Search results for: data freshness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25138

Search results for: data freshness

23458 A Review of Data Visualization Best Practices: Lessons for Open Government Data Portals

Authors: Bahareh Ansari

Abstract:

Background: The Open Government Data (OGD) movement in the last decade has encouraged many government organizations around the world to make their data publicly available to advance democratic processes. But current open data platforms have not yet reached to their full potential in supporting all interested parties. To make the data useful and understandable for everyone, scholars suggested that opening the data should be supplemented by visualization. However, different visualizations of the same information can dramatically change an individual’s cognitive and emotional experience in working with the data. This study reviews the data visualization literature to create a list of the methods empirically tested to enhance users’ performance and experience in working with a visualization tool. This list can be used in evaluating the OGD visualization practices and informing the future open data initiatives. Methods: Previous reviews of visualization literature categorized the visualization outcomes into four categories including recall/memorability, insight/comprehension, engagement, and enjoyment. To identify the papers, a search for these outcomes was conducted in the abstract of the publications of top-tier visualization venues including IEEE Transactions for Visualization and Computer Graphics, Computer Graphics, and proceedings of the CHI Conference on Human Factors in Computing Systems. The search results are complemented with a search in the references of the identified articles, and a search for 'open data visualization,' and 'visualization evaluation' keywords in the IEEE explore and ACM digital libraries. Articles are included if they provide empirical evidence through conducting controlled user experiments, or provide a review of these empirical studies. The qualitative synthesis of the studies focuses on identification and classifying the methods, and the conditions under which they are examined to positively affect the visualization outcomes. Findings: The keyword search yields 760 studies, of which 30 are included after the title/abstract review. The classification of the included articles shows five distinct methods: interactive design, aesthetic (artistic) style, storytelling, decorative elements that do not provide extra information including text, image, and embellishment on the graphs), and animation. Studies on decorative elements show consistency on the positive effects of these elements on user engagement and recall but are less consistent in their examination of the user performance. This inconsistency could be attributable to the particular data type or specific design method used in each study. The interactive design studies are consistent in their findings of the positive effect on the outcomes. Storytelling studies show some inconsistencies regarding the design effect on user engagement, enjoyment, recall, and performance, which could be indicative of the specific conditions required for the use of this method. Last two methods, aesthetics and animation, have been less frequent in the included articles, and provide consistent positive results on some of the outcomes. Implications for e-government: Review of the visualization best-practice methods show that each of these methods is beneficial under specific conditions. By using these methods in a potentially beneficial condition, OGD practices can promote a wide range of individuals to involve and work with the government data and ultimately engage in government policy-making procedures.

Keywords: best practices, data visualization, literature review, open government data

Procedia PDF Downloads 104
23457 Reduced Power Consumption by Randomization for DSI3

Authors: David Levy

Abstract:

The newly released Distributed System Interface 3 (DSI3) Bus Standard specification defines 3 modulation levels from which 16 valid symbols are coded. This structure creates power consumption variations depending on the transmitted data of a factor of more than 2 between minimum and maximum. The power generation unit has to consider therefore the worst case maximum consumption all the time and be built accordingly. This paper proposes a method to reduce both the average current consumption and worst case current consumption. The transmitter randomizes the data using several pseudo-random sequences. It then estimates the energy consumption of the generated frames and selects to transmit the one which consumes the least. The transmitter also prepends the index of the pseudo-random sequence, which is not randomized, to allow the receiver to recover the original data using the correct sequence. We show that in the case that the frame occupies most of the DSI3 synchronization period, we achieve average power consumption reduction by up to 13% and the worst case power consumption is reduced by 17.7%.

Keywords: DSI3, energy, power consumption, randomization

Procedia PDF Downloads 537
23456 Ensemble-Based SVM Classification Approach for miRNA Prediction

Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam

Abstract:

In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.

Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data

Procedia PDF Downloads 347
23455 Quality of Life of Patients on Oral Antiplatelet Therapy in Outpatient Cardiac Department Dr. Hasan Sadikin Central General Hospital Bandung

Authors: Andhiani Sharfina Arnellya, Mochammad Indra Permana, Dika Pramita Destiani, Ellin Febrina

Abstract:

Health Research Data, Ministry of Health of Indonesia in 2007, showed coronary heart disease (CHD) or coronary artery disease (CAD) was the third leading cause of death in Indonesia after hypertension and stroke with 7.2% incidence rate. Antiplatelet is one of the important therapy in management of patients with CHD. In addition to therapeutic effect on patients, quality of life is one aspect of another assessment to see the success of antiplatelet therapy. The purpose of this study was to determine the quality of life of patients on oral antiplatelet therapy in outpatient cardiac department Dr. Hasan Sadikin central general hospital, Bandung, Indonesia. This research is a cross sectional by collecting data through quality of life questionnaire of patients which performed prospectively as primary data and secondary data from medical record of patients. The results of this study showed that 54.3% of patients had a good quality of life, 45% had a moderate quality of life, and 0.7% had a poor quality of life. There are no significant differences in quality of life-based on age, gender, diagnosis, and duration of drug use.

Keywords: antiplatelet, quality of life, coronary artery disease, coronary heart disease

Procedia PDF Downloads 323
23454 Commissioning of a Flattening Filter Free (FFF) using an Anisotropic Analytical Algorithm (AAA)

Authors: Safiqul Islam, Anamul Haque, Mohammad Amran Hossain

Abstract:

Aim: To compare the dosimetric parameters of the flattened and flattening filter free (FFF) beam and to validate the beam data using anisotropic analytical algorithm (AAA). Materials and Methods: All the dosimetric data’s (i.e. depth dose profiles, profile curves, output factors, penumbra etc.) required for the beam modeling of AAA were acquired using the Blue Phantom RFA for 6 MV, 6 FFF, 10MV & 10FFF. Progressive resolution Optimizer and Dose Volume Optimizer algorithm for VMAT and IMRT were are also configured in the beam model. Beam modeling of the AAA were compared with the measured data sets. Results: Due to the higher and lover energy component in 6FFF and 10 FFF the surface doses are 10 to 15% higher compared to flattened 6 MV and 10 MV beams. FFF beam has a lower mean energy compared to the flattened beam and the beam quality index were 6 MV 0.667, 6FFF 0.629, 10 MV 0.74 and 10 FFF 0.695 respectively. Gamma evaluation with 2% dose and 2 mm distance criteria for the Open Beam, IMRT and VMAT plans were also performed and found a good agreement between the modeled and measured data. Conclusion: We have successfully modeled the AAA algorithm for the flattened and FFF beams and achieved a good agreement with the calculated and measured value.

Keywords: commissioning of a Flattening Filter Free (FFF) , using an Anisotropic Analytical Algorithm (AAA), flattened beam, parameters

Procedia PDF Downloads 298
23453 Molecular Characterization of Polyploid Bamboo (Dendrocalamus hamiltonii) Using Microsatellite Markers

Authors: Rajendra K. Meena, Maneesh S. Bhandari, Santan Barthwal, Harish S. Ginwal

Abstract:

Microsatellite markers are the most valuable tools for the characterization of plant genetic resources or population genetic analysis. Since it is codominant and allelic markers, utilizing them in polyploid species remained doubtful. In such cases, the microsatellite marker is usually analyzed by treating them as a dominant marker. In the current study, it has been showed that despite losing the advantage of co-dominance, microsatellite markers are still a powerful tool for genotyping of polyploid species because of availability of large number of reproducible alleles per locus. It has been studied by genotyping of 19 subpopulations of Dendrocalamus hamiltonii (hexaploid bamboo species) with 17 polymorphic simple sequence repeat (SSR) primer pairs. Among these, ten primers gave typical banding pattern of microsatellite marker as expected in diploid species, but rest 7 gave an unusual pattern, i.e., more than two bands per locus per genotype. In such case, genotyping data are generally analyzed by considering as dominant markers. In the current study, data were analyzed in both ways as dominant and co-dominant. All the 17 primers were first scored as nonallelic data and analyzed; later, the ten primers giving standard banding patterns were analyzed as allelic data and the results were compared. The UPGMA clustering and genetic structure showed that results obtained with both the data sets are very similar with slight variation, and therefore the SSR marker could be utilized to characterize polyploid species by considering them as a dominant marker. The study is highly useful to widen the scope for SSR markers applications and beneficial to the researchers dealing with polyploid species.

Keywords: microsatellite markers, Dendrocalamus hamiltonii, dominant and codominant, polyploids

Procedia PDF Downloads 141
23452 Big Data Analysis Approach for Comparison New York Taxi Drivers' Operation Patterns between Workdays and Weekends Focusing on the Revenue Aspect

Authors: Yongqi Dong, Zuo Zhang, Rui Fu, Li Li

Abstract:

The records generated by taxicabs which are equipped with GPS devices is of vital importance for studying human mobility behavior, however, here we are focusing on taxi drivers' operation strategies between workdays and weekends temporally and spatially. We identify a group of valuable characteristics through large scale drivers' behavior in a complex metropolis environment. Based on the daily operations of 31,000 taxi drivers in New York City, we classify drivers into top, ordinary and low-income groups according to their monthly working load, daily income, daily ranking and the variance of the daily rank. Then, we apply big data analysis and visualization methods to compare the different characteristics among top, ordinary and low income drivers in selecting of working time, working area as well as strategies between workdays and weekends. The results verify that top drivers do have special operation tactics to help themselves serve more passengers, travel faster thus make more money per unit time. This research provides new possibilities for fully utilizing the information obtained from urban taxicab data for estimating human behavior, which is not only very useful for individual taxicab driver but also to those policy-makers in city authorities.

Keywords: big data, operation strategies, comparison, revenue, temporal, spatial

Procedia PDF Downloads 226
23451 Using Morlet Wavelet Filter to Denoising Geoelectric ‘Disturbances’ Map of Moroccan Phosphate Deposit ‘Disturbances’

Authors: Saad Bakkali

Abstract:

Morocco is a major producer of phosphate, with an annual output of 19 million tons and reserves in excess of 35 billion cubic meters. This represents more than 75% of world reserves. Resistivity surveys have been successfully used in the Oulad Abdoun phosphate basin. A Schlumberger resistivity survey over an area of 50 hectares was carried out. A new field procedure based on analytic signal response of resistivity data was tested to deal with the presence of phosphate deposit disturbances. A resistivity map was expected to allow the electrical resistivity signal to be imaged in 2D. 2D wavelet is standard tool in the interpretation of geophysical potential field data. Wavelet transform is particularly suitable in denoising, filtering and analyzing geophysical data singularities. Wavelet transform tools are applied to analysis of a moroccan phosphate deposit ‘disturbances’. Wavelet approach applied to modeling surface phosphate “disturbances” was found to be consistently useful.

Keywords: resistivity, Schlumberger, phosphate, wavelet, Morocco

Procedia PDF Downloads 415
23450 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation

Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau

Abstract:

In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.

Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa

Procedia PDF Downloads 153
23449 Statistical Investigation Projects: A Way for Pre-Service Mathematics Teachers to Actively Solve a Campus Problem

Authors: Muhammet Şahal, Oğuz Köklü

Abstract:

As statistical thinking and problem-solving processes have become increasingly important, teachers need to be more rigorously prepared with statistical knowledge to teach their students effectively. This study examined preservice mathematics teachers' development of statistical investigation projects using data and exploratory data analysis tools, following a design-based research perspective and statistical investigation cycle. A total of 26 pre-service senior mathematics teachers from a public university in Turkiye participated in the study. They formed groups of 3-4 members voluntarily and worked on their statistical investigation projects for six weeks. The data sources were audio recordings of pre-service teachers' group discussions while working on their projects in class, whole-class video recordings, and each group’s weekly and final reports. As part of the study, we reviewed weekly reports, provided timely feedback specific to each group, and revised the following week's class work based on the groups’ needs and development in their project. We used content analysis to analyze groups’ audio and classroom video recordings. The participants encountered several difficulties, which included formulating a meaningful statistical question in the early phase of the investigation, securing the most suitable data collection strategy, and deciding on the data analysis method appropriate for their statistical questions. The data collection and organization processes were challenging for some groups and revealed the importance of comprehensive planning. Overall, preservice senior mathematics teachers were able to work on a statistical project that contained the formulation of a statistical question, planning, data collection, analysis, and reaching a conclusion holistically, even though they faced challenges because of their lack of experience. The study suggests that preservice senior mathematics teachers have the potential to apply statistical knowledge and techniques in a real-world context, and they could proceed with the project with the support of the researchers. We provided implications for the statistical education of teachers and future research.

Keywords: design-based study, pre-service mathematics teachers, statistical investigation projects, statistical model

Procedia PDF Downloads 82
23448 The Study on the Tourism Routes to Create Interpretation for Promote Cultural Tourism in Bangnoi Floating Market, Bangkontee District, Samut Songkhram Province, Thailand

Authors: Pornnapat Berndt

Abstract:

The purpose of this research is to study the tourism routes in Bangnoi Floating Market, Bangkhontee District, Samut Songkhram province, Thailand in order to create type and form of interpretation to promote cultural tourism based on local community and visitor requirement. To accomplish the goals and objectives, qualitative research will be applied. The research instruments used are observation, questionnaires, basic interviews, in-depth interviews, focus group, interviewed of key local informants including site visitors. The study also uses both primary data and secondary data. A Statistical Package for Social Sciences (SPSS) was used to analyze the data. Descriptive and inferential statistics such as tables, percentage, mean and standard deviation were used for data analysis and summary. From research result, it is revealed that the local community requirement on types of interpretation conforms to visitors require which need guide post, guide book, etc. with up to date and informally content to present Bangnoi Floating Market which got the most demand score (3.78) considered as most wanted demand.

Keywords: interpretation, cultural tourism, tourism route, local community, stakeholders participated

Procedia PDF Downloads 291
23447 Modular Data and Calculation Framework for a Technology-based Mapping of the Manufacturing Process According to the Value Stream Management Approach

Authors: Tim Wollert, Fabian Behrendt

Abstract:

Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.

Keywords: lean management 4.0, value stream management (VSM) 4.0, dynamic value stream mapping, enterprise resource planning (ERP)

Procedia PDF Downloads 148
23446 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 59
23445 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations

Authors: Yanjie Zhu, André Jesus, Irwanda Laory

Abstract:

Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.

Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)

Procedia PDF Downloads 303
23444 Exploring Social Impact of Emerging Technologies from Futuristic Data

Authors: Heeyeul Kwon, Yongtae Park

Abstract:

Despite the highly touted benefits, emerging technologies have unleashed pervasive concerns regarding unintended and unforeseen social impacts. Thus, those wishing to create safe and socially acceptable products need to identify such side effects and mitigate them prior to the market proliferation. Various methodologies in the field of technology assessment (TA), namely Delphi, impact assessment, and scenario planning, have been widely incorporated in such a circumstance. However, literatures face a major limitation in terms of sole reliance on participatory workshop activities. They unfortunately missed out the availability of a massive untapped data source of futuristic information flooding through the Internet. This research thus seeks to gain insights into utilization of futuristic data, future-oriented documents from the Internet, as a supplementary method to generate social impact scenarios whilst capturing perspectives of experts from a wide variety of disciplines. To this end, network analysis is conducted based on the social keywords extracted from the futuristic documents by text mining, which is then used as a guide to produce a comprehensive set of detailed scenarios. Our proposed approach facilitates harmonized depictions of possible hazardous consequences of emerging technologies and thereby makes decision makers more aware of, and responsive to, broad qualitative uncertainties.

Keywords: emerging technologies, futuristic data, scenario, text mining

Procedia PDF Downloads 491
23443 A Survey on Lossless Compression of Bayer Color Filter Array Images

Authors: Alina Trifan, António J. R. Neves

Abstract:

Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods.

Keywords: bayer image, CFA, lossless compression, image coding standards

Procedia PDF Downloads 319
23442 Hybrid Renewable Energy System Development Towards Autonomous Operation: The Deployment Potential in Greece

Authors: Afroditi Zamanidou, Dionysios Giannakopoulos, Konstantinos Manolitsis

Abstract:

A notable amount of electrical energy demand in many countries worldwide is used to cover public energy demand for road, square and other public spaces’ lighting. Renewable energy can contribute in a significant way to the electrical energy demand coverage for public lighting. This paper focuses on the sizing and design of a hybrid energy system (HES) exploiting the solar-wind energy potential to meet the electrical energy needs of lighting roads, squares and other public spaces. Moreover, the proposed HES provides coverage of the electrical energy demand for a Wi-Fi hotspot and a charging hotspot for the end-users. Alongside the sizing of the energy production system of the proposed HES, in order to ensure a reliable supply without interruptions, a storage system is added and sized. Multiple scenarios of energy consumption are assumed and applied in order to optimize the sizing of the energy production system and the energy storage system. A database with meteorological prediction data for 51 areas in Greece is developed in order to assess the possible deployment of the proposed HES. Since there are detailed meteorological prediction data for all 51 areas under investigation, the use of these data is evaluated, comparing them to real meteorological data. The meteorological prediction data are exploited to form three hourly production profiles for each area for every month of the year; minimum, average and maximum energy production. The energy production profiles are combined with the energy consumption scenarios and the sizing results of the energy production system and the energy storage system are extracted and presented for every area. Finally, the economic performance of the proposed HES in terms of Levelized cost of energy is estimated by calculating and assessing construction, operation and maintenance costs.

Keywords: energy production system sizing, Greece’s deployment potential, meteorological prediction data, wind-solar hybrid energy system, levelized cost of energy

Procedia PDF Downloads 153
23441 Contribution of Culture on Divorce Prevention in Indonesia on "New Normal" Era: Study at Batak, Malay and Minangkabau Tribes

Authors: Ikhwanuddin Harahap

Abstract:

This paper investigates the contribution of culture to divorce prevention in Indonesia in the "new normal" era, especially in Batak, Malay and Minangkabau tribes. This research is qualitative with an anthropological approach. Data were collected by interview and observation techniques. Checking the validity of the data is done by triangulation technique, and the data is analyzed by content analysis. The results of the research showed that culture has a strategic role in preventing divorce. In Batak, Malay and Minangkabau-as, major ethnic groups in Indonesian cultures, have a set of norms and dogmas conveyed at the wedding party, namely “marriage must be eternal and if divorced by death.” In addition, cultural figures actively become arbiters in resolving family conflicts, such as Harajaon in Batak, Datuk in Malay and Mamak in Minangkabau. Cultural dogmas and cultural figures play a very important role in preventing divorce.

Keywords: culture, divorce, prevention, contribution, new normal, era

Procedia PDF Downloads 167
23440 A Vehicle Monitoring System Based on the LoRa Technique

Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang

Abstract:

Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.

Keywords: LoRa, monitoring system, smart city, vehicle

Procedia PDF Downloads 415
23439 SisGeo: Support System for the Research of Georeferenced Comparisons Applied to Professional and Academic Devices

Authors: Bruno D. Souza, Gerson G. Cunha, Michael O. Ferreira, Roberto Rosenhaim, Robson C. Santos, Sergio O. Santos

Abstract:

Devices and applications that use satellite-based positioning are becoming more popular day-by-day. Thus, evolution and improvement in this technology are mandatory. Accordingly, satellite georeferenced systems need to accomplish the same evolution rhythm. Either GPS (Global Positioning System) or its similar Russian GLONASS (Global Navigation Satellite System) are system samples that offer us powerful tools to plot coordinates on the earth surface. The development of this research aims the study of several aspects related to use of GPS and GLONASS technologies, given its application and collected data improvement during geodetic data acquisition. So, both relevant theoretic and practical aspects are considered. In this context, at the theoretical part, the main systems' characteristics are shown, observing its similarities and differences. At the practical part, a series of experiences are performed and obtained data packages are compared in order to demonstrate equivalence or differences among them. The evaluation methodology targets both quantitative and qualitative analysis provided by GPS and GPS/GLONASS receptors. Meanwhile, a specific collected data storage system was developed to better compare and analyze them (SisGeo - Georeferenced Research Comparison Support System).

Keywords: satellites, systems, applications, experiments, receivers

Procedia PDF Downloads 253
23438 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York

Authors: Haowei Lu, Anaya Aaron

Abstract:

Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.

Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty

Procedia PDF Downloads 30
23437 Analysis of Digital Transformation in Banking: The Hungarian Case

Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi

Abstract:

The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.

Keywords: big data, digital transformation, dynamic capabilities, mobile banking

Procedia PDF Downloads 64
23436 Applying Spanning Tree Graph Theory for Automatic Database Normalization

Authors: Chetneti Srisa-an

Abstract:

In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.

Keywords: relational database, functional dependency, automatic normalization, primary key, spanning tree

Procedia PDF Downloads 353
23435 Producing Outdoor Design Conditions based on the Dependency between Meteorological Elements: Copula Approach

Authors: Zhichao Jiao, Craig Farnham, Jihui Yuan, Kazuo Emura

Abstract:

It is common to use the outdoor design weather data to select the air-conditioning capacity in the building design stage. The outdoor design weather data are usually comprised of multiple meteorological elements for a 24-hour period separately, but the dependency between the elements is not well considered, which may cause an overestimation of selecting air-conditioning capacity. Considering the dependency between the air temperature and global solar radiation, we used the copula approach to model the joint distributions of those two weather elements and suggest a new method of selecting more credible outdoor design conditions based on the specific simultaneous occurrence probability of air temperature and global solar radiation. In this paper, the 10-year period hourly weather data from 2001 to 2010 in Osaka, Japan, was used to analyze the dependency structure and joint distribution, the result shows that the Joe-Frank copula fit for almost all hourly data. According to calculating the simultaneous occurrence probability and the common exceeding probability of air temperature and global solar radiation, the results have shown that the maximum difference in design air temperature and global solar radiation of the day is about 2 degrees Celsius and 30W/m2, respectively.

Keywords: energy conservation, design weather database, HVAC, copula approach

Procedia PDF Downloads 264
23434 Environmental Impact Assessment in Mining Regions with Remote Sensing

Authors: Carla Palencia-Aguilar

Abstract:

Calculations of Net Carbon Balance can be obtained by means of Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), and Net Primary Production (NPP). The latter is an important component of the biosphere carbon cycle and is easily obtained data from MODIS MOD17A3HGF; however, the results are only available yearly. To overcome data availability, bands 33 to 36 from MODIS MYD021KM (obtained on a daily basis) were analyzed and compared with NPP data from the years 2000 to 2021 in 7 sites where surface mining takes place in the Colombian territory. Coal, Gold, Iron, and Limestone were the minerals of interest. Scales and Units as well as thermal anomalies, were considered for net carbon balance per location. The NPP time series from the satellite images were filtered by using two Matlab filters: First order and Discrete Transfer. After filtering the NPP time series, comparing the graph results from the satellite’s image value, and running a linear regression, the results showed R2 from 0,72 to 0,85. To establish comparable units among NPP and bands 33 to 36, the Greenhouse Gas Equivalencies Calculator by EPA was used. The comparison was established in two ways: one by the sum of all the data per point per year and the other by the average of 46 weeks and finding the percentage that the value represented with respect to NPP. The former underestimated the total CO2 emissions. The results also showed that coal and gold mining in the last 22 years had less CO2 emissions than limestone, with an average per year of 143 kton CO2 eq for gold, 152 kton CO2 eq for coal, and 287 kton CO2 eq for iron. Limestone emissions varied from 206 to 441 kton CO2 eq. The maximum emission values from unfiltered data correspond to 165 kton CO2 eq. for gold, 188 kton CO2 eq. for coal, and 310 kton CO2 eq. for iron and limestone, varying from 231 to 490 kton CO2 eq. If the most pollutant limestone site improves its production technology, limestone could count with a maximum of 318 kton CO2 eq emissions per year, a value very similar respect to iron. The importance of gathering data is to establish benchmarks in order to attain 2050’s zero emissions goal.

Keywords: carbon dioxide, NPP, MODIS, MINING

Procedia PDF Downloads 103
23433 The Role of Mass Sport Guidance in the Health Service Industry of China

Authors: Qiu Jian-Rong, Li Qing-Hui, Zhan Dong, Zhang Lei

Abstract:

Facing the problem of the demand of economic restructuring and risk of social economy stagnation due to the ageing of population, the Health Service Industry will play a very important role in the structure of industry in the future. During the process, the orient of Chinese sports medicine as well as the joint with preventive medicine, and the integration with data bank and cloud computing will be involved.

Keywords: China, the health service industry, mass sport, data bank

Procedia PDF Downloads 627
23432 A Numerical Investigation of Lamb Wave Damage Diagnosis for Composite Delamination Using Instantaneous Phase

Authors: Haode Huo, Jingjing He, Rui Kang, Xuefei Guan

Abstract:

This paper presents a study of Lamb wave damage diagnosis of composite delamination using instantaneous phase data. Numerical experiments are performed using the finite element method. Different sizes of delamination damages are modeled using finite element package ABAQUS. Lamb wave excitation and responses data are obtained using a pitch-catch configuration. Empirical mode decomposition is employed to extract the intrinsic mode functions (IMF). Hilbert–Huang Transform is applied to each of the resulting IMFs to obtain the instantaneous phase information. The baseline data for healthy plates are also generated using the same procedure. The size of delamination is correlated with the instantaneous phase change for damage diagnosis. It is observed that the unwrapped instantaneous phase of shows a consistent behavior with the increasing delamination size.

Keywords: delamination, lamb wave, finite element method, EMD, instantaneous phase

Procedia PDF Downloads 319
23431 Relationship between Wave Velocities and Geo-Pressures in Shallow Libyan Carbonate Reservoir

Authors: Tarek Sabri Duzan

Abstract:

Knowledge of the magnitude of Geo-pressures (Pore, Fracture & Over-burden pressures) is vital especially during drilling, completions, stimulations, Enhance Oil Recovery. Many times problems, like lost circulation could have been avoided if techniques for calculating Geo-pressures had been employed in the well planning, mud weight plan, and casing design. In this paper, we focused on the relationships between Geo-pressures and wave velocities (P-Wave (Vp) and S-wave (Vs)) in shallow Libyan carbonate reservoir in the western part of the Sirte Basin (Dahra F-Area). The data used in this report was collected from four new wells recently drilled. Those wells were scattered throughout the interested reservoir as shown in figure-1. The data used in this work are bulk density, Formation Mult -Tester (FMT) results and Acoustic wave velocities. Furthermore, Eaton Method is the most common equation used in the world, therefore this equation has been used to calculate Fracture pressure for all wells using dynamic Poisson ratio calculated by using acoustic wave velocities, FMT results for pore pressure, Overburden pressure estimated by using bulk density. Upon data analysis, it has been found that there is a linear relationship between Geo-pressures (Pore, Fracture & Over-Burden pressures) and wave velocities ratio (Vp/Vs). However, the relationship was not clear in the high-pressure area, as shown in figure-10. Therefore, it is recommended to use the output relationship utilizing the new seismic data for shallow carbonate reservoir to predict the Geo-pressures for future oil operations. More data can be collected from the high-pressure zone to investigate more about this area.

Keywords: bulk density, formation mult-tester (FMT) results, acoustic wave, carbonate shalow reservoir, d/jfield velocities

Procedia PDF Downloads 286
23430 Manufacturing Facility Location Selection: A Numercal Taxonomy Approach

Authors: Seifoddini Hamid, Mardikoraeem Mahsa, Ghorayshi Roya

Abstract:

Manufacturing facility location selection is an important strategic decision for many industrial corporations. In this paper, a new approach to the manufacturing location selection problem is proposed. In this approach, cluster analysis is employed to identify suitable manufacturing locations based on economic, social, environmental, and political factors. These factors are quantified using the existing real world data.

Keywords: manufacturing facility, manufacturing sites, real world data

Procedia PDF Downloads 561
23429 Unsupervised Domain Adaptive Text Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, unsupervised training, text retrieval

Procedia PDF Downloads 71