Scielo, Science Direct, Scopus, ProQuest, Gale, PubMed, Lilacs and Ebsco was realized; 7 studies met the selection criteria; the majority are quantitative (cross section). Results: it was evidenced (gardening and flower-growers) in this review that 79% of the conditions related to the task require physical requirements and involve repetitive movements. In addition, of the high appearance of DM in the high-low back, upper and lower extremities that are produced by the frequency of the activities carried out (footwear production). Likewise, there was evidence of 'very high risks' of developing MD (salmon industry) and a medium index (OCRA) for repetitive movements that require special care (U-Assembly line). Conclusions: the review showed the limited use of the OCRA method for the detection of MD in workers from different sectors, and this method can be used for the detection of biomechanical risk and the appearance of MD.Keywords: checklist, cumulative trauma disorders, musculoskeletal diseases, repetitive movements
Procedia PDF Downloads 1852225 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images
Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy
Abstract:
Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms
Procedia PDF Downloads 3822224 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer A. Aljohani
Abstract:
COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network
Procedia PDF Downloads 952223 Prediction of Ionizing Radiation Doses in Irradiated red Pepper (Capsicum annuum) and Mint (Mentha piperita) by Gel Electrophoresis
Authors: Şeyma Özçirak Ergün, Ergün Şakalar, Emrah Yalazi̇, Nebahat Şahi̇n
Abstract:
Food irradiation is a usage of exposing food to ionising radiation (IR) such as gamma rays. IR has been used to decrease the number of harmful microorganisms in the food such as spices. Excessive usage of IR can cause damage to both food and people who consuming food. And also it causes to damages on food DNA. Generally, IR detection techniques were utilized in literature for spices are Electron Spin Resonance (ESR), Thermos Luminescence (TL). Storage creates negative effect on IR detection method then analyses of samples have been performed without storage in general. In the experimental part, red pepper (Capsicum annuum) and mint (Mentha piperita) as spices were exposed to 0, 0.272, 0.497, 1.06, 3.64, 8.82, and 17.42 kGy ionize radiation. ESR was applied to samples irradiated. DNA isolation from irradiated samples was performed using GIDAGEN Multi Fast DNA isolation kit. The DNA concentration was measured using a microplate reader spectrophotometer (Infinite® 200 PRO-Life Science–Tecan). The concentration of each DNA was adjusted to 50 ng/µL. Genomic DNA was imaged by UV transilluminator (Gel Doc XR System, Bio-Rad) for the estimation of genomic DNA bp-fragment size after IR. Thus, agarose gel profiles of irradiated spices were obtained to determine the change of band profiles. Besides, samples were examined at three different time periods (0, 3, 6 months storage) to show the feasibility of developed method. Results of gel electrophoresis showed especially degradation of DNA of irradiated samples. In conclusion, this study with gel electrophoresis can be used as a basis for the identification of the dose of irradiation by looking at degradation profiles at specific amounts of irradiation. Agarose gel results of irradiated samples were confirmed with ESR analysis. This method can be applied widely to not only food products but also all biological materials containing DNA to predict radiation-induced damage of DNA.Keywords: DNA, electrophoresis, gel electrophoresis, ionizeradiation
Procedia PDF Downloads 261