Search results for: bivariate statistical techniques
8718 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 1678717 Estimates of (Co)Variance Components and Genetic Parameters for Body Weights and Growth Efficiency Traits in the New Zealand White Rabbits
Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi
Abstract:
The genetic parameters of growth traits in the New Zealand White rabbits maintained at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India were estimated by partitioning the variance and covariance components. The (co)variance components of body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (1=42 to 70 days; 2=70 to 135 days and 3=42 to 135 days) from weaning to marketing were estimated by restricted maximum likelihood, fitting six animal models with various combinations of direct and maternal effects. Data were collected over a period of 15 years (1998 to 2012). A log-likelihood ratio test was used to select the most appropriate univariate model for each trait, which was subsequently used in bivariate analysis. Heritability estimates for W42, W70 and W135 were 0.42 ± 0.07, 0.40 ± 0.08 and 0.27 ± 0.07, respectively. Heritability estimates of growth efficiency traits were moderate to high (0.18 to 0.42). Of the total phenotypic variation, maternal genetic effect contributed 14 to 32% for early body weight traits (W42 and W70) and ADG1. The contribution of maternal permanent environmental effect varied from 6 to 18% for W42 and for all the growth efficiency traits except for KR2. Maternal permanent environmental effect on most of the growth efficiency traits was a carryover effect of maternal care during weaning. Direct maternal genetic correlations, for the traits in which maternal genetic effect was significant, were moderate to high in magnitude and negative in direction. Maternal effect declined as the age of the animal increased. The estimates of total heritability and maternal across year repeatability for growth traits were moderate and an optimum rate of genetic progress seems possible in the herd by mass selection. The estimates of genetic and phenotypic correlations among body weight traits were moderate to high and positive; among growth efficiency traits were low to high with varying directions; between body weights and growth efficiency traits were very low to high in magnitude and mostly negative in direction. Moderate to high heritability and higher genetic correlation in body weight traits promise good scope for genetic improvement provided measures are taken to keep the inbreeding at the lowest level.Keywords: genetic parameters, growth traits, maternal effects, rabbit genetics
Procedia PDF Downloads 4468716 The Effectiveness of Electronic Local Financial Management Information System (ELFMIS) in Mempawah Regency, West Borneo Province, Indonesia
Authors: Muhadam Labolo, Afdal R. Anwar, Sucia Miranti Sipisang
Abstract:
Electronic Local Finance Management Information System (ELFMIS) is integrated application that was used as a tool for local governments to improve the effectiveness of the implementation of the various areas of financial management regulations. Appropriate With Exceptions Opinion (WDP) of Indonesia Audit Agency (BPK) for local governments Mempawah is a financial management problem that must be improved to avoid mistakes in decision-making. The use of Electronic Local Finance Management Information System (ELFMIS) by Mempawah authority has not yet performed maximally. These problems became the basis for research in measuring the effectiveness LFMIS in Mempawah regency. This research uses an indicator variable for measuring information systems effectiveness proposed by Bodnar. This research made use descriptive with inductive approach. Data collection techniques were mixed from qualitative and quantitative techniques, used questionnaires, interviews and documentation. The obstacles in Local Finance Board (LFB) for the application of ELFMIS such as connection, the quality and quantity of human resources, realization of financial resources, absence of maintenance and another facilities of ELFMIS and verification for financial information.Keywords: effectiveness, E-LFMIS, finance, local government, system
Procedia PDF Downloads 2188715 Application of Voltammetry as a Non-Destructive Tool to Quantify Cathodic Protection of Steel in Simulated Soil Solution
Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi
Abstract:
Cathodic protection (CP) has been widely considered as a suitable technique for mitigating corrosion of steel structures buried in soil. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. This study was aimed at using a specifically modified voltammetry approach as a non-destructive tool to monitor and quantify the effectiveness of CP of steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for four days before applying CP for further 11 days. A specifically modified voltammetry technique was applied at various time intervals of the experiment to monitor the corrosion behaviour and therefore reflect CP effectiveness. The voltammetry results revealed that the application of CP reduced the corrosion rate from the highest value of 410 µm/yr to 8 µm/yr between days 5 and 14 of the experiments. The microstructural analysis of the steel surface performed using x-ray diffraction identified calcareous deposit as the dominant phase protecting the surface from corrosion. It was deduced that the formation of calcareous deposits was linked with the effectiveness of CP of steel.Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, XRD
Procedia PDF Downloads 668714 Ground Improvement Using Deep Vibro Techniques at Madhepura E-Loco Project
Authors: A. Sekhar, N. Ramakrishna Raju
Abstract:
This paper is a result of ground improvement using deep vibro techniques with combination of sand and stone columns performed on a highly liquefaction susceptible site (70 to 80% sand strata and balance silt) with low bearing capacities due to high settlements located (earth quake zone V as per IS code) at Madhepura, Bihar state in northern part of India. Initially, it was envisaged with bored cast in-situ/precast piles, stone/sand columns. However, after detail analysis to address both liquefaction and improve bearing capacities simultaneously, it was analyzed the deep vibro techniques with combination of sand and stone columns is excellent solution for given site condition which may be first time in India. First after detail soil investigation, pre eCPT test was conducted to evaluate the potential depth of liquefaction to densify silty sandy soils to improve factor of safety against liquefaction. Then trail test were being carried out at site by deep vibro compaction technique with sand and stone columns combination with different spacings of columns in triangular shape with different timings during each lift of vibro up to ground level. Different spacings and timing was done to obtain the most effective spacing and timing with vibro compaction technique to achieve maximum densification of saturated loose silty sandy soils uniformly for complete treated area. Then again, post eCPT test and plate load tests were conducted at all trail locations of different spacings and timing of sand and stone columns to evaluate the best results for obtaining the required factor of safety against liquefaction and the desired bearing capacities with reduced settlements for construction of industrial structures. After reviewing these results, it was noticed that the ground layers are densified more than the expected with improved factor of safety against liquefaction and achieved good bearing capacities for a given settlements as per IS codal provisions. It was also worked out for cost-effectiveness of lightly loaded single storied structures by using deep vibro technique with sand column avoiding stone. The results were observed satisfactory for resting the lightly loaded foundations. In this technique, the most important is to mitigating liquefaction with improved bearing capacities and reduced settlements to acceptable limits as per IS: 1904-1986 simultaneously up to a depth of 19M. To our best knowledge it was executed first time in India.Keywords: ground improvement, deep vibro techniques, liquefaction, bearing capacity, settlement
Procedia PDF Downloads 1948713 Heuristic Classification of Hydrophone Recordings
Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas
Abstract:
An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.Keywords: anthrophony, hydrophone, k-means, machine learning
Procedia PDF Downloads 1688712 Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018
Authors: Mário Ernesto Sitoe, Orlando Zacarias
Abstract:
University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.Keywords: evasion and retention, cross-validation, bagging, stacking
Procedia PDF Downloads 808711 Improving the Strength Characteristics of Soil Using Cotton Fibers
Authors: Bindhu Lal, Karnika Kochal
Abstract:
Clayey soil contains clay minerals with traces of metal oxides and organic matter, which exhibits properties like low drainage, high plasticity, and shrinkage. To overcome these issues, various soil reinforcement techniques are used to elevate the stiffness, water tightness, and bearing capacity of the soil. Such techniques include cementation, bituminization, freezing, fiber inclusion, geo-synthetics, nailing, etc. Reinforcement of soil with fibers has been a cost-effective solution to soil improvement problems. An experimental study was undertaken involving the inclusion of cotton waste fibers in clayey soil as reinforcement with different fiber contents (1%, 1.5%, 2%, and 2.5% by weight) and analyzing its effects on the unconfined compressive strength of the soil. Two categories of soil were taken, comprising of natural clay and clay mixed with 5% sodium bentonite by weight. The soil specimens were subjected to proctor compaction and unconfined compression tests. The validated outcome shows that fiber inclusion has a strikingly positive impact on the compressive strength and axial strain at failure of the soil. Based on the commendatory results procured, compressive strength was found to be directly proportional to the fiber content, with the effect being more pronounced at lower water content.Keywords: bentonite clay, clay, cotton fibers, unconfined compressive strength
Procedia PDF Downloads 1788710 A Review of Benefit-Risk Assessment over the Product Lifecycle
Authors: M. Miljkovic, A. Urakpo, M. Simic-Koumoutsaris
Abstract:
Benefit-risk assessment (BRA) is a valuable tool that takes place in multiple stages during a medicine's lifecycle, and this assessment can be conducted in a variety of ways. The aim was to summarize current BRA methods used during approval decisions and in post-approval settings and to see possible future directions. Relevant reviews, recommendations, and guidelines published in medical literature and through regulatory agencies over the past five years have been examined. BRA implies the review of two dimensions: the dimension of benefits (determined mainly by the therapeutic efficacy) and the dimension of risks (comprises the safety profile of a drug). Regulators, industry, and academia have developed various approaches, ranging from descriptive textual (qualitative) to decision-analytic (quantitative) models, to facilitate the BRA of medicines during the product lifecycle (from Phase I trials, to authorization procedure, post-marketing surveillance and health technology assessment for inclusion in public formularies). These approaches can be classified into the following categories: stepwise structured approaches (frameworks); measures for benefits and risks that are usually endpoint specific (metrics), simulation techniques and meta-analysis (estimation techniques), and utility survey techniques to elicit stakeholders’ preferences (utilities). All these approaches share the following two common goals: to assist this analysis and to improve the communication of decisions, but each is subject to its own specific strengths and limitations. Before using any method, its utility, complexity, the extent to which it is established, and the ease of results interpretation should be considered. Despite widespread and long-time use, BRA is subject to debate, suffers from a number of limitations, and currently is still under development. The use of formal, systematic structured approaches to BRA for regulatory decision-making and quantitative methods to support BRA during the product lifecycle is a standard practice in medicine that is subject to continuous improvement and modernization, not only in methodology but also in cooperation between organizations.Keywords: benefit-risk assessment, benefit-risk profile, product lifecycle, quantitative methods, structured approaches
Procedia PDF Downloads 1548709 A Study of Teachers’ View on Modern Methods of Teaching Regarding the Quality of Instruction in Shiraz High Schools
Authors: Nasrin Badrkhani
Abstract:
Teaching is an interaction between the teacher, student, and the concept being taught, especially within the classroom setting. As society increasingly values thoughtful and creative individuals, there is a growing need to adopt modern, active teaching methods. These methods should engage students in activities that foster problem-solving, creativity, cooperation, and scientific thinking skills. Modern teaching methods emphasize student involvement, gradual and continuous learning (process-centered approaches), and holistic evaluation of students' abilities and talents. A shift from teacher-centered to student-centered teaching is crucial. Among these modern methods are group work, role-playing, group discussions, and activities that engage students in evaluating societal values. This research employs a survey and a 38-question Likert scale questionnaire to explore teachers' perspectives on the impact of modern teaching methods on the quality of education. The study also examines the relationship between these perspectives and variables such as gender, major, and teaching experience. The statistical population consists of high school teachers in Shiraz, Iran, with sampling done using the Morgan table. Discriminant analysis was used for the initial analysis of the questions, and Cronbach's Alpha test was employed for the final examination. SPSS Software was used for statistical analysis, including T-tests and one-way ANOVA. The results indicate that teachers in this city generally have positive attitudes towards the use of modern teaching methods, except when it comes to engaging in judgments concerning societal values. There is no significant difference in viewpoints based on gender or educational background. The findings are consistent with similar studies conducted both within Iran and internationally.Keywords: learning, modern methods, student, teacher, teaching
Procedia PDF Downloads 228708 Uncertainty Evaluation of Erosion Volume Measurement Using Coordinate Measuring Machine
Authors: Mohamed Dhouibi, Bogdan Stirbu, Chabotier André, Marc Pirlot
Abstract:
Internal barrel wear is a major factor affecting the performance of small caliber guns in their different life phases. Wear analysis is, therefore, a very important process for understanding how wear occurs, where it takes place, and how it spreads with the aim on improving the accuracy and effectiveness of small caliber weapons. This paper discusses the measurement and analysis of combustion chamber wear for a small-caliber gun using a Coordinate Measuring Machine (CMM). Initially, two different NATO small caliber guns: 5.56x45mm and 7.62x51mm, are considered. A Micura Zeiss Coordinate Measuring Machine (CMM) equipped with the VAST XTR gold high-end sensor is used to measure the inner profile of the two guns every 300-shot cycle. The CMM parameters, such us (i) the measuring force, (ii) the measured points, (iii) the time of masking, and (iv) the scanning velocity, are investigated. In order to ensure minimum measurement error, a statistical analysis is adopted to select the reliable CMM parameters combination. Next, two measurement strategies are developed to capture the shape and the volume of each gun chamber. Thus, a task-specific measurement uncertainty (TSMU) analysis is carried out for each measurement plan. Different approaches of TSMU evaluation have been proposed in the literature. This paper discusses two different techniques. The first is the substitution method described in ISO 15530 part 3. This approach is based on the use of calibrated workpieces with similar shape and size as the measured part. The second is the Monte Carlo simulation method presented in ISO 15530 part 4. Uncertainty evaluation software (UES), also known as the Virtual Coordinate Measuring Machine (VCMM), is utilized in this technique to perform a point-by-point simulation of the measurements. To conclude, a comparison between both approaches is performed. Finally, the results of the measurements are verified through calibrated gauges of several dimensions specially designed for the two barrels. On this basis, an experimental database is developed for further analysis aiming to quantify the relationship between the volume of wear and the muzzle velocity of small caliber guns.Keywords: coordinate measuring machine, measurement uncertainty, erosion and wear volume, small caliber guns
Procedia PDF Downloads 1498707 A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries
Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik
Abstract:
The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die-casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption, therefore, increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy-SEM upon deep etching and energy dispersive X-ray analysis-EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy
Procedia PDF Downloads 5398706 The Use of Respiratory Index of Severity in Children (RISC) for Predicting Clinical Outcomes for 3 Months-59 Months Old Patients Hospitalized with Community-Acquired Pneumonia in Visayas Community Medical Center, Cebu City from January 2013 - June 2
Authors: Karl Owen L. Suan, Juliet Marie S. Lambayan, Floramay P. Salo-Curato
Abstract:
Objective: To predict the outcome among patients admitted with community-acquired pneumonia (ages 3 months to 59 months old) admitted in Visayas Community Medical Center using the Respiratory Index of Severity in Children (RISC). Design: A cross-sectional study design was used. Setting: The study was done in Visayas Community Medical Center, which is a private tertiary level in Cebu City from January-June 2013. Patients/Participants: A total of 72 patients were initially enrolled in the study. However, 1 patient transferred to another institution, thus 71 patients were included in this study. Within 24 hours from admission, patients were assigned a RISC score. Statistical Analysis: Cohen’s kappa coefficient was used for inter-rater agreement for categorical data. This study used frequency and percentage distribution for qualitative data. Mean, standard deviation and range were used for quantitative data. To determine the relationship of each RISC score parameter and the total RISC score with the outcome, a Mann Whitney U Test and 2x2 Fischer Exact test for testing associations were used. A p value less of than 0.05 alpha was considered significant. Results: There was a statistical significance between RISC score and clinical outcome. RISC score of greater than 4 was correlated with intubation and/or mortality. Conclusion: The RISC scoring system is a simple combination of clinical parameters and a reliable tool that will help stratify patients aged 3 months to 59 months in predicting clinical outcome.Keywords: RISC, clinical outcome, community-acquired pneumonia, patients
Procedia PDF Downloads 3008705 Reducing Crash Risk at Intersections with Safety Improvements
Authors: Upal Barua
Abstract:
Crash risk at intersections is a critical safety issue. This paper examines the effectiveness of removing an existing off-set at an intersection by realignment, in reducing crashes. Empirical Bayes method was applied to conduct a before-and-after study to assess the effect of this safety improvement. The Transportation Safety Improvement Program in Austin Transportation Department completed several safety improvement projects at high crash intersections with a view to reducing crashes. One of the common safety improvement techniques applied was the realignment of intersection approaches removing an existing off-set. This paper illustrates how this safety improvement technique is applied at a high crash intersection from inception to completion. This paper also highlights the significant crash reductions achieved from this safety improvement technique applying Empirical Bayes method in a before-and-after study. The result showed that realignment of intersection approaches removing an existing off-set can reduce crashes by 53%. This paper also features the state of the art techniques applied in planning, engineering, designing and construction of this safety improvement, key factors driving the success, and lessons learned in the process.Keywords: crash risk, intersection, off-set, safety improvement technique, before-and-after study, empirical Bayes method
Procedia PDF Downloads 2428704 Electrochemical and Theoretical Quantum Approaches on the Inhibition of C1018 Carbon Steel Corrosion in Acidic Medium Containing Chloride Using Newly Synthesized Phenolic Schiff Bases Compounds
Authors: Hany M. Abd El-Lateef
Abstract:
Two novel Schiff bases, 5-bromo-2-[(E)-(pyridin-3-ylimino) methyl] phenol (HBSAP) and 5-bromo-2-[(E)-(quinolin-8-ylimino) methyl] phenol (HBSAQ) have been synthesized. They have been characterized by elemental analysis and spectroscopic techniques (UV–Vis, IR and NMR). Moreover, the molecular structure of HBSAP and HBSAQ compounds are determined by single crystal X-ray diffraction technique. The inhibition activity of HBSAP and HBSAQ for carbon steel in 3.5 %NaCl+0.1 M HCl for both short and long immersion time, at different temperatures (20-50 ºC), was investigated using electrochemistry and surface characterization. The potentiodynamic polarization shows that the inhibitors molecule is more adsorbed on the cathodic sites. Its efficiency increases with increasing inhibitor concentrations (92.8 % at the optimal concentration of 10-3 M for HBSAQ). Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm with physical/chemical nature of the adsorption, as it is shown also by scanning electron microscopy. Further, the electronic structural calculations using quantum chemical methods were found to be in a good agreement with the results of the experimental studies.Keywords: carbon steel, Schiff bases, corrosion inhibition, SEM, electrochemical techniques
Procedia PDF Downloads 3898703 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 748702 Laboratory Model Tests on Encased Group Columns
Authors: Kausar Ali
Abstract:
There are several ground treatment techniques which may meet the twin objectives of increasing the bearing capacity with simultaneous reduction of settlements, but the use of stone columns is one of the most suited techniques for flexible structures such as embankments, oil storage tanks etc. that can tolerate some settlement and used worldwide. However, when the stone columns in very soft soils are loaded; stone columns undergo excessive settlement due to low lateral confinement provided by the soft soil, leading to the failure of the structure. The poor performance of stone columns under these conditions can be improved by encasing the columns with a suitable geosynthetic. In this study, the effect of reinforcement on bearing capacity of composite soil has been investigated by conducting laboratory model tests on floating and end bearing long stone columns with l/d ratio of 12. The columns were reinforced by providing geosynthetic encasement over varying column length (upper 25%, 50%, 75%, and 100% column length). In this study, a group of columns has been used instead of single column, because in the field, columns used for the purpose always remain in groups. The tests indicate that the encasement over the full column length gives higher failure stress as compared to the encasement over the partial column length for both floating and end bearing long columns. The performance of end-bearing columns was found much better than the floating columns.Keywords: geosynthetic, ground improvement, soft clay, stone column
Procedia PDF Downloads 4308701 Patterns of Problem Behavior of Out-Of-School Adolescents and Gender Difference in South Korea
Authors: Jaeyoung Lee, Minji Je
Abstract:
Objectives: The adolescents not attending school are named out-of-school adolescents. They are more vulnerable to health management and are likely to be exposed to a number of risk factors. This study was conducted to investigate the problem behavior of out-of-school adolescents and analyze the difference caused by gender. Methods: In this study, the problem behaviors of out-of-school adolescents, the vulnerable class, were defined in 8 types and based on this definition, the survey on run away from home, drop out, prostitution, violence, internet game addiction, theft, drug addiction, and smoking was conducted. The study was conducted in a total of 507 out-of-school adolescents, including 342 males, and 165 females. The type, frequency and start time of the 8 problem behaviors were identified. The collected data were analyzed with chi-square test and t-test using SPSS statistics 22. Results: Among the problem behaviors of the subjects, violence ( =17.41, p < .001), internet game addiction ( =16.14, p < .001), theft ( =22.48, p < .001), drug addiction ( =4.17, p=.041), and smoking ( =3.90, p=.048) were more significantly high in male out-of-school adolescents than female out-of-school adolescents. In addition, the frequency of the problem behavior was higher in male out-of-school adolescents with statistical significance than in female out-of-school adolescents (t=5.08, p= < .001). In terms of the start time of the problem behavior, only internet game addiction was higher in male out-of-school adolescents with the statistical significance than in female out-of-school adolescents ( =6.22, p=.032). No statistically significant difference was found in other problem behaviors (p > .05). Conclusions: In this study, it was found that gender difference in problem behaviors of out-of-school adolescents exists, and its frequency and difference of types were identified. When the social countermeasures were provided for those adolescents, a distinguished approach is required depending on the patterns of problem behavior and gender. When preparing policy alternatives and interventions for out-of-school adolescents, it is required to reflect the results of this study.Keywords: addictive behavior, adolescent, gender, problem behavior
Procedia PDF Downloads 2058700 Ilorin Traditional Architecture as a Good Example of a Green Building Design
Authors: Olutola Funmilayo Adekeye
Abstract:
Tradition African practice of architecture can be said to be deeply rooted in Green Architecture in concept, design and execution. A study into the ancient building techniques in Ilorin Emirate depicts prominent (eco-centric approach of) Green Architecture principles. In the Pre-colonial era before the introduction of modern architecture and Western building materials, the Nigeria traditional communities built their houses to meet their cultural, religious and social needs using mainly indigenous building materials such as mud (Amo), cowdung (Boto), straws (koriko), palm fronts (Imo-Ope) to mention a few. This research attempts to identify the various techniques of applying the traditional African principles of Green Architecture to Ilorin traditional buildings. It will examine and assess some case studies to understand the extent to which Green architecture principles have been applied to traditional building designs that are still preserved today in Ilorin, Nigeria. Furthermore, this study intends to answer many questions, which can be summarized into two basic questions which are: (1) What aspects of what today are recognized as important green architecture principles have been applied to Ilorin traditional buildings? (2) To what extent have the principles of green architecture applied to Ilorin traditional buildings been ways of demonstrating a cultural attachment to the earth as an expression of the African sense of human being as one with nature?Keywords: green architecture, Ilorin, traditional buildings, design principles, ecocentric, application
Procedia PDF Downloads 5458699 Designing Form, Meanings, and Relationships for Future Industrial Products. Case Study Observation of PAD
Authors: Elisabetta Cianfanelli, Margherita Tufarelli, Paolo Pupparo
Abstract:
The dialectical mediation between desires and objects or between mass production and consumption continues to evolve over time. This relationship is influenced both by variable geometries of contexts that are distant from the mere design of product form and by aspects rooted in the very definition of industrial design. In particular, the overcoming of macro-areas of innovation in the technological, social, cultural, formal, and morphological spheres, supported by recent theories in critical and speculative design, seems to be moving further and further away from the design of the formal dimension of advanced products. The articulated fabric of theories and practices that feed the definition of “hyperobjects”, and no longer objects describes a common tension in all areas of design and production of industrial products. The latter are increasingly detached from the design of the form and meaning of the same in mass productions, thus losing the quality of products capable of social transformation. For years we have been living in a transformative moment as regards the design process in the definition of the industrial product. We are faced with a dichotomy in which there is, on the one hand, a reactionary aversion to the new techniques of industrial production and, on the other hand, a sterile adoption of the techniques of mass production that we can now consider traditional. This ambiguity becomes even more evident when we talk about industrial products, and we realize that we are moving further and further away from the concepts of "form" as a synthesis of a design thought aimed at the aesthetic-emotional component as well as the functional one. The design of forms and their contents, as statutes of social acts, allows us to investigate the tension on mass production that crosses seasons, trends, technicalities, and sterile determinisms. The design culture has always determined the formal qualities of objects as a sum of aesthetic characteristics functional and structural relationships that define a product as a coherent unit. The contribution proposes a reflection and a series of practical experiences of research on the form of advanced products. This form is understood as a kaleidoscope of relationships through the search for an identity, the desire for democratization, and between these two, the exploration of the aesthetic factor. The study of form also corresponds to the study of production processes, technological innovations, the definition of standards, distribution, advertising, the vicissitudes of taste and lifestyles. Specifically, we will investigate how the genesis of new forms for new meanings introduces a change in the relative innovative production techniques. It becomes, therefore, fundamental to investigate, through the reflections and the case studies exposed inside the contribution, also the new techniques of production and elaboration of the forms of the products, as new immanent and determining element inside the planning process.Keywords: industrial design, product advanced design, mass productions, new meanings
Procedia PDF Downloads 1208698 Single-Molecule Analysis of Structure and Dynamics in Polymer Materials by Super-Resolution Technique
Authors: Hiroyuki Aoki
Abstract:
The physical properties of polymer materials are dependent on the conformation and molecular motion of a polymer chain. Therefore, the structure and dynamic behavior of the single polymer chain have been the most important concerns in the field of polymer physics. However, it has been impossible to directly observe the conformation of the single polymer chain in a bulk medium. In the current work, the novel techniques to study the conformation and dynamics of a single polymer chain are proposed. Since a fluorescence method is extremely sensitive, the fluorescence microscopy enables the direct detection of a single molecule. However, the structure of the polymer chain as large as 100 nm cannot be resolved by conventional fluorescence methods because of the diffraction limit of light. In order to observe the single chains, we developed the labeling method of polymer materials with a photo-switchable dye and the super-resolution microscopy. The real-space conformational analysis of single polymer chains with the spatial resolution of 15-20 nm was achieved. The super-resolution microscopy enables us to obtain the three-dimensional coordinates; therefore, we succeeded the conformational analysis in three dimensions. The direct observation by the nanometric optical microscopy would reveal the detailed information on the molecular processes in the various polymer systems.Keywords: polymer materials, single molecule, super-resolution techniques, conformation
Procedia PDF Downloads 3048697 Hydraulic Performance of Three Types of Imported Drip Emitters Used in Gezira Clay Soils, Sudan
Authors: Hisham Mousa Mohammed Ahmed, Ahmed Wali Mohamed Salad, Yousif Hamed Dldom Gomaa
Abstract:
A drip or Trickle irrigation system is designed to apply a precise amount of water near the plant with a certain degree of uniformity. This study was conducted at the Experimental Farm of the Faculty of Agricultural Sciences, University of Gezira, in March 2018. The study aimed to design and evaluate the hydraulic performance of three drip emitter types using: average discharge (Qavg), discharge variation (Qvar %), coefficient of uniformity (CU %), coefficient of manufacturer variation (CV %), distribution uniformity (DU %), statistical uniformity (Us %), clogging (%) wetted diameter (cm) and wetted depth (cm). The emitter types used are regular gauges (RG), high compensating pressure (HCP) and low compensating pressure (LCP). The treatments were laid out in a randomized complete block design (RCBD) with four replications. Results showed that there were significant differences (P≤0.05) in all tested parameters except clogging, wetted diameter and wetted depth. Discharge variation (Qvar %) values were 12.71, 15.57 and 19.17 for RG, LCP, and HCP, respectively. The variation is quite good and within the acceptable range. Results of coefficient of manufacture variation (CV %) were 10.9, 27.8 and 52.7 for RG, LCP and HCP, respectively. It is considered within the unacceptable range except for RG type, which is excellent. Statistical uniformity (Us %) values were 89.1, 72.2 and 45.7 for RG, LCP and HCP, respectively. It is considered good, acceptable and unacceptable, respectively. Results of the coefficient of uniformity (CU %) were 91.3, 77.7 and 56.7 for RG, LCP and HCP, respectively. It is considered excellent, fair and unacceptable, respectively. Distribution uniformity (DU %) was 90.2, 67.9 and 36.5 for RG, LCP and HCP, respectively. It is considered excellent, poor and poor, respectively. The study recommended regular gauges (RG) type emitters under the heavy clay soil conditions of the Gezira State, Sudan.Keywords: drip irrigation, uniformity, clogging, coefficient, performance
Procedia PDF Downloads 988696 Laser Therapy in Patients with Rheumatoid Arthritis: A Clinical Trial
Authors: Joao Paulo Matheus, Renan Fangel
Abstract:
Rheumatoid arthritis is a chronic, inflammatory, systemic and progressive disease that affects the synovial joints bilaterally, causing definitive orthopedic damage. It has a higher prevalence in postmenopausal female patients. It is a disabling disease that causes joint deformities that may compromise the functionality of the affected segment. The aim of this study was to evaluate the influence of low-intensity therapeutic laser on the perception of pain and quality of life in patients with rheumatoid arthritis. This is a randomized clinical study involving 6 women with a mean age of 56.8+6.3 years. Exclusion criteria: patients with acute pain, chronic infectious disease, underlying acute or chronic underlying disease. An AsGaAl laser with 808nm wavelength, 100mW power, beam output area of 0.028cm2, power density of 3.57W/cm2 was used. The laser was applied at pre-defined points in the interphalangeal and metacarpophalangeal joints, totaling 24 points, 2 times a week, for 4 weeks, totaling 8 sessions. The Pain Inventory (IBD) and Visual Analogue Scale (VAS) were used for the analysis of pain and for the WHOQOL-bref quality of life assessment. There was no statistical difference between the onset (5.67±2.66) and the final (4.67±3.78) of treatments (p=0.70). There was also no statistical difference between the beginning (5.67±2.66) and the final (4.67±3.78) of the treatments in the VAS analysis (p=0.68). The overall mean quality of life obtained by the questionnaire at the start of treatment was 42.3±7.6, while at the end of treatment it was 58.5±7.6 (p=0.01) and the domains of the questionnaire with significant differences were: psychological domain 42.9±6.8 and 66.7±12.9 (p=0.004), social domain 39.9±5.7 and 68.1±6.3 (p=0,0005) and environmental domain 36.3±7.3 and 56.3±12.5 (p=0.003). It can be concluded that the low-intensity therapeutic laser did not produce significant changes in the painful period of rheumatoid arthritis patients. However, there was an improvement in patients' quality of life in the psychological, social and environmental aspects.Keywords: laser therapy, pain, quality of life, rheumatoid arthritis
Procedia PDF Downloads 2498695 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate
Authors: Neetu Manocha
Abstract:
Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI
Procedia PDF Downloads 1378694 Identifying the Structural Components of Old Buildings from Floor Plans
Authors: Shi-Yu Xu
Abstract:
The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence
Procedia PDF Downloads 878693 Performance Evaluation of Production Schedules Based on Process Mining
Authors: Kwan Hee Han
Abstract:
External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.Keywords: data mining, event log, process mining, production scheduling
Procedia PDF Downloads 2798692 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 1228691 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine
Procedia PDF Downloads 1448690 Storage System Validation Study for Raw Cocoa Beans Using Minitab® 17 and R (R-3.3.1)
Authors: Anthony Oppong Kyekyeku, Sussana Antwi-Boasiako, Emmanuel De-Graft Johnson Owusu Ansah
Abstract:
In this observational study, the performance of a known conventional storage system was tested and evaluated for fitness for its intended purpose. The system has a scope extended for the storage of dry cocoa beans. System sensitivity, reproducibility and uncertainties are not known in details. This study discusses the system performance in the context of existing literature on factors that influence the quality of cocoa beans during storage. Controlled conditions were defined precisely for the system to give reliable base line within specific established procedures. Minitab® 17 and R statistical software (R-3.3.1) were used for the statistical analyses. The approach to the storage system testing was to observe and compare through laboratory test methods the quality of the cocoa beans samples before and after storage. The samples were kept in Kilner jars and the temperature of the storage environment controlled and monitored over a period of 408 days. Standard test methods use in international trade of cocoa such as the cut test analysis, moisture determination with Aqua boy KAM III model and bean count determination were used for quality assessment. The data analysis assumed the entire population as a sample in order to establish a reliable baseline to the data collected. The study concluded a statistically significant mean value at 95% Confidence Interval (CI) for the performance data analysed before and after storage for all variables observed. Correlational graphs showed a strong positive correlation for all variables investigated with the exception of All Other Defect (AOD). The weak relationship between the before and after data for AOD had an explained variability of 51.8% with the unexplained variability attributable to the uncontrolled condition of hidden infestation before storage. The current study concluded with a high-performance criterion for the storage system.Keywords: benchmarking performance data, cocoa beans, hidden infestation, storage system validation
Procedia PDF Downloads 1738689 Synthesis of ZnFe₂O₄-AC/CeMOF for Improvement Photodegradation of Textile Dyes Under Visible-light: Optimization and Statistical Study
Authors: Esraa Mohamed El-Fawal
Abstract:
A facile solvothermal procedure was applied to fabricate zinc ferrite nanoparticles (ZnFe₂O₄ NPs). Activated carbon (AC) derived from peanut shells is synthesized using a microwave through the chemical activation method. The ZnFe₂O₄-AC composite is then mixed with a cerium-based metal-organic framework (CeMOF) by solid-state adding to formulate ZnFe₂O₄-AC/CeMOF composite. The synthesized photo materials were tested by scanning/transmission electron microscope (SEM/TEM), Photoluminescence (PL), (XRD) X-Ray diffraction, (FTIR) Fourier transform infrared, (UV-Vis/DRS) ultraviolet-visible/diffuse reflectance spectroscopy. The prepared ZnFe₂O₄-AC/CeMOFphotomaterial shows significantly boosted efficiency for photodegradation of methyl orange /methylene blue (MO/MB) compared with the pristine ZnFe₂O₄ and ZnFe₂O₄-AC composite under the irradiation of visible-light. The favorable ZnFe₂O₄-AC/CeMOFphotocatalyst displays the highest photocatalytic degradation efficiency of MB/MO (R: 91.5-88.6%, consecutively) compared with the other as-prepared materials after 30 min of visible-light irradiation. The apparent reaction rate K: 1.94-1.31 min-1 is also calculated. The boosted photocatalytic proficiency is ascribed to the heterojunction at the interface of prepared photo material that assists the separation of the charge carriers. To reach optimization, statistical analysis using response surface methodology was applied. The effect of independent parameters (such as A (pH), B (irradiation time), and (c) initial pollutants concentration on the response function (%)photodegradation of MB/MO dyes (as examples of azodyes) was investigated via using central composite design. At the optimum condition, the photodegradation efficiency (%) of the MB/MO is 99.8-97.8%, respectively. ZnFe2O₄-AC/CeMOF hybrid reveals good stability over four consecutive cycles.Keywords: azo-dyes, photo-catalysis, zinc ferrite, response surface methodology
Procedia PDF Downloads 166