Search results for: rumor detection
1824 Detection and Identification of Antibiotic Resistant Bacteria Using Infra-Red-Microscopy and Advanced Multivariate Analysis
Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel
Abstract:
Antimicrobial drugs have an important role in controlling illness associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing like disk diffusion are time-consuming and other method including E-test, genotyping are relatively expensive. Fourier transform infrared (FTIR) microscopy is rapid, safe, and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 550 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 85% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.Keywords: antibiotics, E. coli, FTIR, multivariate analysis, susceptibility
Procedia PDF Downloads 2661823 GynApp: A Mobile Application for the Organization and Control of Gynecological Studies
Authors: Betzabet García-Mendoza, Rocío Abascal-Mena
Abstract:
Breast and cervical cancer are among the leading causes of death of women in Mexico. The mortality rate for these diseases is alarming, even though there have been many campaigns for making people self-aware of the importance of conducting gynecological studies for a timely prevention and detection, these have not been enough. This paper presents a mobile application for organizing and controlling gynecological studies in order to help and boost women to take care of their bodies and health. The process of analyzing and designing the mobile application is presented, along with all the steps carried out by following a user-centered design methodology.Keywords: breast cancer, cervical cancer, gynecological mobile application, paper prototyping, storyboard, women health
Procedia PDF Downloads 3111822 Application of Zeolite Nanoparticles in Biomedical Optics
Authors: Vladimir Hovhannisyan, Chen Yuan Dong
Abstract:
Recently nanoparticles (NPs) have been introduced in biomedicine as effective agents for cancer-targeted drug delivery and noninvasive tissue imaging. The most important requirements to these agents are their non-toxicity, biocompatibility and stability. In view of these criteria, the zeolite (ZL) nanoparticles (NPs) may be considered as perfect candidates for biomedical applications. ZLs are crystalline aluminosilicates consisting of oxygen-sharing SiO4 and AlO4 tetrahedral groups united by common vertices in three-dimensional framework and containing pores with diameters from 0.3 to 1.2 nm. Generally, the behavior and physical properties of ZLs are studied by SEM, X-ray spectroscopy, and AFM, whereas optical spectroscopic and microscopic approaches are not effective enough, because of strong scattering in common ZL bulk materials and powders. The light scattering can be reduced by using of ZL NPs. ZL NPs have large external surface area, high dispersibility in both aqueous and organic solutions, high photo- and thermal stability, and exceptional ability to adsorb various molecules and atoms in their nanopores. In this report, using multiphoton microscopy and nonlinear spectroscopy, we investigate nonlinear optical properties of clinoptilolite type of ZL micro- and nanoparticles with average diameters of 2200 nm and 240 nm, correspondingly. Multiphoton imaging is achieved using a laser scanning microscope system (LSM 510 META, Zeiss, Germany) coupled to a femtosecond titanium:sapphire laser (repetition rate- 80 MHz, pulse duration-120 fs, radiation wavelength- 720-820 nm) (Tsunami, Spectra-Physics, CA). Two Zeiss, Plan-Neofluar objectives (air immersion 20×∕NA 0.5 and water immersion 40×∕NA 1.2) are used for imaging. For the detection of the nonlinear response, we use two detection channels with 380-400 nm and 435-700 nm spectral bandwidths. We demonstrate that ZL micro- and nanoparticles can produce nonlinear optical response under the near-infrared femtosecond laser excitation. The interaction of hypericine, chlorin e6 and other dyes with ZL NPs and their photodynamic activity is investigated. Particularly, multiphoton imaging shows that individual ZL NPs particles adsorb Zn-tetraporphyrin molecules, but do not adsorb fluorescein molecules. In addition, nonlinear spectral properties of ZL NPs in native biotissues are studied. Nonlinear microscopy and spectroscopy may open new perspectives in the research and application of ZL NP in biomedicine, and the results may help to introduce novel approaches into the clinical environment.Keywords: multiphoton microscopy, nanoparticles, nonlinear optics, zeolite
Procedia PDF Downloads 4171821 Oviposition Responses of the Malaria Mosquito Anopheles gambiae sensu stricto to Hay Infusion Volatiles in Laboratory Bioassays and Investigation of Volatile Detection Methods
Authors: Lynda K. Eneh, Okal N. Mike, Anna-Karin Borg-Karlson, Ulrike Fillinger, Jenny M. Lindh
Abstract:
The responses of individual gravid Anopheles gambiae sensu stricto (s.s.) to hay infusion volatiles were evaluated under laboratory conditions. Such infusions have long been known to be effective baits for monitoring mosquitoes that vector arboviral and filarial diseases but have previously not been tested for malaria vectors. Hay infusions were prepared by adding sun-dried Bermuda grass to lake water and leaving the mixture in a covered bucket for three days. The proportions of eggs laid by gravid An. gambiae s.s. in diluted (10%) and concentrated infusions ( ≥ 25%) was compared to that laid in lake water in two-choice egg-count bioassays. Furthermore, with the aim to develop a method that can be used to collect volatiles that influence the egg-laying behavior of malaria mosquitoes, different volatile trapping methods were investigated. Two different polymer-traps eluted using two different desorption methods and three parameters were investigated. Porapak®-Q traps and solvent desorption was compared to Tenax®-TA traps and thermal desorption. The parameters investigated were: collection time (1h vs. 20h), addition of salt (0.15 g/ml sodium chloride (NaCl) vs. no NaCl), and stirring the infusion (0 vs. 300 rpm). Sample analysis was with gas chromatography-mass spectrometry (GC-MS). An. gambiae s.s was ten times less likely to lay eggs in concentrated hay infusion than in lake water. The volatiles were best characterized by thermally desorbed Tenax traps, collected for 20 hours from infusion aliquots with sodium chloride added. Ten volatiles identified from headspace and previously indicated as putative oviposition semiochemicals for An. gambiae s.s. or confirmed semiochemicals for other mosquito species were tested in egg-count bioassays. Six of these (3-methylbutanol, phenol, 4-methylphenol, nonanal, indole and 3-methylindole), when added to lake water, were avoided for egg-laying when lake water was offered as the alternative in dual-choice egg count bioassays. These compounds likely contribute to the unfavorable oviposition responses towards hay infusions. This difference in oviposition response of different mosquito species should be considered when designing control measures.Keywords: Anopheles gambiae, oviposition behaviour, egg-count cage bioassays, hay infusions, volatile detection, semiochemicals
Procedia PDF Downloads 3501820 Barriers and Facilitators for Telehealth Use during Cervical Cancer Screening and Care: A Literature Review
Authors: Reuben Mugisha, Stella Bakibinga
Abstract:
The cervical cancer burden is a global threat, but more so in low income settings where more than 85% of mortality cases occur due to lack of sufficient screening programs. There is consequently a lack of early detection of cancer and precancerous cells among women. Studies show that 3% to 35% of deaths could have been avoided through early screening depending on prognosis, disease progression, environmental and lifestyle factors. In this study, a systematic literature review is undertaken to understand potential barriers and facilitators as documented in previous studies that focus on the application of telehealth in cervical cancer screening programs for early detection of cancer and precancerous cells. The study informs future studies especially those from low income settings about lessons learned from previous studies and how to be best prepared while planning to implement telehealth for cervical cancer screening. It further identifies the knowledge gaps in the research area and makes recommendations. Using a specified selection criterion, 15 different articles are analyzed based on the study’s aim, theory or conceptual framework used, method applied, study findings and conclusion. Results are then tabulated and presented thematically to better inform readers about emerging facts on barriers and facilitators to telehealth implementation as documented in the reviewed articles, and how they consequently lead to evidence informed conclusions that are relevant to telehealth implementation for cervical cancer screening. Preliminary findings of this study underscore that use of low cost mobile colposcope is an appealing option in cervical cancer screening, particularly when coupled with onsite treatment of suspicious lesions. These tools relay cervical images to the online databases for storage and retrieval, they permit integration of connected devices at the point of care to rapidly collect clinical data for further analysis of the prevalence of cervical dysplasia and cervical cancer. Results however reveal the need for population sensitization prior to use of mobile colposcopies among patients, standardization of mobile colposcopy programs across screening partners, sufficient logistics and good connectivity, experienced experts to review image cases at the point-of-care as important facilitators to the implementation of mobile colposcope as a telehealth cervical cancer screening mechanism.Keywords: cervical cancer screening, digital technology, hand-held colposcopy, knowledge-sharing
Procedia PDF Downloads 2231819 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia PDF Downloads 2261818 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images
Authors: Sofia Matoug, Amr Abdel-Dayem
Abstract:
This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images MRI
Procedia PDF Downloads 3031817 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame
Authors: Ardalan Sabamehr, Ashutosh Bagchi
Abstract:
Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform
Procedia PDF Downloads 2961816 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay
Authors: Zhen Cao, Yu Zhu, Junxue Fu
Abstract:
Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration
Procedia PDF Downloads 1041815 Detection of Aflatoxin B1 Producing Aspergillus flavus Genes from Maize Feed Using Loop-Mediated Isothermal Amplification (LAMP) Technique
Authors: Sontana Mimapan, Phattarawadee Wattanasuntorn, Phanom Saijit
Abstract:
Aflatoxin contamination in maize, one of several agriculture crops grown for livestock feeding, is still a problem throughout the world mainly under hot and humid weather conditions like Thailand. In this study Aspergillus flavus (A. Flavus), the key fungus for aflatoxin production especially aflatoxin B1 (AFB1), isolated from naturally infected maize were identified and characterized according to colony morphology and PCR using ITS, Beta-tubulin and calmodulin genes. The strains were analysed for the presence of four aflatoxigenic biosynthesis genes in relation to their capability to produce AFB1, Ver1, Omt1, Nor1, and aflR. Aflatoxin production was then confirmed using immunoaffinity column technique. A loop-mediated isothermal amplification (LAMP) was applied as an innovative technique for rapid detection of target nucleic acid. The reaction condition was optimized at 65C for 60 min. and calcein flurescent reagent was added before amplification. The LAMP results showed clear differences between positive and negative reactions in end point analysis under daylight and UV light by the naked eye. In daylight, the samples with AFB1 producing A. Flavus genes developed a yellow to green color, but those without the genes retained the orange color. When excited with UV light, the positive samples become visible by bright green fluorescence. LAMP reactions were positive after addition of purified target DNA until dilutions of 10⁻⁶. The reaction products were then confirmed and visualized with 1% agarose gel electrophoresis. In this regards, 50 maize samples were collected from dairy farms and tested for the presence of four aflatoxigenic biosynthesis genes using LAMP technique. The results were positive in 18 samples (36%) but negative in 32 samples (64%). All of the samples were rechecked by PCR and the results were the same as LAMP, indicating 100% specificity. Additionally, when compared with the immunoaffinity column-based aflatoxin analysis, there was a significant correlation between LAMP results and aflatoxin analysis (r= 0.83, P < 0.05) which suggested that positive maize samples were likely to be a high- risk feed. In conclusion, the LAMP developed in this study can provide a simple and rapid approach for detecting AFB1 producing A. Flavus genes from maize and appeared to be a promising tool for the prediction of potential aflatoxigenic risk in livestock feedings.Keywords: Aflatoxin B1, Aspergillus flavus genes, maize, loop-mediated isothermal amplification
Procedia PDF Downloads 2401814 Childhood Cataract: A Socio-Clinical Study at a Public Sector Tertiary Eye Care Centre in India
Authors: Deepak Jugran, Rajesh Gill
Abstract:
Purpose: To study the demographic, sociological, gender and clinical profile of the children presented for childhood cataract at a public sector tertiary eye care centre in India. Methodology: The design of the study is retrospective, and hospital-based data is available with the Central Registration Department of the PGIMER, Chandigarh. The majority of the childhood cataract cases are being reported in this hospital, yet not each and every case of childhood cataract approaches PGI, Chandigarh. Nevertheless, this study is going to be pioneering research in India, covering five-year data of the childhood cataract patients who visited the Advanced Eye Centre, PGIMER, Chandigarh, from 1.1.2015 to 31.12.2019. The SPSS version 23 was used for all statistical calculations. Results: A Total of 354 children were presented for childhood cataract from 1.1.2015 to 31.12.2019. Out of 354 children, 248 (70%) were male, and 106 (30%) were female. In-spite of 2 flagship programmes, namely the National Programme for Control of Blindness (NPCB) and Aayushman Bharat (PM JAY) for eradication of cataract, no children received any financial assistance from these two programmes. A whopping 99% of these children belong to the poor families. In most of these families, the mothers were house-wives and did not employ anywhere. These interim results will soon be conveyed to the Govt. of India so that a suitable mechanism can be evolved to address this pertinent issue. Further, the disproportionate ratio of male and female children in this study is an area of concern as we don’t know whether the prevalence of childhood cataract is lower in female children or they are not being presented on time in the hospital by the families. Conclusion: The World Health Organization (WHO) has categorized Childhood blindness resulting from cataract as a priority area and urged all member countries to develop institutionalized mechanisms for its early detection, diagnosis and management. The childhood cataract is an emerging and major cause of preventable and avoidable childhood blindness, especially in low and middle-income countries. In the formative years, the children require a sound physical, mental and emotional state, and in the absence of either one of them, it can severely dent their future growth. The recent estimate suggests that India could suffer an economic loss of US$12 billion (Rs. 88,000 Crores) due to blindness, and almost 35% of cases of blindness are preventable and avoidable if detected at an early age. Besides reporting these results to the policy makers, synchronized efforts are needed for early detection and management of avoidable causes of childhood blindness such as childhood cataract.Keywords: childhood blindness, cataract, Who, Npcb
Procedia PDF Downloads 1071813 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 741812 Fe Modified Tin Oxide Thin Film Based Matrix for Reagentless Uric Acid Biosensing
Authors: Kashima Arora, Monika Tomar, Vinay Gupta
Abstract:
Biosensors have found potential applications ranging from environmental testing and biowarfare agent detection to clinical testing, health care, and cell analysis. This is driven in part by the desire to decrease the cost of health care and to obtain precise information more quickly about the health status of patient by the development of various biosensors, which has become increasingly prevalent in clinical testing and point of care testing for a wide range of biological elements. Uric acid is an important byproduct in human body and a number of pathological disorders are related to its high concentration in human body. In past few years, rapid growth in the development of new materials and improvements in sensing techniques have led to the evolution of advanced biosensors. In this context, metal oxide thin film based matrices due to their bio compatible nature, strong adsorption ability, high isoelectric point (IEP) and abundance in nature have become the materials of choice for recent technological advances in biotechnology. In the past few years, wide band-gap metal oxide semiconductors including ZnO, SnO₂ and CeO₂ have gained much attention as a matrix for immobilization of various biomolecules. Tin oxide (SnO₂), wide band gap semiconductor (Eg =3.87 eV), despite having multifunctional properties for broad range of applications including transparent electronics, gas sensors, acoustic devices, UV photodetectors, etc., it has not been explored much for biosensing purpose. To realize a high performance miniaturized biomolecular electronic device, rf sputtering technique is considered to be the most promising for the reproducible growth of good quality thin films, controlled surface morphology and desired film crystallization with improved electron transfer property. Recently, iron oxide and its composites have been widely used as matrix for biosensing application which exploits the electron communication feature of Fe, for the detection of various analytes using urea, hemoglobin, glucose, phenol, L-lactate, H₂O₂, etc. However, to the authors’ knowledge, no work is being reported on modifying the electronic properties of SnO₂ by implanting with suitable metal (Fe) to induce the redox couple in it and utilizing it for reagentless detection of uric acid. In present study, Fe implanted SnO₂ based matrix has been utilized for reagentless uric acid biosensor. Implantation of Fe into SnO₂ matrix is confirmed by energy-dispersive X-Ray spectroscopy (EDX) analysis. Electrochemical techniques have been used to study the response characteristics of Fe modified SnO₂ matrix before and after uricase immobilization. The developed uric acid biosensor exhibits a high sensitivity to about 0.21 mA/mM and a linear variation in current response over concentration range from 0.05 to 1.0 mM of uric acid besides high shelf life (~20 weeks). The Michaelis-Menten kinetic parameter (Km) is found to be relatively very low (0.23 mM), which indicates high affinity of the fabricated bioelectrode towards uric acid (analyte). Also, the presence of other interferents present in human serum has negligible effect on the performance of biosensor. Hence, obtained results highlight the importance of implanted Fe:SnO₂ thin film as an attractive matrix for realization of reagentless biosensors towards uric acid.Keywords: Fe implanted tin oxide, reagentless uric acid biosensor, rf sputtering, thin film
Procedia PDF Downloads 1811811 Revealing Thermal Degradation Characteristics of Distinctive Oligo-and Polisaccharides of Prebiotic Relevance
Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár
Abstract:
As natural prebiotic (non-digestible) carbohydrates stimulate the growth of colon microflora and contribute to maintain the health of the host, analytical studies aiming at revealing the chemical behavior of these beneficial food components came to the forefront of interest. Food processing (especially baking) may lead to a significant conversion of the parent compounds, hence it is of utmost importance to characterize the transformation patterns and the plausible decomposition products formed by thermal degradation. The relevance of this work is confirmed by the wide-spread use of these carbohydrates (fructo-oligosaccharides, cyclodextrins, raffinose and resistant starch) in the food industry. More and more functional foodstuffs are being developed based on prebiotics as bioactive components. 12 different types of oligosaccharides have been investigated in order to reveal their thermal degradation characteristics. Different carbohydrate derivatives (D-fructose and D-glucose oligomers and polymers) have been exposed to elevated temperatures (150 °C 170 °C, 190 °C, 210 °C, and 220 °C) for 10 min. An advanced HPLC method was developed and used to identify the decomposition products of carbohydrates formed as a consequence of thermal treatment. Gradient elution was applied with binary solvent elution (acetonitrile, water) through amine based carbohydrate column. Evaporative light scattering (ELS) proved to be suitable for the reliable detection of the UV/VIS inactive carbohydrate degradation products. These experimental conditions and applied advanced techniques made it possible to survey all the formed intermediers. Change in oligomer distribution was established in cases of all studied prebiotics throughout the thermal treatments. The obtained results indicate increased extent of chain degradation of the carbohydrate moiety at elevated temperatures. Prevalence of oligomers with shorter chain length and even the formation of monomer sugars (D-glucose and D-fructose) might be observed at higher temperatures. Unique oligomer distributions, which have not been described previously are revealed in the case of each studied, specific carbohydrate, which might result in various prebiotic activities. Resistant starches exhibited high stability when being thermal treated. The degradation process has been modeled by a plausible reaction mechanism, in which proton catalyzed degradation and chain cleavage take place.Keywords: prebiotics, thermal degradation, fructo-oligosaccharide, HPLC, ELS detection
Procedia PDF Downloads 3061810 System Detecting Border Gateway Protocol Anomalies Using Local and Remote Data
Authors: Alicja Starczewska, Aleksander Nawrat, Krzysztof Daniec, Jarosław Homa, Kacper Hołda
Abstract:
Border Gateway Protocol is the main routing protocol that enables routing establishment between all autonomous systems, which are the basic administrative units of the internet. Due to the poor protection of BGP, it is important to use additional BGP security systems. Many solutions to this problem have been proposed over the years, but none of them have been implemented on a global scale. This article describes a system capable of building images of real-time BGP network topology in order to detect BGP anomalies. Our proposal performs a detailed analysis of BGP messages that come into local network cards supplemented by information collected by remote collectors in different localizations.Keywords: BGP, BGP hijacking, cybersecurity, detection
Procedia PDF Downloads 791809 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1201808 Characterization of β-Lactamases Resistance amongst Acinetobacter Baumannii Isolated from Clinical Samples, Egypt
Authors: Amal Saafan, Kareem Al Sofy, Sameh AbdelGhani, Magdy Amin
Abstract:
Background: Acinetobacter spp. resistance towards β-lactam antibiotics is mediated mainly by different classes of β-lactamases production; detection of some genes responsible for production of β-lactamases is the objective of the study. Methods: One hundred fifty bacterial isolates were recovered from blood, sputum, and urine specimens from different hospitals in Egypt. Sixty-nine isolate were identified as Acinetobacter baumannii using traditional biochemical tests, CHROM agar, MicroScan and PCR amplification of blaoxa-51like gene. Acinetobacterbaumannii isolates were grouped into carbapenem resistant group (GP1), cefotaxime, ceftazidime and cefoxitin resistant group (GP2) and carbapenem and cephalosporin non-resistant group (GP3). Carbapenemase activity was screened using modified Hodge test (MHT) for GP1.Metallo-β-lactamases screening was performed for MHT positive isolates using double disk synergy test (DDST) and combined disk test (CDT). Amp C activity was screened using Amp C disk test with Tris-EDTA, DDST, and CDT for GP2. Finally, PCR amplification of blaoxa-51like, blaoxa-23like, blaIMP-like, blaVIM-like, and blaADC-like genes was performed for isolates that showed, at least, two positive results of three for both AmpC and carbapenemases phenotypic screening tests (obvious activity), in addition to GP3 (for comparison). Detection of blaoxa-51like and blaADC-like genes preceded by ISAba1 was also performed. Results: Antibiogram of 69 pure Acinetobacter baumannii isolates resulted in 57, 64, and 2 isolates enrolled into GP1, GP2, and GP3, respectively. Carbapenemase activity was shown by 49(85.9%) isolate using MHT. Metallo-β-lactamases screening revealed 32(65.3%) and 35(71.4%) using DDST and CDT, respectively.AmpC activity was shown by 43(67.2%) and 50 (78.1%) isolates using AmpC disk test with Tris-EDTA, and both DDST and CDT, respectively. Twenty-seven isolates showed obvious activity, all of them (100%) were harboring blaoxa-51like and blaADC-like genes, while blaoxa-23like, blaIMP-like andblaVIM-like genes were harbored by 23(85.2%), 9 (33.%) and no isolate respectively. Only 12 (44.4%) isolates harbored blaoxa-51like and blaADC-like genes preceded by ISAba1. GP3 isolates showed only positive blaoxa-51like and blaADC-like genes. Conclusion: It is not possible to correlate resistance with presence of blaoxa-51like and blaADC-like genes and presence of ISAba1 was immediate as transcriptional promoter. A blaoxa-23like gene played an important role in carbapenem resistance when compared with blaIMP-like and blaVIM-like gene.Keywords: acinetobacter, beta-lactams, resistance, antimicrobial agents
Procedia PDF Downloads 3471807 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor
Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park
Abstract:
A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system
Procedia PDF Downloads 2201806 Microfluidic Lab on Chip Platform for the Detection of Arthritis Markers from Synovial Organ on Chip by Miniaturizing Enzyme-Linked ImmunoSorbent Assay Protocols
Authors: Laura Boschis, Elena D. Ozzello, Enzo Mastromatteo
Abstract:
Point of care diagnostic finds growing interest in medicine and agri-food because of faster intervention and prevention. EliChip is a microfluidic platform to perform Point of Care immunoenzymatic assay based on ready-to-use kits and a portable instrument to manage fluidics and read reliable quantitative results. Thanks to miniaturization, analyses are faster and more sensible than conventional ELISA. EliChip is one of the crucial assets of the Europen-founded Flamingo project for in-line measuring inflammatory markers.Keywords: lab on chip, point of care, immunoenzymatic analysis, synovial arthritis
Procedia PDF Downloads 1881805 Predicting Student Performance Based on Coding Behavior in STEAMplug
Authors: Giovanni Gonzalez Araujo, Michael Kyrilov, Angelo Kyrilov
Abstract:
STEAMplug is a web-based innovative educational platform which makes teaching easier and learning more effective. It requires no setup, eliminating the barriers to entry, allowing students to focus on their learning throughreal-world development environments. The student-centric tools enable easy collaboration between peers and teachers. Analyzing user interactions with the system enables us to predict student performance and identify at-risk students, allowing early instructor intervention.Keywords: plagiarism detection, identifying at-Risk Students, education technology, e-learning system, collaborative development, learning and teaching with technology
Procedia PDF Downloads 1521804 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis
Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante
Abstract:
The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.Keywords: dynamic analysis, long short-term memory, prediction, sepsis
Procedia PDF Downloads 1261803 A Middleware Management System with Supporting Holonic Modules for Reconfigurable Management System
Authors: Roscoe McLean, Jared Padayachee, Glen Bright
Abstract:
There is currently a gap in the technology covering the rapid establishment of control after a reconfiguration in a Reconfigurable Manufacturing System. This gap involves the detection of the factory floor state and the communication link between the factory floor and the high-level software. In this paper, a thin, hardware-supported Middleware Management System (MMS) is proposed and its design and implementation are discussed. The research found that a cost-effective localization technique can be combined with intelligent software to speed up the ramp-up of a reconfigured system. The MMS makes the process more intelligent, more efficient and less time-consuming, thus supporting the industrial implementation of the RMS paradigm.Keywords: intelligent systems, middleware, reconfigurable manufacturing, management system
Procedia PDF Downloads 6771802 Automating and Optimization Monitoring Prognostics for Rolling Bearing
Authors: H. Hotait, X. Chiementin, L. Rasolofondraibe
Abstract:
This paper presents a continuous work to detect the abnormal state in the rolling bearing by studying the vibration signature analysis and calculation of the remaining useful life. To achieve these aims, two methods; the first method is the classification to detect the degradation state by the AOM-OPTICS (Acousto-Optic Modulator) method. The second one is the prediction of the degradation state using least-squares support vector regression and then compared with the linear degradation model. An experimental investigation on ball-bearing was conducted to see the effectiveness of the used method by applying the acquired vibration signals. The proposed model for predicting the state of bearing gives us accurate results with the experimental and numerical data.Keywords: bearings, automatization, optimization, prognosis, classification, defect detection
Procedia PDF Downloads 1211801 Simulation and Characterization of Stretching and Folding in Microchannel Electrokinetic Flows
Authors: Justo Rodriguez, Daming Chen, Amador M. Guzman
Abstract:
The detection, treatment, and control of rapidly propagating, deadly viruses such as COVID-19, require the development of inexpensive, fast, and accurate devices to address the urgent needs of the population. Microfluidics-based sensors are amongst the different methods and techniques for detection that are easy to use. A micro analyzer is defined as a microfluidics-based sensor, composed of a network of microchannels with varying functions. Given their size, portability, and accuracy, they are proving to be more effective and convenient than other solutions. A micro analyzer based on the concept of “Lab on a Chip” presents advantages concerning other non-micro devices due to its smaller size, and it is having a better ratio between useful area and volume. The integration of multiple processes in a single microdevice reduces both the number of necessary samples and the analysis time, leading the next generation of analyzers for the health-sciences. In some applications, the flow of solution within the microchannels is originated by a pressure gradient, which can produce adverse effects on biological samples. A more efficient and less dangerous way of controlling the flow in a microchannel-based analyzer is applying an electric field to induce the fluid motion and either enhance or suppress the mixing process. Electrokinetic flows are characterized by no less than two non-dimensional parameters: the electric Rayleigh number and its geometrical aspect ratio. In this research, stable and unstable flows have been studied numerically (and when possible, will be experimental) in a T-shaped microchannel. Additionally, unstable electrokinetic flows for Rayleigh numbers higher than critical have been characterized. The flow mixing enhancement was quantified in relation to the stretching and folding that fluid particles undergo when they are subjected to supercritical electrokinetic flows. Computational simulations were carried out using a finite element-based program while working with the flow mixing concepts developed by Gollub and collaborators. Hundreds of seeded massless particles were tracked along the microchannel from the entrance to exit for both stable and unstable flows. After post-processing, their trajectories, the folding and stretching values for the different flows were found. Numerical results show that for supercritical electrokinetic flows, the enhancement effects of the folding and stretching processes become more apparent. Consequently, there is an improvement in the mixing process, ultimately leading to a more homogenous mixture.Keywords: microchannel, stretching and folding, electro kinetic flow mixing, micro-analyzer
Procedia PDF Downloads 1271800 Enhancing Security and Privacy Protocols in Telehealth: A Comprehensive Approach across IoT/Fog/Cloud Environments
Authors: Yunyong Guo, Man Wang, Bryan Guo, Nathan Guo
Abstract:
This paper introduces an advanced security and privacy model tailored for Telehealth systems, emphasizing end-to-end protection across IoT, Fog, and Cloud components. The proposed model integrates encryption, key management, intrusion detection, and privacy-preserving measures to safeguard patient data. A comprehensive simulation study evaluates the model's effectiveness in scenarios such as unauthorized access, physical breaches, and insider threats. Results indicate notable success in detecting and mitigating threats yet underscore areas for refinement. The study contributes insights into the intricate balance between security and usability in Telehealth environments, setting the stage for continued advancements.Keywords: cloud, enhancing security, fog, IoT, telehealth
Procedia PDF Downloads 791799 Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection
Authors: Chao-Ming Su, Pei-Sheng Wu, Yu-Chi Kuo, Yin-Chou Huang, Tan-Yueh Chen, Jefunnie Matahum, Tzong-Rong Ger
Abstract:
Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min.Keywords: magnetic particles, magnetoresistive sensors, microfluidics, biosensor
Procedia PDF Downloads 4001798 Urdu Text Extraction Method from Images
Authors: Samabia Tehsin, Sumaira Kausar
Abstract:
Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results.Keywords: caption text, content-based image retrieval, document analysis, text extraction
Procedia PDF Downloads 5171797 Imaging of Underground Targets with an Improved Back-Projection Algorithm
Authors: Alireza Akbari, Gelareh Babaee Khou
Abstract:
Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.Keywords: algorithm, back-projection, GPR, remote sensing
Procedia PDF Downloads 4531796 Detection of Chaos in General Parametric Model of Infectious Disease
Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari
Abstract:
Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test
Procedia PDF Downloads 3261795 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement
Authors: Yunha Ryu, Kyoungsik Kim
Abstract:
Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy
Procedia PDF Downloads 626