Search results for: ASIC (application specific integrated circuit)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17323

Search results for: ASIC (application specific integrated circuit)

373 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research

Authors: Edvard P. G. Bruun

Abstract:

One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.

Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research

Procedia PDF Downloads 203
372 Alternative Energy and Carbon Source for Biosurfactant Production

Authors: Akram Abi, Mohammad Hossein Sarrafzadeh

Abstract:

Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.

Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin

Procedia PDF Downloads 276
371 Prospective Museum Visitor Management Based on Prospect Theory: A Pragmatic Approach

Authors: Athina Thanou, Eirini Eleni Tsiropoulou, Symeon Papavassiliou

Abstract:

The problem of museum visitor experience and congestion management – in various forms - has come increasingly under the spotlight over the last few years, since overcrowding can significantly decrease the quality of visitors’ experience. Evidence suggests that on busy days the amount of time a visitor spends inside a crowded house museum can fall by up to 60% compared to a quiet mid-week day. In this paper we consider the aforementioned problem, by treating museums as evolving social systems that induce constraints. However, in a cultural heritage space, as opposed to the majority of social environments, the momentum of the experience is primarily controlled by the visitor himself. Visitors typically behave selfishly regarding the maximization of their own Quality of Experience (QoE) - commonly expressed through a utility function that takes several parameters into consideration, with crowd density and waiting/visiting time being among the key ones. In such a setting, congestion occurs when either the utility of one visitor decreases due to the behavior of other persons, or when costs of undertaking an activity rise due to the presence of other persons. We initially investigate how visitors’ behavioral risk attitudes, as captured and represented by prospect theory, affect their decisions in resource sharing settings, where visitors’ decisions and experiences are strongly interdependent. Different from the majority of existing studies and literature, we highlight that visitors are not risk neutral utility maximizers, but they demonstrate risk-aware behavior according to their personal risk characteristics. In our work, exhibits are organized into two groups: a) “safe exhibits” that correspond to less congested ones, where the visitors receive guaranteed satisfaction in accordance with the visiting time invested, and b) common pool of resources (CPR) exhibits, which are the most popular exhibits with possibly increased congestion and uncertain outcome in terms of visitor satisfaction. A key difference is that the visitor satisfaction due to CPR strongly depends not only on the invested time decision of a specific visitor, but also on that of the rest of the visitors. In the latter case, the over-investment in time, or equivalently the increased congestion potentially leads to “exhibit failure”, interpreted as the visitors gain no satisfaction from their observation of this exhibit due to high congestion. We present a framework where each visitor in a distributed manner determines his time investment in safe or CPR exhibits to optimize his QoE. Based on this framework, we analyze and evaluate how visitors, acting as prospect-theoretic decision-makers, respond and react to the various pricing policies imposed by the museum curators. Based on detailed evaluation results and experiments, we present interesting observations, regarding the impact of several parameters and characteristics such as visitor heterogeneity and use of alternative pricing policies, on scalability, user satisfaction, museum capacity, resource fragility, and operation point stability. Furthermore, we study and present the effectiveness of alternative pricing mechanisms, when used as implicit tools, to deal with the congestion management problem in the museums, and potentially decrease the exhibit failure probability (fragility), while considering the visitor risk preferences.

Keywords: museum resource and visitor management, congestion management, propsect theory, cyber physical social systems

Procedia PDF Downloads 162
370 Bee Keeping for Human-Elephant Conflict Mitigation: A Success Story for Sustainable Tourism in Kibale National Park, Western Uganda

Authors: Dorothy Kagazi

Abstract:

The African elephant (Loxodonta africana) remains one of the most crop-damaging species around Kibale National Park, western Uganda. Elephant crop raiding deprives communities of food and incomes, consequently impacting livelihoods, attitude, and support for conservation. It also attracts an aggressive reaction from local communities including the retaliatory killing of a species that is already endangered and listed under Appendix I of the Convention on Endangered Species of Flora and Fauna (CITES). In order to mitigate against elephant crop raiding and minimize conflict, a number of interventions were devised by the government of Uganda such as physical guarding, scare-shooting, excavation of trenches, growing of unpalatable crops and fire lighting all of which have over the years been implemented around the park. These generated varying degrees of effectiveness but largely never solved the problem of elephants crossing into communities to destroy food and shelter which had a negative effect onto sustainable tourism of the communities who often resorted to killing these animals and hence contributing the falling numbers of these animals. It was until government discovered that there are far more effective ways of deterring these animals from crossing to communities that it commissioned a study to deploy the African honeybee (Apis mellifera scutellata) as a deterrent against elephant crop raiding and income enhancement for local people around the park. These efforts led to a number of projects around Kibale National Park where communities were facilitated to keep bees for human-elephant conflict mitigation and rural income enhancement through the sale of honey. These projects have registered tremendous success in reducing crop damage, enhance rural incomes, influence positive attitude change and ultimately secure community support for elephant and park conservation which is a clear manifestation of sustainable tourism development in the area. To address the issue of sustainability, the project was aligned with four major objectives that contributed to the overall goal of maintaining the areas around the parks and the national park itself in such a manner that it remains viable over an infinite period. Among these included determining deterrence effects of bees against elephant crop raiding, assessing the contribution of beekeeping towards rural income enhancement, determining the impact of community involvement of park conservation and management among others. The project deployed 500 improved hives by placing them at specific and previously identified and mapped out elephant crossing points along the park boundary. A control site was established without any intervention to facilitate comparison of findings and data was collected on elephant raiding frequency, patterns, honey harvested, and community attitude towards the park. A socio-economic assessment was also undertaken to ascertain the contribution of beekeeping to incomes and attitude change. In conclusion, human-wildlife conflicts have disturbed conservation and sustainable tourism development efforts. Such success stories like the beekeeping strategy should hence be extensively discussed and widely shared as a conservation technique for sustainable tourism.

Keywords: bees, communities, conservation, elephants

Procedia PDF Downloads 190
369 Heritage, Cultural Events and Promises for Better Future: Media Strategies for Attracting Tourism during the Arab Spring Uprisings

Authors: Eli Avraham

Abstract:

The Arab Spring was widely covered in the global media and the number of Western tourists traveling to the area began to fall. The goal of this study was to analyze which media strategies marketers in Middle Eastern countries chose to employ in their attempts to repair the negative image of the area in the wake of the Arab Spring. Several studies were published concerning image-restoration strategies of destinations during crises around the globe; however, these strategies were not part of an overarching theory, conceptual framework or model from the fields of crisis communication and image repair. The conceptual framework used in the current study was the ‘multi-step model for altering place image’, which offers three types of strategies: source, message and audience. Three research questions were used: 1.What public relations crisis techniques and advertising campaign components were used? 2. What media policies and relationships with the international media were adopted by Arab officials? 3. Which marketing initiatives (such as cultural and sports events) were promoted? This study is based on qualitative content analysis of four types of data: 1) advertising components (slogans, visuals and text); (2) press interviews with Middle Eastern officials and marketers; (3) official media policy adopted by government decision-maker (e.g. boycotting or arresting newspeople); and (4) marketing initiatives (e.g. organizing heritage festivals and cultural events). The data was located in three channels from December 2010, when the events started, to September 31, 2013: (1) Internet and video-sharing websites: YouTube and Middle Eastern countries' national tourism board websites; (2) News reports from two international media outlets, The New York Times and Ha’aretz; these are considered quality newspapers that focus on foreign news and tend to criticize institutions; (3) Global tourism news websites: eTurbo news and ‘Cities and countries branding’. Using the ‘multi-step model for altering place image,’ the analysis reveals that Middle Eastern marketers and officials used three kinds of strategies to repair their countries' negative image: 1. Source (cooperation and media relations; complying, threatening and blocking the media; and finding alternatives to the traditional media) 2. Message (ignoring, limiting, narrowing or reducing the scale of the crisis; acknowledging the negative effect of an event’s coverage and assuring a better future; promotion of multiple facets, exhibitions and softening the ‘hard’ image; hosting spotlight sporting and cultural events; spinning liabilities into assets; geographic dissociation from the Middle East region; ridicule the existing stereotype) and 3. Audience (changing the target audience by addressing others; emphasizing similarities and relevance to specific target audience). It appears that dealing with their image problems will continue to be a challenge for officials and marketers of Middle Eastern countries until the region stabilizes and its regional conflicts are resolved.

Keywords: Arab spring, cultural events, image repair, Middle East, tourism marketing

Procedia PDF Downloads 266
368 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis

Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos

Abstract:

Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.

Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent

Procedia PDF Downloads 260
367 The Production of Biofertilizer from Naturally Occurring Microorganisms by Using Nuclear Technologies

Authors: K. S. Al-Mugren, A. Yahya, S. Alodah, R. Alharbi, S. H. Almsaid , A. Alqahtani, H. Jaber, A. Basaqer, N. Alajra, N. Almoghati, A. Alsalman, Khalid Alharbi

Abstract:

Context: The production of biofertilizers from naturally occurring microorganisms is an area of research that aims to enhance agricultural practices by utilizing local resources. This research project focuses on isolating and screening indigenous microorganisms with PK-fixing and phosphate solubilizing characteristics from local sources. Research Aim: The aim of this project is to develop a biofertilizer product using indigenous microorganisms and composted agro waste as a carrier. The objective is to enhance crop productivity and soil fertility through the application of biofertilizers. Methodology: The research methodology includes several key steps. Firstly, indigenous microorganisms will be isolated from local resources using the ten-fold serial dilutions technique. Screening assays will be conducted to identify microorganisms with phosphate solubilizing and PK-fixing activities. Agro-waste materials will be collected from local agricultural sources, and composting experiments will be conducted to convert them into organic matter-rich compost. Physicochemical analysis will be performed to assess the composition of the composted agro-waste. Gamma and X-ray irradiation will be used to sterilize the carrier material. The sterilized carrier will be tested for sterility using the ten-fold serial dilutions technique. Finally, selected indigenous microorganisms will be developed into biofertilizer products. Findings: The research aims to find suitable indigenous microorganisms with phosphate solubilizing and PK-fixing characteristics for biofertilizer production. Additionally, the research aims to assess the suitability of composted agro waste as a carrier for biofertilizers. The impact of gamma irradiation sterilization on pathogen elimination will also be investigated. Theoretical Importance: This research contributes to the understanding of utilizing indigenous microorganisms and composted agro waste for biofertilizer production. It expands knowledge on the potential benefits of biofertilizers in enhancing crop productivity and soil fertility. Data Collection and Analysis Procedures: The data collection process involves isolating indigenous microorganisms, conducting screening assays, collecting and composting agro waste, analyzing the physicochemical composition of composted agro waste, and testing carrier sterilization. The analysis procedures include assessing the abilities of indigenous microorganisms, evaluating the composition of composted agro waste, and determining the sterility of the carrier material. Conclusion: The research project aims to develop biofertilizer products using indigenous microorganisms and composted agro waste as a carrier. Through the isolation and screening of indigenous microorganisms, the project aims to enhance crop productivity and soil fertility by utilizing local resources. The research findings will contribute to the understanding of the suitability of composted agro waste as a carrier and the efficacy of gamma irradiation sterilization. The research outcomes will have theoretical importance in the field of biofertilizer production and agricultural practices.

Keywords: biofertilizer, microorganisms, agro waste, nuclear technologies

Procedia PDF Downloads 89
366 Impact of α-Adrenoceptor Antagonists on Biochemical Relapse in Men Undergoing Radiotherapy for Localised Prostate Cancer

Authors: Briohny H. Spencer, Russ Chess-Williams, Catherine McDermott, Shailendra Anoopkumar-Dukie, David Christie

Abstract:

Background: Prostate cancer is the second most common cancer diagnosed in men worldwide and the most prevalent in Australian men. In 2015, it was estimated that approximately 18,000 new cases of prostate cancer were diagnosed in Australia. Currently, for localised disease, androgen depravation therapy (ADT) and radiotherapy are a major part of the curative management of prostate cancer. ADT acts to reduce the levels of circulating androgens, primarily testosterone and the locally produced androgen, dihydrotestosterone (DHT), or by preventing the subsequent activation of the androgen receptor. Thus, the growth of the cancerous cells can be reduced or ceased. Radiation techniques such as brachytherapy (radiation delivered directly to the prostate by transperineal implant) or external beam radiation therapy (exposure to a sufficient dose of radiation aimed at eradicating malignant cells) are also common techniques used in the treatment of this condition. Radiotherapy (RT) has significant limitations, including reduced effectiveness in treating malignant cells present in hypoxic microenvironments leading to radio-resistance and poor clinical outcomes and also the significant side effects for the patients. Alpha1-adrenoceptor antagonists are used for many prostate cancer patients to control lower urinary tract symptoms, due to the progression of the disease itself or may arise as an adverse effect of the radiotherapy treatment. In Australia, a significant number (not a majority) of patients receive a α1-ADR antagonist and four drugs are available including prazosin, terazosin, alfuzosin and tamsulosin. There is currently limited published data on the effects of α1-ADR antagonists during radiotherapy, but it suggests these medications may improve patient outcomes by enhancing the effect of radiotherapy. Aim: To determine the impact of α1-ADR antagonists treatments on time to biochemical relapse following radiotherapy. Methods: A retrospective study of male patients receiving radiotherapy for biopsy-proven localised prostate cancer was undertaken to compare cancer outcomes for drug-naïve patients and those receiving α1-ADR antagonist treatments. Ethical approval for the collection of data at Genesis CancerCare QLD was obtained and biochemical relapse (defined by a PSA rise of >2ng/mL above the nadir) was recorded in months. Rates of biochemical relapse, prostate specific antigen doubling time (PSADT) and Kaplan-Meier survival curves were also compared. Treatment groups were those receiving α1-ADR antagonists treatment before or concurrent with their radiotherapy. Data was statistically analysed using One-way ANOVA and results expressed as mean ± standard deviation. Major findings: The mean time to biochemical relapse for tamsulosin, prazosin, alfuzosin and controls were 45.3±17.4 (n=36), 41.5±19.6 (n=11), 29.3±6.02 (n=6) and 36.5±17.6 (n=16) months respectively. Tamsulosin, prazosin but not alfuzosin delayed time to biochemical relapse although the differences were not statistically significant. Conclusion: Preliminary data for the prior and/or concurrent use of tamsulosin and prazosin showed a positive trend in delaying time to biochemical relapse although no statistical significance was shown. Larger clinical studies are indicated and with thousands of patient records yet to be analysed, it may determine if there is a significant effect of these drugs on control of prostate cancer.

Keywords: alpha1-adrenoceptor antagonists, biochemical relapse, prostate cancer, radiotherapy

Procedia PDF Downloads 351
365 International Indigenous Employment Empirical Research: A Community-Based Participatory Research Content Analysis

Authors: Melanie Grier, Adam Murry

Abstract:

Objective: Worldwide, Indigenous Peoples experience underemployment and poverty at disproportionately higher rates than non-Indigenous people, despite similar rates of employment seeking. Euro-colonial conquest and genocidal assimilation policies are implicated as perpetuating poverty, which research consistently links to health and wellbeing disparities. Many of the contributors to poverty, such as inadequate income and lack of access to medical care, can be directly or indirectly linked to underemployment. Calls have been made to prioritize Indigenous perspectives in Industrial-Organizational (I/O) psychology research, yet the literature on Indigenous employment remains scarce. What does exist is disciplinarily diverse, topically scattered, and lacking evidence of community-based participatory research (CBPR) practices, a research project approach which prioritizes community leadership, partnership, and betterment and reduces the potential for harm. Due to the harmful colonial legacy of extractive scientific inquiry "on" rather than "with" Indigenous groups, Indigenous leaders and research funding agencies advocate for academic researchers to adopt reparative research methodologies such as CBPR to be used when studying issues pertaining to Indigenous Peoples or individuals. However, the frequency and consistency of CBPR implementation within scholarly discourse are unknown. Therefore, this project’s goal is two-fold: (1) to understand what comprises CBPR in Indigenous research and (2) to determine if CBPR has been historically used in Indigenous employment research. Method: Using a systematic literature review process, sixteen articles about CBPR use with Indigenous groups were selected, and content was analyzed to identify key components comprising CBPR usage. An Indigenous CBPR components framework was constructed and subsequently utilized to analyze the Indigenous employment empirical literature. A similar systematic literature review process was followed to search for relevant empirical articles on Indigenous employment. A total of 120 articles were identified in six global regions: Australia, New Zealand, Canada, America, the Pacific Islands, and Greenland/Norway. Each empirical study was procedurally examined and coded for criteria inclusion using content analysis directives. Results: Analysis revealed that, in total, CBPR elements were used 14% of the time in Indigenous employment research. Most studies (n=69; 58%) neglected to mention using any CBPR components, while just two studies discussed implementing all sixteen (2%). The most significant determinant of overall CBPR use was community member partnership (CP) in the research process. Studies from New Zealand were most likely to use CBPR components, followed by Canada, Australia, and America. While CBPR use did increase slowly over time, meaningful temporal trends were not found. Further, CBPR use did not directly correspond with the total number of topical articles published that year. Conclusions: Community-initiated and engaged research approaches must be better utilized in employment studies involving Indigenous Peoples. Future research efforts must be particularly attentive to community-driven objectives and research protocols, emphasizing specific areas of concern relevant to the field of I/O psychology, such as organizational support, recruitment, and selection.

Keywords: community-based participatory research, content analysis, employment, indigenous research, international, reconciliation, recruitment, reparative research, selection, systematic literature review

Procedia PDF Downloads 54
364 An Elasto-Viscoplastic Constitutive Model for Unsaturated Soils: Numerical Implementation and Validation

Authors: Maria Lazari, Lorenzo Sanavia

Abstract:

Mechanics of unsaturated soils has been an active field of research in the last decades. Efficient constitutive models that take into account the partial saturation of soil are necessary to solve a number of engineering problems e.g. instability of slopes and cuts due to heavy rainfalls. A large number of constitutive models can now be found in the literature that considers fundamental issues associated with the unsaturated soil behaviour, like the volume change and shear strength behaviour with suction or saturation changes. Partially saturated soils may either expand or collapse upon wetting depending on the stress level, and it is also possible that a soil might experience a reversal in the volumetric behaviour during wetting. Shear strength of soils also changes dramatically with changes in the degree of saturation, and a related engineering problem is slope failures caused by rainfall. There are several states of the art reviews over the last years for studying the topic, usually providing a thorough discussion of the stress state, the advantages, and disadvantages of specific constitutive models as well as the latest developments in the area of unsaturated soil modelling. However, only a few studies focused on the coupling between partial saturation states and time effects on the behaviour of geomaterials. Rate dependency is experimentally observed in the mechanical response of granular materials, and a viscoplastic constitutive model is capable of reproducing creep and relaxation processes. Therefore, in this work an elasto-viscoplastic constitutive model for unsaturated soils is proposed and validated on the basis of experimental data. The model constitutes an extension of an existing elastoplastic strain-hardening constitutive model capable of capturing the behaviour of variably saturated soils, based on energy conjugated stress variables in the framework of superposed continua. The purpose was to develop a model able to deal with possible mechanical instabilities within a consistent energy framework. The model shares the same conceptual structure of the elastoplastic laws proposed to deal with bonded geomaterials subject to weathering or diagenesis and is capable of modelling several kinds of instabilities induced by the loss of hydraulic bonding contributions. The novelty of the proposed formulation is enhanced with the incorporation of density dependent stiffness and hardening coefficients in order to allow the modeling of the pycnotropy behaviour of granular materials with a single set of material constants. The model has been implemented in the commercial FE platform PLAXIS, widely used in Europe for advanced geotechnical design. The algorithmic strategies adopted for the stress-point algorithm had to be revised to take into account the different approach adopted by PLAXIS developers in the solution of the discrete non-linear equilibrium equations. An extensive comparison between models with a series of experimental data reported by different authors is presented to validate the model and illustrate the capability of the newly developed model. After the validation, the effectiveness of the viscoplastic model is displayed by numerical simulations of a partially saturated slope failure of the laboratory scale and the effect of viscosity and degree of saturation on slope’s stability is discussed.

Keywords: PLAXIS software, slope, unsaturated soils, Viscoplasticity

Procedia PDF Downloads 204
363 Improved Soil and Snow Treatment with the Rapid Update Cycle Land-Surface Model for Regional and Global Weather Predictions

Authors: Tatiana G. Smirnova, Stan G. Benjamin

Abstract:

Rapid Update Cycle (RUC) land surface model (LSM) was a land-surface component in several generations of operational weather prediction models at the National Center for Environment Prediction (NCEP) at the National Oceanic and Atmospheric Administration (NOAA). It was designed for short-range weather predictions with an emphasis on severe weather and originally was intentionally simple to avoid uncertainties from poorly known parameters. Nevertheless, the RUC LSM, when coupled with the hourly-assimilating atmospheric model, can produce a realistic evolution of time-varying soil moisture and temperature, as well as the evolution of snow cover on the ground surface. This result is possible only if the soil/vegetation/snow component of the coupled weather prediction model has sufficient skill to avoid long-term drift. RUC LSM was first implemented in the operational NCEP Rapid Update Cycle (RUC) weather model in 1998 and later in the Weather Research Forecasting Model (WRF)-based Rapid Refresh (RAP) and High-resolution Rapid Refresh (HRRR). Being available to the international WRF community, it was implemented in operational weather models in Austria, New Zealand, and Switzerland. Based on the feedback from the US weather service offices and the international WRF community and also based on our own validation, RUC LSM has matured over the years. Also, a sea-ice module was added to RUC LSM for surface predictions over the Arctic sea-ice. Other modifications include refinements to the snow model and a more accurate specification of albedo, roughness length, and other surface properties. At present, RUC LSM is being tested in the regional application of the Unified Forecast System (UFS). The next generation UFS-based regional Rapid Refresh FV3 Standalone (RRFS) model will replace operational RAP and HRRR at NCEP. Over time, RUC LSM participated in several international model intercomparison projects to verify its skill using observed atmospheric forcing. The ESM-SnowMIP was the last of these experiments focused on the verification of snow models for open and forested regions. The simulations were performed for ten sites located in different climatic zones of the world forced with observed atmospheric conditions. While most of the 26 participating models have more sophisticated snow parameterizations than in RUC, RUC LSM got a high ranking in simulations of both snow water equivalent and surface temperature. However, ESM-SnowMIP experiment also revealed some issues in the RUC snow model, which will be addressed in this paper. One of them is the treatment of grid cells partially covered with snow. RUC snow module computes energy and moisture budgets of snow-covered and snow-free areas separately by aggregating the solutions at the end of each time step. Such treatment elevates the importance of computing in the model snow cover fraction. Improvements to the original simplistic threshold-based approach have been implemented and tested both offline and in the coupled weather model. The detailed description of changes to the snow cover fraction and other modifications to RUC soil and snow parameterizations will be described in this paper.

Keywords: land-surface models, weather prediction, hydrology, boundary-layer processes

Procedia PDF Downloads 67
362 The Regulation of the Cancer Epigenetic Landscape Lies in the Realm of the Long Non-coding RNAs

Authors: Ricardo Alberto Chiong Zevallos, Eduardo Moraes Rego Reis

Abstract:

Pancreatic adenocarcinoma (PDAC) patients have a less than 10% 5-year survival rate. PDAC has no defined diagnostic and prognostic biomarkers. Gemcitabine is the first-line drug in PDAC and several other cancers. Long non-coding RNAs (lncRNAs) contribute to the tumorigenesis and are potential biomarkers for PDAC. Although lncRNAs aren’t translated into proteins, they have important functions. LncRNAs can decoy or recruit proteins from the epigenetic machinery, act as microRNA sponges, participate in protein translocation through different cellular compartments, and even promote chemoresistance. The chromatin remodeling enzyme EZH2 is a histone methyltransferase that catalyzes the methylation of histone 3 at lysine 27, silencing local expression. EZH2 is ambivalent, it can also activate gene expression independently of its histone methyltransferase activity. EZH2 is overexpressed in several cancers and interacts with lncRNAs, being recruited to a specific locus. EZH2 can be recruited to activate an oncogene or silence a tumor suppressor. The lncRNAs misregulation in cancer can result in the differential recruitment of EZH2 and in a distinct epigenetic landscape, promoting chemoresistance. The relevance of the EZH2-lncRNAs interaction to chemoresistant PDAC was assessed by Real Time quantitative PCR (RT-qPCR) and RNA Immunoprecipitation (RIP) experiments with naïve and gemcitabine-resistant PDAC cells. The expression of several lncRNAs and EZH2 gene targets was evaluated contrasting naïve and resistant cells. Selection of candidate genes was made by bioinformatic analysis and literature curation. Indeed, the resistant cell line showed higher expression of chemoresistant-associated lncRNAs and protein coding genes. RIP detected lncRNAs interacting with EZH2 with varying intensity levels in the cell lines. During RIP, the nuclear fraction of the cells was incubated with an antibody for EZH2 and with magnetic beads. The RNA precipitated with the beads-antibody-EZH2 complex was isolated and reverse transcribed. The presence of candidate lncRNAs was detected by RT-qPCR, and the enrichment was calculated relative to INPUT (total lysate control sample collected before RIP). The enrichment levels varied across the several lncRNAs and cell lines. The EZH2-lncRNA interaction might be responsible for the regulation of chemoresistance-associated genes in multiple cancers. The relevance of the lncRNA-EZH2 interaction to PDAC was assessed by siRNA knockdown of a lncRNA, followed by the analysis of the EZH2 target expression by RT-qPCR. The chromatin immunoprecipitation (ChIP) of EZH2 and H3K27me3 followed by RT-qPCR with primers for EZH2 targets also assess the specificity of the EZH2 recruitment by the lncRNA. This is the first report of the interaction of EZH2 and lncRNAs HOTTIP and PVT1 in chemoresistant PDAC. HOTTIP and PVT1 were described as promoting chemoresistance in several cancers, but the role of EZH2 is not clarified. For the first time, the lncRNA LINC01133 was detected in a chemoresistant cancer. The interaction of EZH2 with LINC02577, LINC00920, LINC00941, and LINC01559 have never been reported in any context. The novel lncRNAs-EZH2 interactions regulate chemoresistant-associated genes in PDAC and might be relevant to other cancers. Therapies targeting EZH2 alone weren’t successful, and a combinatorial approach also targeting the lncRNAs interacting with it might be key to overcome chemoresistance in several cancers.

Keywords: epigenetics, chemoresistance, long non-coding RNAs, pancreatic cancer, histone modification

Procedia PDF Downloads 67
361 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation

Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli

Abstract:

Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.

Keywords: endothelialisation, plasma treatment, stent, surface functionalisation

Procedia PDF Downloads 286
360 Predictive Analytics for Theory Building

Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim

Abstract:

Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.

Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building

Procedia PDF Downloads 248
359 C-Coordinated Chitosan Metal Complexes: Design, Synthesis and Antifungal Properties

Authors: Weixiang Liu, Yukun Qin, Song Liu, Pengcheng Li

Abstract:

Plant diseases can cause the death of crops with great economic losses. Particularly, those diseases are usually caused by pathogenic fungi. Metal fungicides are a type of pesticide that has advantages of a low-cost, broad antimicrobial spectrum and strong sterilization effect. However, the frequent and wide application of traditional metal fungicides has caused serious problems such as environmental pollution, the outbreak of mites and phytotoxicity. Therefore, it is critically necessary to discover new organic metal fungicides alternatives that have a low metal content, low toxicity, and little influence on mites. Chitosan, the second most abundant natural polysaccharide next to cellulose, was proved to have broad-spectrum antifungal activity against a variety of fungi. However, the use of chitosan was limited due to its poor solubility and weaker antifungal activity compared with commercial fungicide. Therefore, in order to improve the water solubility and antifungal activity, many researchers grafted the active groups onto chitosan. The present work was to combine free metal ions with chitosan, to prepare more potent antifungal chitosan derivatives, thus, based on condensation reaction, chitosan derivative bearing amino pyridine group was prepared and subsequently followed by coordination with cupric ions, zinc ions and nickel ions to synthesize chitosan metal complexes. The calculations by density functional theory (DFT) show that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and all of them are coordinated by the carbon atom in the p-π conjugate group and the oxygen atoms in the acetate ion. The antifungal properties of chitosan metal complexes against Phytophthora capsici (P. capsici), Gibberella zeae (G. zeae), Fusarium oxysporum (F. oxysporum) and Botrytis cinerea (B. cinerea) were also assayed. In addition, a plant toxicity experiment was carried out. The experiments indicated that the derivatives have significantly enhanced antifungal activity after metal ions complexation compared with the original chitosan. It was shown that 0.20 mg/mL of O-CSPX-Cu can 100% inhibit the growth of P. capsici and 0.20 mg/mL of O-CSPX-Ni can 87.5% inhibit the growth of B. cinerea. In general, their activities are better than the positive control oligosaccharides. The combination of the pyridine formyl groups seems to favor biological activity. Additionally, the ligand fashion was precisely analyzed, and the results revealed that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and the carbon atoms of the p-π conjugate group and the oxygen atoms of acetate ion are involved in the coordination of metal ions. The phytotoxicity assay of O-CSPX-M was also conducted, unlike the traditional metal fungicides, the metal complexes were not significantly toxic to the leaves of wheat. O-CSPX-Zn can even increase chlorophyll content in wheat leaves at 0.40 mg/mL. This is mainly because chitosan itself promotes plant growth and counteracts the phytotoxicity of metal ions. The chitosan derivative described here may lend themselves to future applicative studies in crop protection.

Keywords: coordination, chitosan, metal complex, antifungal properties

Procedia PDF Downloads 293
358 Production Factor Coefficients Transition through the Lens of State Space Model

Authors: Kanokwan Chancharoenchai

Abstract:

Economic growth can be considered as an important element of countries’ development process. For developing countries, like Thailand, to ensure the continuous growth of the economy, the Thai government usually implements various policies to stimulate economic growth. They may take the form of fiscal, monetary, trade, and other policies. Because of these different aspects, understanding factors relating to economic growth could allow the government to introduce the proper plan for the future economic stimulating scheme. Consequently, this issue has caught interest of not only policymakers but also academics. This study, therefore, investigates explanatory variables for economic growth in Thailand from 2005 to 2017 with a total of 52 quarters. The findings would contribute to the field of economic growth and become helpful information to policymakers. The investigation is estimated throughout the production function with non-linear Cobb-Douglas equation. The rate of growth is indicated by the change of GDP in the natural logarithmic form. The relevant factors included in the estimation cover three traditional means of production and implicit effects, such as human capital, international activity and technological transfer from developed countries. Besides, this investigation takes the internal and external instabilities into account as proxied by the unobserved inflation estimation and the real effective exchange rate (REER) of the Thai baht, respectively. The unobserved inflation series are obtained from the AR(1)-ARCH(1) model, while the unobserved REER of Thai baht is gathered from naive OLS-GARCH(1,1) model. According to empirical results, the AR(|2|) equation which includes seven significant variables, namely capital stock, labor, the imports of capital goods, trade openness, the REER of Thai baht uncertainty, one previous GDP, and the world financial crisis in 2009 dummy, presents the most suitable model. The autoregressive model is assumed constant estimator that would somehow cause the unbias. However, this is not the case of the recursive coefficient model from the state space model that allows the transition of coefficients. With the powerful state space model, it provides the productivity or effect of each significant factor more in detail. The state coefficients are estimated based on the AR(|2|) with the exception of the one previous GDP and the 2009 world financial crisis dummy. The findings shed the light that those factors seem to be stable through time since the occurrence of the world financial crisis together with the political situation in Thailand. These two events could lower the confidence in the Thai economy. Moreover, state coefficients highlight the sluggish rate of machinery replacement and quite low technology of capital goods imported from abroad. The Thai government should apply proactive policies via taxation and specific credit policy to improve technological advancement, for instance. Another interesting evidence is the issue of trade openness which shows the negative transition effect along the sample period. This could be explained by the loss of price competitiveness to imported goods, especially under the widespread implementation of free trade agreement. The Thai government should carefully handle with regulations and the investment incentive policy by focusing on strengthening small and medium enterprises.

Keywords: autoregressive model, economic growth, state space model, Thailand

Procedia PDF Downloads 129
357 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)

Authors: Natalia Lukasik, Ewa Wagner-Wysiecka

Abstract:

Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.

Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor

Procedia PDF Downloads 134
356 Effectiveness of Dry Needling with and without Ultrasound Guidance in Patients with Knee Osteoarthritis and Patellofemoral Pain Syndrome: A Systematic Review and Meta-Analysis

Authors: Johnson C. Y. Pang, Amy S. N. Fu, Ryan K. L. Lee, Allan C. L. Fu

Abstract:

Dry needling (DN) is one of the puncturing methods that involves the insertion of needles into the tender spots of the human body without the injection of any substance. DN has long been used to treat the patient with knee pain caused by knee osteoarthritis (KOA) and patellofemoral pain syndrome (PFPS), but the effectiveness is still inconsistent. This study aimed to conduct a systematic review and meta-analysis to assess the intervention methods and effects of DN with and without ultrasound guidance for treating pain and dysfunctions in people with KOA and PFPS. Design: This systematic review adhered to the PRISMA reporting guidelines. The registration number of the study protocol published in the PROSPERO database was CRD42021221419. Six electronic databases were searched manually through CINAHL Complete (1976-2020), Cochrane Library (1996-2020), EMBASE (1947-2020), Medline (1946-2020), PubMed (1966-2020), and Psychinfo (1806-2020) in November 2020. Randomized controlled trials (RCTs) and controlled clinical trials were included to examine the effects of DN on knee pain, including KOA and PFPS. The key concepts included were: DN, acupuncture, ultrasound guidance, KOA, and PFPS. Risk of bias assessment and qualitative analysis were conducted by two independent reviewers using the PEDro score. Results: Fourteen articles met the inclusion criteria, and eight of them were high-quality papers in accordance with the PEDro score. There were variations in the techniques of DN. These included the direction, depth of insertion, number of needles, duration of stay, needle manipulation, and the number of treatment sessions. Meta-analysis was conducted on eight articles. DN group showed positive short-term effects (from immediate after DN to less than 3 months) on pain reduction for both KOA and PFPS with the overall standardized mean difference (SMD) of -1.549 (95% CI=-0.588 to -2.511); with great heterogeneity (P=0.002, I²=96.3%). In subgroup analysis, DN demonstrated significant effects in pain reduction on PFPS (p < 0.001) that could not be found in subjects with KOA (P=0.302). At 3-month post-intervention, DN also induced significant pain reduction in both subjects with KOA and PFPS with an overall SMD of -0.916 (95% CI=-0.133 to -1.699, and great heterogeneity (P=0.022, I²=95.63%). Besides, DN induced significant short-term improvement in function with the overall SMD=6.069; 95% CI=8.595 to 3.544; with great heterogeneity (P<0.001, I²=98.56%) when analyzed was conducted on both KOA and PFPS groups. In subgroup analysis, only PFPS showed a positive result with SMD=6.089, P<0.001; while KOA showed statistically insignificant with P=0.198 in short-term effect. Similarly, at 3-month post-intervention, significant improvement in function after DN was found when the analysis was conducted in both groups with the overall SMD=5.840; 95% CI=9.252 to 2.428; with great heterogeneity (P<0.001, I²=99.1%), but only PFPS showed significant improvement in sub-group analysis (P=0.002, I²=99.1%). Conclusions: The application of DN in KOA and PFPS patients varies among practitioners. DN is effective in reducing pain and dysfunction at short-term and 3-month post-intervention in individuals with PFPS. To our best knowledge, no study has reported the effects of DN with ultrasound guidance on KOA and PFPS. The longer-term effects of DN on KOA and PFPS are waiting for further study.

Keywords: dry needling, knee osteoarthritis, patellofemoral pain syndrome, ultrasound guidance

Procedia PDF Downloads 114
355 Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling

Authors: Vishnu Asokan, Zaid M. Paloba

Abstract:

Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity.

Keywords: energy addition, frequency shift, Numerical Schlieren, shear layer, vortex evolution

Procedia PDF Downloads 126
354 Assessing of Social Comfort of the Russian Population with Big Data

Authors: Marina Shakleina, Konstantin Shaklein, Stanislav Yakiro

Abstract:

The digitalization of modern human life over the last decade has facilitated the acquisition, storage, and processing of data, which are used to detect changes in consumer preferences and to improve the internal efficiency of the production process. This emerging trend has attracted academic interest in the use of big data in research. The study focuses on modeling the social comfort of the Russian population for the period 2010-2021 using big data. Big data provides enormous opportunities for understanding human interactions at the scale of society with plenty of space and time dynamics. One of the most popular big data sources is Google Trends. The methodology for assessing social comfort using big data involves several steps: 1. 574 words were selected based on the Harvard IV-4 Dictionary adjusted to fit the reality of everyday Russian life. The set of keywords was further cleansed by excluding queries consisting of verbs and words with several lexical meanings. 2. Search queries were processed to ensure comparability of results: the transformation of data to a 10-point scale, elimination of popularity peaks, detrending, and deseasoning. The proposed methodology for keyword search and Google Trends processing was implemented in the form of a script in the Python programming language. 3. Block and summary integral indicators of social comfort were constructed using the first modified principal component resulting in weighting coefficients values of block components. According to the study, social comfort is described by 12 blocks: ‘health’, ‘education’, ‘social support’, ‘financial situation’, ‘employment’, ‘housing’, ‘ethical norms’, ‘security’, ‘political stability’, ‘leisure’, ‘environment’, ‘infrastructure’. According to the model, the summary integral indicator increased by 54% and was 4.631 points; the average annual rate was 3.6%, which is higher than the rate of economic growth by 2.7 p.p. The value of the indicator describing social comfort in Russia is determined by 26% by ‘social support’, 24% by ‘education’, 12% by ‘infrastructure’, 10% by ‘leisure’, and the remaining 28% by others. Among 25% of the most popular searches, 85% are of negative nature and are mainly related to the blocks ‘security’, ‘political stability’, ‘health’, for example, ‘crime rate’, ‘vulnerability’. Among the 25% most unpopular queries, 99% of the queries were positive and mostly related to the blocks ‘ethical norms’, ‘education’, ‘employment’, for example, ‘social package’, ‘recycling’. In conclusion, the introduction of the latent category ‘social comfort’ into the scientific vocabulary deepens the theory of the quality of life of the population in terms of the study of the involvement of an individual in the society and expanding the subjective aspect of the measurements of various indicators. Integral assessment of social comfort demonstrates the overall picture of the development of the phenomenon over time and space and quantitatively evaluates ongoing socio-economic policy. The application of big data in the assessment of latent categories gives stable results, which opens up possibilities for their practical implementation.

Keywords: big data, Google trends, integral indicator, social comfort

Procedia PDF Downloads 178
353 Severe Post Operative Gas Gangrene of the Liver: Off-Label Treatment by Percutaneous Radiofrequency Ablation

Authors: Luciano Tarantino

Abstract:

Gas gangrene is a rare, severe infection with a very high mortality rate caused by Clostridium species. The infection causes a non-suppurative localized producing gas lesion from which harmful toxins that impair the inflammatory response cause vessel damage and multiple organ failure. Gas gangrene of the liver is very rare and develops suddenly, often as a complication of abdominal surgery and liver transplantation. The present paper deals with a case of gas gangrene of the liver that occurred after percutaneous MW ablation of hepatocellular carcinoma, resulting in progressive liver necrosis and multi-organ failure in spite of specific antibiotics administration. The patient was successfully treated with percutaneous Radiofrequency ablation. Case report: Female, 76 years old, Child A class cirrhosis, treated with synchronous insertion of 3 MW antennae for large HCC (5.5 cm) in the VIII segment. 24 hours after treatment, the patient was asymptomatic and left the hospital . 2 days later, she complained of fever, weakness, abdominal swelling, and pain. Abdominal US detected a 2.3 cm in size gas-containing area, eccentric within the large (7 cm) ablated area. The patient was promptly hospitalized with the diagnosis of anaerobic liver abscess and started antibiotic therapy with Imipenem/cilastatine+metronidazole+teicoplanine. On the fourth day, the patient was moved to the ICU because of dyspnea, congestive heart failure, atrial fibrillation, right pleural effusion, ascites, and renal failure. Blood tests demonstrated severe leukopenia and neutropenia, anemia, increased creatinine and blood nitrogen, high-level FDP, and high INR. Blood cultures were negative. At US, unenhanced CT, and CEUS, a progressive enlargement of the infected liver lesion was observed. Percutaneous drainage was attempted, but only drops of non-suppurative brownish material could be obtained. Pleural and peritoneal drainages gave serosanguineous muddy fluid. The Surgeon and the Anesthesiologist excluded any indication of surgical resection because of the high perioperative mortality risk. Therefore, we asked for the informed consent of the patient and her relatives to treat the gangrenous liver lesion by percutaneous Ablation. Under conscious sedation, percutaneous RFA of GG was performed by double insertion of 3 cool-tip needles (Covidien LDT, USA ) into the infected area. The procedure was well tolerated by the patient. A dramatic improvement in the patient's condition was observed in the subsequent 24 hours and thereafter. Fever and dyspnea disappeared. Normalization of blood tests, including creatinine, was observed within 4 days. Heart performance improved, 10 days after the RFA the patient left the hospital and was followed-up with weekly as an outpatient for 2 months and every two months thereafter. At 18 months follow-up, the patient is well compensated (Child-Pugh class B7), without any peritoneal or pleural effusion and without any HCC recurrence at imaging (US every 3 months, CT every 6 months). Percutaneous RFA could be a valuable therapy of focal GG of the liver in patients non-responder to antibiotics and when surgery and liver transplantation are not feasible. A fast and early indication is needed in case of rapid worsening of patient's conditions.

Keywords: liver tumor ablation, interventional ultrasound, liver infection, gas gangrene, radiofrequency ablation

Procedia PDF Downloads 56
352 Understanding the Perceived Barriers and Facilitators to Exercise Participation in the Workplace

Authors: Jayden R. Hunter, Brett A. Gordon, Stephen R. Bird, Amanda C. Benson

Abstract:

The World Health Organisation recognises the workplace as an important setting for exercise promotion, with potential benefits including improved employee health and fitness, and reduced worker absenteeism and presenteeism. Despite these potential benefits to both employee and employer, there is a lack of evidence supporting the long-term effectiveness of workplace exercise programs. There is, therefore, a need for better-informed programs that cater to employee exercise preferences. Specifically, workplace exercise programs should address any time, motivation, internal and external barriers to participation reported by sub-groups of employees. This study sought to compare exercise participation to perceived barriers and facilitators to workplace exercise engagement of university employees. This information is needed to design and implement wider-reaching programs aiming to maximise long-term employee exercise adherence and subsequent health, fitness and productivity benefits. An online survey was advertised at an Australian university with the potential to reach 3,104 full-time employees. Along with exercise participation (International physical activity questionnaire) and behaviour (stage of behaviour change in relation to physical activity questionnaire), perceived barriers (corporate exercise barriers scale) and facilitators to workplace exercise participation were identified. The survey response rate was 8.1% (252 full-time employees; 95% white-collar; 60% female; 79.4% aged 30–59 years; 57% professional and 38% academic). Most employees reported meeting (43.7%) or exceeding (42.9%) exercise guidelines over the previous week (i.e. ⩾30 min of moderate-intensity exercise on most days or ⩾ 25 min of vigorous-intensity exercise on at least three days per week). Reported exercise behaviour over the previous six months showed that 64.7% of employees were in maintenance, 8.3% were in action, 10.9% were in preparation, 12.4% were in contemplation, and 3.8% were in the pre-contemplation stage of change. Perceived barriers towards workplace exercise participation were significantly higher in employees not attaining weekly exercise guidelines compared to employees meeting or exceeding guidelines, including a lack of time or reduced motivation (p < 0.001; partial eta squared = 0.24 (large effect)), exercise attitude (p < 0.05; partial eta squared = 0.04 (small effect)), internal (p < 0.01; partial eta squared = 0.10 (moderate effect)) and external (p < 0.01; partial eta squared = 0.06 (moderate effect)) barriers. The most frequently reported exercise facilitators were personal training (particularly for insufficiently active employees; 33%) and group exercise classes (20%). The most frequently cited preferred modes of exercise were walking (70%), swimming (50%), gym (48%), and cycling (45%). In conclusion, providing additional means of support such as individualised gym, swimming and cycling programs with personal supervision and guidance may be particularly useful for employees not meeting recommended moderate-vigorous volumes of exercise, to help overcome reported exercise barriers in order to improve participation, health, and fitness. While individual biopsychosocial factors should be considered when making recommendations for interventions, the specific barriers and facilitators to workplace exercise participation identified by this study can inform the development of workplace exercise programs aiming to broaden employee engagement and promote greater ongoing exercise adherence. This is especially important for the uptake of less active employees who perceive greater barriers to workplace exercise participation than their more active colleagues.

Keywords: exercise barriers, exercise facilitators, physical activity, workplace health

Procedia PDF Downloads 129
351 Delicate Balance between Cardiac Stress and Protection: Role of Mitochondrial Proteins

Authors: Zuzana Tatarkova, Ivana Pilchova, Michal Cibulka, Martin Kolisek, Peter Racay, Peter Kaplan

Abstract:

Introduction: Normal functioning of mitochondria is crucial for cardiac performance. Mitochondria undergo mitophagy and biogenesis, and mitochondrial proteins are subject to extensive post-translational modifications. The state of mitochondrial homeostasis reflects overall cellular fitness and longevity. Perturbed mitochondria produce less ATP, release greater amounts of reactive molecules, and are more prone to apoptosis. Therefore mitochondrial turnover is an integral aspect of quality control in which dysfunctional mitochondria are selectively eliminated through mitophagy. Currently, the progressive deterioration of physiological functions is seen as accumulation of modified/damaged proteins with limiting regenerative ability and disturbance of such affected protein-protein communication throughout aging in myocardial cells. Methodologies: For our study was used immunohistochemistry, biochemical methods: spectrophotometry, western blotting, immunodetection as well as more sophisticated 2D electrophoresis and mass spectrometry for evaluation protein-protein interactions and specific post-translational modification. Results and Discussion: Mitochondrial stress response to reactive species was evaluated as electron transport chain (ETC) complexes, redox-active molecules, and their possible communication. Protein-protein interactions revealed a strong linkage between age and ETC protein subunits. Redox state was strongly affected in senescent mitochondria with shift in favor of more pro-oxidizing condition within cardiomyocytes. Acute myocardial ischemia and ischemia-reperfusion (IR) injury affected ETC complexes I, II and IV with no change in complex III. Ischemia induced decrease in total antioxidant capacity, MnSOD, GSH and catalase activity with recovery in some extent during reperfusion. While MnSOD protein content was higher in IR group, activity returned to 95% of control. Nitric oxide is one of the biological molecules that can out compete MnSOD for superoxide and produce peroxynitrite. This process is faster than dismutation and led to the 10-fold higher production of nitrotyrosine after IR injury in adult with higher protection in senescent ones. 2D protein profiling revealed 140 mitochondrial proteins, 12 of them with significant changes after IR injury and 36 individual nitrotyrosine-modified proteins further identified by mass spectrometry. Linking these two groups, 5 proteins were altered after IR as well as nitrated, but only one showed massive nitration per lowering content of protein after IR injury in adult. Conclusions: Senescent cells have greater proportion of protein content, which might be modulated by several post-translational modifications. If these protein modifications are connected to functional consequences and protein-protein interactions are revealed, link may lead to the solution. Assume all together, dysfunctional proteostasis can play a causative role and restoration of protein homeostasis machinery is protective against aging and possibly age-related disorders. This work was supported by the project VEGA 1/0018/18 and by project 'Competence Center for Research and Development in the field of Diagnostics and Therapy of Oncological diseases', ITMS: 26220220153, co-financed from EU sources.

Keywords: aging heart, mitochondria, proteomics, redox state

Procedia PDF Downloads 147
350 Train Timetable Rescheduling Using Sensitivity Analysis: Application of Sobol, Based on Dynamic Multiphysics Simulation of Railway Systems

Authors: Soha Saad, Jean Bigeon, Florence Ossart, Etienne Sourdille

Abstract:

Developing better solutions for train rescheduling problems has been drawing the attention of researchers for decades. Most researches in this field deal with minor incidents that affect a large number of trains due to cascading effects. They focus on timetables, rolling stock and crew duties, but do not take into account infrastructure limits. The present work addresses electric infrastructure incidents that limit the power available for train traction, and hence the transportation capacity of the railway system. Rescheduling is needed in order to optimally share the available power among the different trains. We propose a rescheduling process based on dynamic multiphysics railway simulations that include the mechanical and electrical properties of all the system components and calculate physical quantities such as the train speed profiles, voltage along the catenary lines, temperatures, etc. The optimization problem to solve has a large number of continuous and discrete variables, several output constraints due to physical limitations of the system, and a high computation cost. Our approach includes a phase of sensitivity analysis in order to analyze the behavior of the system and help the decision making process and/or more precise optimization. This approach is a quantitative method based on simulation statistics of the dynamic railway system, considering a predefined range of variation of the input parameters. Three important settings are defined. Factor prioritization detects the input variables that contribute the most to the outputs variation. Then, factor fixing allows calibrating the input variables which do not influence the outputs. Lastly, factor mapping is used to study which ranges of input values lead to model realizations that correspond to feasible solutions according to defined criteria or objectives. Generalized Sobol indexes are used for factor prioritization and factor fixing. The approach is tested in the case of a simple railway system, with a nominal traffic running on a single track line. The considered incident is the loss of a feeding power substation, which limits the power available and the train speed. Rescheduling is needed and the variables to be adjusted are the trains departure times, train speed reduction at a given position and the number of trains (cancellation of some trains if needed). The results show that the spacing between train departure times is the most critical variable, contributing to more than 50% of the variation of the model outputs. In addition, we identify the reduced range of variation of this variable which guarantees that the output constraints are respected. Optimal solutions are extracted, according to different potential objectives: minimizing the traveling time, the train delays, the traction energy, etc. Pareto front is also built.

Keywords: optimization, rescheduling, railway system, sensitivity analysis, train timetable

Procedia PDF Downloads 380
349 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 23
348 Regulation of Cultural Relationship between Russia and Ukraine after Crimea’s Annexation: A Comparative Socio-Legal Study

Authors: Elena Sherstoboeva, Elena Karzanova

Abstract:

This paper explores the impact of the annexation of Crimea on the regulation of live performances and tour management of Russian pop music performers in Ukraine and of Ukrainian performers in Russia. Without a doubt, the cultural relationship between Russia and Ukraine is not limited to this issue. Yet concert markets tend to respond particularly rapidly to political, economic, and social changes, especially in Russia and Ukraine, where the high level of digital piracy means that the music businesses mainly depend upon income from performances rather than from digital rights sales. This paper argues that the rules formed in both countries after Russia’s annexation of Crimea in 2014 have contributed to the separation of a single cultural space that had existed in Soviet and Post-Soviet Russia and Ukraine before the annexation. These rules have also facilitated performers’ self-censorship and increased the politicisation of the music businesses in the two neighbouring countries. This study applies a comparative socio-legal approach to study Russian and Ukrainian live events and tour regulation. A qualitative analysis of Russian and Ukrainian national and intergovernmental legal frameworks is applied to examine formal regulations. Soviet and early post-Soviet laws and policies are also studied, but only to the extent that they help to track the changes in the Russian–Ukrainian cultural relationship. To identify and analyse the current informal rules, the study design includes in-depth semi-structured interviews with 30 live event or tour managers working in Russia and Ukraine. A case study is used to examine how the Eurovision Song Contest, an annual international competition, has played out within the Russian–Ukrainian conflict. The study suggests that modern Russian and Ukrainian frameworks for live events and tours have developed Soviet regulatory traditions when cultural policies served as a means of ideological control. At the same time, contemporary regulations mark a considerable perspective shift, as the previous rules have been aimed at maintaining close cultural connections between the Russian and Ukrainian nations. Instead of collaboration, their current frameworks mostly serve as forms of repression, implying that performers must choose only one national market in which to work. The regulatory instruments vary and often impose limitations that typically exist in non-democratic regimes to restrict foreign journalism, such as visa barriers or bans on entry. The more unexpected finding is that, in comparison with Russian law, Ukrainian regulations have created more obstacles to the organisation of live tours and performances by Russian artists in Ukraine. Yet this stems from commercial rather than political factors. This study predicts that the more economic challenges the Russian or Ukrainian music businesses face, the harsher the regulations will be regarding the organisation of live events or tours in the other country. This study recommends that international human rights organisations and non-governmental organisations develop and promote specific standards for artistic rights and freedoms, given the negative effects of the increasing politicisation of the entertainment business and cultural spheres to freedom of expression and cultural rights and pluralism.

Keywords: annexation of Crimea, artistic freedom, censorship, cultural policy

Procedia PDF Downloads 104
347 The Healing 'Touch' of Music: A Neuro-Acoustics Approach to Understand Its Therapeutic Effect

Authors: Jagmeet S. Kanwal, Julia F. Langley

Abstract:

Music can heal the body, but a mechanistic understanding of this phenomenon is lacking. This study explores the effects of music presentation on neurologic and physiologic responses leading to metabolic changes in the human body. The mind and body co-exist in a corporeal entity and within this framework, sickness ensues when the mind-body balance goes awry. It is further hypothesized that music has the capacity to directly reset this balance. Two lines of inquiry taken together can provide a mechanistic understanding of this phenomenon 1) Empirical evidence for a sound-sensitive pressure sensor system in the body, and 2) The notion of a “healing center” within the brain that is activated by specific patterns of sounds. From an acoustics perspective, music is spatially distributed as pressure waves ranging from a few cm to several meters in wavelength. These waves interact and propagate in three-dimensions in unique ways, depending on the wavelength. Furthermore, music creates dynamically changing wave-fronts. Frequencies between 200 Hz and 1 kHz generate wavelengths that range from 5'6" to 1 foot. These dimensions are in the range of the body size of most people making it plausible that these pressure waves can geometrically interact with the body surface and create distinct patterns of pressure stimulation across the skin surface. For humans, short wavelength, high frequency (> 200 Hz) sounds are best received via cochlear receptors. For low frequency (< 200 Hz), long wavelength sound vibrations, however, the whole body may act as an ideal receiver. A vast array of highly sensitive pressure receptors (Pacinian corpuscles) is present just beneath the skin surface, as well as in the tendons, bones, several organs in the abdomen, and the sexual organs. Per the available empirical evidence, these receptors contribute to music perception by allowing the whole body to function as a sound receiver, and knowledge of how they function is essential to fully understanding the therapeutic effect of music. Neuroscientific studies have established that music stimulates the limbic system that can trigger states of anxiety, arousal, fear, and other emotions. These emotional states of brain activity play a crucial role in filtering top-down feedback from thoughts and bottom-up sensory inputs to the autonomic system, which automatically regulates bodily functions. Music likely exerts its pleasurable and healing effects by enhancing functional and effective connectivity and feedback mechanisms between brain regions that mediate reward, autonomic, and cognitive processing. Stimulation of pressure receptors under the skin by low-frequency music-induced sensations can activate multiple centers in the brain, including the amygdala, the cingulate cortex, and nucleus accumbens. Melodies in music in the low (< 600 Hz) frequency range may augment auditory inputs after convergence of the pressure-sensitive inputs from the vagus nerve onto emotive processing regions within the limbic system. The integration of music-generated auditory and somato-visceral inputs may lead to a synergistic input to the brain that promotes healing. Thus, music can literally heal humans through “touch” as it energizes the brain’s autonomic system for restoring homeostasis.

Keywords: acoustics, brain, music healing, pressure receptors

Procedia PDF Downloads 143
346 Sustainability in the Purchase of Airline Tickets: Analysis of Digital Communication from the Perspective of Neuroscience

Authors: Rodríguez Sánchez Carla, Sancho-Esper Franco, Guillen-Davo Marina

Abstract:

Tourism is one of the most important sectors worldwide since it is an important economic engine for today's society. It is also one of the sectors that most negatively affect the environment in terms of CO₂ emissions due to this expansion. In light of this, airlines are developing Voluntary Carbon Offset (VCO). There is important evidence focused on analyzing the features of these VCO programs and their efficacy in reducing CO₂ emissions, and findings are mixed without a clear consensus. Different research approaches have centered on analyzing factors and consequences of VCO programs, such as economic modelling based on panel data, survey research based on traveler responses or experimental research analyzing customer decisions in a simulated context. This study belongs to the latter group because it tries to understand how different characteristics of an online ticket purchase website affect the willingness of a traveler to choose a sustainable one. The proposed behavioral model is based on several theories, such as the nudge theory, the dual processing ELM and the cognitive dissonance theory. This randomized experiment aims at overcoming previous studies based on self-reported measures that mainly study sustainable behavioral intention rather than actual decision-making. It also complements traditional self-reported independent variables by gathering objective information from an eye-tracking device. This experiment analyzes the influence of two characteristics of the online purchase website: i) the type of information regarding flight CO₂ emissions (quantitative vs. qualitative) and the comparison framework related to the sustainable purchase decision (negative: alternative with more emissions than the average flight of the route vs. positive: alternative with less emissions than the average flight of the route), therefore it is a 2x2 experiment with four alternative scenarios. A pretest was run before the actual experiment to refine the experiment features and to check the manipulations. Afterward, a different sample of students answered the pre-test questionnaire aimed at recruiting the cases and measuring several pre-stimulus measures. One week later, students came to the neurolab at the University setting to be part of the experiment, made their decision regarding online purchases and answered the post-test survey. A final sample of 21 students was gathered. The committee of ethics of the institution approved the experiment. The results show that qualitative information generates more sustainable decisions (less contaminant alternative) than quantitative information. Moreover, evidence shows that subjects are more willing to choose the sustainable decision to be more ecological (comparison of the average with the less contaminant alternative) rather than to be less contaminant (comparison of the average with the more contaminant alternative). There are also interesting differences in the information processing variables from the eye tracker. Both the total time to make the choice and the specific times by area of interest (AOI) differ depending on the assigned scenario. These results allow for a better understanding of the factors that condition the decision of a traveler to be part of a VCO program and provide useful information for airline managers to promote these programs to reduce environmental impact.

Keywords: voluntary carbon offset, airline, online purchase, carbon emission, sustainability, randomized experiment

Procedia PDF Downloads 51
345 Body of Dialectics: Exploring a Dynamic-Adaptational Model of Physical Self-Integrity and the Pursuit of Happiness in a Hostile World

Authors: Noam Markovitz

Abstract:

People with physical disabilities constitute a very large and simultaneously a diverse group of general population, as the term physical disabilities is extensive and covers a wide range of disabilities. Therefore, individuals with physical disabilities are often faced with a new, threatening and stressful reality leading possibly to a multi-crisis in their lives due to the great changes they experience in somatic, socio-economic, occupational and psychological level. The current study seeks to advance understanding of the complex adaptation to physical disabilities by expanding the dynamic-adaptational model of the pursuit of happiness in a hostile world with a new conception of physical self-integrity. Physical self-integrity incorporates an objective dimension, namely physical self-functioning (PSF), and a subjective dimension, namely physical self-concept (PSC). Both of these dimensions constitute an experience of wholeness in the individual’s identification with her or his physical body. The model guiding this work is dialectical in nature and depicts two systems in the individual’s sense of happiness: subjective well-being (SWB) and meaning in life (MIL). Both systems serve as self-adaptive agents that moderate the complementary system of the hostile-world scenario (HWS), which integrates one’s perceived threats to one’s integrity. Thus, in situations of increased HWS, the moderation may take a form of joint activity in which SWB and MIL are amplified or a form of compensation in which one system produces a stronger effect while the other system produces a weaker effect. The current study investigated PSC in relations to SWB and MIL through pleasantness and meanings that are physically or metaphorically grounded in one’s body. In parallel, PSC also relates to HWS by activating representations of inappropriateness, deformation and vulnerability. In view of possibly dialectical positions of opposing and complementary forces within the current model, the current field study that aims to explore PSC as appearing in an independent, cross-sectional, design addressing the model’s variables in a focal group of people with physical disabilities. This study delineated the participation of the PSC in the adaptational functions of SWB and MIL vis-à-vis HWS-related life adversities. The findings showed that PSC could fully complement the main variables of the pursuit of happiness in a hostile world model. The assumed dialectics in the form of a stronger relationship between SWB and MIL in the face of physical disabilities was not supported. However, it was found that when HWS increased, PSC and MIL were strongly linked, whereas PSC and SWB were weakly linked. This highlights the compensatory role of MIL. From a conceptual viewpoint, the current investigation may clarify the role of PSC as an adaptational agent of the individual’s positive health in complementary senses of bodily wholeness. Methodologically, the advantage of the current investigation is the application of an integrative, model-based approach within a specially focused design with a particular relevance to PSC. Moreover, from an applicative viewpoint, the current investigation may suggest how an innovative model may be translated to therapeutic interventions used by clinicians, counselors and practitioners in improving wellness and psychological well-being, particularly among people with physical disabilities.

Keywords: older adults, physical disabilities, physical self-concept, pursuit of happiness in a hostile-world

Procedia PDF Downloads 124
344 Evaluation of Herbal Extracts for Their Potential Application as Skin Prebiotics

Authors: Anja I. Petrov, Milica B. Veljković, Marija M. Ćorović, Ana D. Milivojević, Milica B. Simović, Katarina M. Banjanac, Dejan I. Bezbradica

Abstract:

One of the fundamental requirements for overall human well-being is a stable and balanced microbiome. Aside from the microorganisms that reside within the body, a large number of microorganisms, especially bacteria, swarming the human skin is in homeostasis with the host and represents a skin microbiota. Even though the immune system of the skin is capable of distinguishing between commensal and potentially harmful transient bacteria, the cutaneous microbial balance can be disrupted under certain circumstances. In that case, a reduction in the skin microbiota diversity, as well as changes in metabolic activity, results in dermal infections and inflammation. Probiotics and prebiotics have the potential to play a significant role in the treatment of these skin disorders. The most common resident bacteria found on the skin, Staphylococcus epidermidis, can act as a potential skin probiotic, contributing to the protection of healthy skin from pathogen colonization, such as Staphylococcus aureus, which is related to atopic dermatitis exacerbation. However, as it is difficult to meet regulations in cosmetic products, another therapy approach could be topical prebiotic supplementation of the skin microbiota. In recent research, polyphenols are attracting scientists' interest as biomolecules with possible prebiotic effects on the skin microbiota. This research aimed to determine how herbal extracts rich in different polyphenolic compounds (lemon balm, St. John's wort, coltsfoot, pine needle, and yarrow) affected the growth of S. epidermidis and S. aureus. The first part of the study involved screening plants to determine if they could be regarded as probable candidates to be skin prebiotics. The effect of each plant on bacterial growth was examined by supplementing the nutrient medium with their extracts and comparing it with control samples (without extract). The results obtained after 24 h of incubation showed that all tested extracts influenced the growth of the examined bacteria to some extent. Since lemon balm and St. John's wort extracts displayed bactericidal activity against S. epidermidis, whereas coltsfoot inhibited both bacteria equally, they were not explored further. On the other hand, pine needles and yarrow extract led to an increase in S. epidermidis/S. aureus ratio, making them prospective candidates to be used as skin prebiotics. By examining the prebiotic effect of two extracts at different concentrations, it was revealed that, in the case of yarrow, 0.1% of extract dry matter in the fermentation medium was optimal, while for the pine needle extract, a concentration of 0.05% was preferred, since it selectively stimulated S. epidermidis growth and inhibited S. aureus proliferation. Additionally, the total polyphenols and flavonoid content of the two extracts were determined, revealing different concentrations and polyphenol profiles. Since yarrow and pine extracts affected the growth of skin bacteria in a dose-dependent manner, by carefully selecting the quantities of these extracts, and thus polyphenols content, it is possible to achieve desirable alterations of skin microbiota composition, which may be suitable for the treatment of atopic dermatitis.

Keywords: herbal extracts, polyphenols, skin microbiota, skin prebiotics

Procedia PDF Downloads 150