Search results for: inventory classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2898

Search results for: inventory classification

1248 Predictive Modeling of Bridge Conditions Using Random Forest

Authors: Miral Selim, May Haggag, Ibrahim Abotaleb

Abstract:

The aging of transportation infrastructure presents significant challenges, particularly concerning the monitoring and maintenance of bridges. This study investigates the application of Random Forest algorithms for predictive modeling of bridge conditions, utilizing data from the US National Bridge Inventory (NBI). The research is significant as it aims to improve bridge management through data-driven insights that can enhance maintenance strategies and contribute to overall safety. Random Forest is chosen for its robustness, ability to handle complex, non-linear relationships among variables, and its effectiveness in feature importance evaluation. The study begins with comprehensive data collection and cleaning, followed by the identification of key variables influencing bridge condition ratings, including age, construction materials, environmental factors, and maintenance history. Random Forest is utilized to examine the relationships between these variables and the predicted bridge conditions. The dataset is divided into training and testing subsets to evaluate the model's performance. The findings demonstrate that the Random Forest model effectively enhances the understanding of factors affecting bridge conditions. By identifying bridges at greater risk of deterioration, the model facilitates proactive maintenance strategies, which can help avoid costly repairs and minimize service disruptions. Additionally, this research underscores the value of data-driven decision-making, enabling better resource allocation to prioritize maintenance efforts where they are most necessary. In summary, this study highlights the efficiency and applicability of Random Forest in predictive modeling for bridge management. Ultimately, these findings pave the way for more resilient and proactive management of bridge systems, ensuring their longevity and reliability for future use.

Keywords: data analysis, random forest, predictive modeling, bridge management

Procedia PDF Downloads 21
1247 Hybrid Risk Assessment Model for Construction Based on Multicriteria Decision Making Methods

Authors: J. Tamosaitiene

Abstract:

The article focuses on the identification and classification of key risk management criteria that represent the most important sustainability aspects of the construction industry. The construction sector is one of the most important sectors in Lithuania. Nowadays, the assessment of the risk level of a construction project is especially important for the quality of construction projects, the growth of enterprises and the sector. To establish the most important criteria for successful growth of the sector, a questionnaire for experts was developed. The analytic hierarchy process (AHP), the expert judgement method and other multicriteria decision making (MCDM) methods were used to develop the hybrid model. The results were used to develop an integrated knowledge system for the measurement of a risk level particular to construction projects. The article presents a practical case that details the developed system, sustainable aspects, and risk assessment.

Keywords: risk, system, model, construction

Procedia PDF Downloads 167
1246 The Impact of Working Environment Condition and Lifestyle Factors in Male Infertility in South of Iran

Authors: Shabnam Etemadi

Abstract:

Background: Infertility is one of the most important issues in any society due to its psychological, medical and economic consequences that can greatly influence overall health and life. This study aims to assess the relationship between inhalation or exposing workplace pollution and dysfunction of the male reproductive system. Semen samples are male employees in south of Iran who exposed to work environmental pollutants for long hours. Method: Due to descriptive-analytical, the analysis of all interviews of all male patients of Bu Ali Medical Center and Pasteur Laboratory are conducted within 6 months. Random sampling numbered and patients signed informed consent. To analyze the data, Miller's fertility motivation questionnaires and the Miller-Smith lifestyle assessment inventory are used and Working Conditions Survey is developed. For analyzing the collecting data SPSS is used. Findings: Although sperm motility and volume had no statistically significant relationship with any of the lifestyle components, the weak relationship between sperm movement and work environment conditions (P = 0.07) lead to other factors to be investigated. * Among the factors of Working Environment Condition, smoking, work in the open environment and presence of more than 6 hours in the work environment with sperm mobility, smoking, contact with chemicals and radioactive with sperm volume at a level less than 0.05 had a statistically significant relationship. Conclusion: Finding revealed the environment pollution is one of the important factors in male infertility and strengthens this hypothesis. Working Environmental pollutants in the field of metropolitan pollution should be considered as a unifying hypothesis, possibly could interfere with male reproductive function.

Keywords: infertility, lifestyle, workplace pollution, male infertility

Procedia PDF Downloads 26
1245 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment

Authors: Leila Torkaman, Nasser Ghassembaglou

Abstract:

Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified. finally needed methods to optimize energy consumption and cooler's classification are provided.

Keywords: cooler, EER, energy label, optimization

Procedia PDF Downloads 344
1244 Natural Gas Flow Optimization Using Pressure Profiling and Isolation Techniques

Authors: Syed Tahir Shah, Fazal Muhammad, Syed Kashif Shah, Maleeha Gul

Abstract:

In recent days, natural gas has become a relatively clean and quality source of energy, which is recovered from deep wells by expensive drilling activities. The recovered substance is purified by processing in multiple stages to remove the unwanted/containments like dust, dirt, crude oil and other particles. Mostly, gas utilities are concerned with essential objectives of quantity/quality of natural gas delivery, financial outcome and safe natural gas volumetric inventory in the transmission gas pipeline. Gas quantity and quality are primarily related to standards / advanced metering procedures in processing units/transmission systems, and the financial outcome is defined by purchasing and selling gas also the operational cost of the transmission pipeline. SNGPL (Sui Northern Gas Pipelines Limited) Pakistan has a wide range of diameters of natural gas transmission pipelines network of over 9125 km. This research results in answer a few of the issues in accuracy/metering procedures via multiple advanced gadgets for gas flow attributes after being utilized in the transmission system and research. The effects of good pressure management in transmission gas pipeline network in contemplation to boost the gas volume deposited in the existing network and finally curbing gas losses UFG (Unaccounted for gas) for financial benefits. Furthermore, depending on the results and their observation, it is directed to enhance the maximum allowable working/operating pressure (MAOP) of the system to 1235 PSIG from the current round about 900 PSIG, such that the capacity of the network could be entirely utilized. In gross, the results depict that the current model is very efficient and provides excellent results in the minimum possible time.

Keywords: natural gas, pipeline network, UFG, transmission pack, AGA

Procedia PDF Downloads 95
1243 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines

Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi

Abstract:

In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.

Keywords: breast cancer, mammography, CAD system, features, fusion

Procedia PDF Downloads 599
1242 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches

Authors: Chaima Babi, Said Gadri

Abstract:

The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.

Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification

Procedia PDF Downloads 95
1241 Readiness of Military Professionals for Challenging Situations

Authors: Petra Hurbišová, Monika Davidová

Abstract:

The article deals with the readiness of military professionals for challenging situations. It discusses higher requirements on the psychical endurance of military professionals arising from the specific nature of the military occupation, which is typical for being very difficult to maintain regularity, which is in accordance with the hygiene of work alternated by relaxation. The soldier must be able to serve in the long term and constantly intense performance that goes beyond human tolerance to stress situations. A challenging situation is always associated with overcoming difficulties, obstacles and complicated circumstances or using unusual methods, ways and means to achieve the desired (expected) objectives, performing a given task or satisfying an important need. This paper describes the categories of challenging situations, their classification and characteristics. Attention is also paid to the formation of personality in challenging situations, coping with stress in challenging situations, Phases of solutions of stressful situations, resistance to challenging life situations and its factors. Finally, the article is focused on increasing the readiness of military professionals for challenging situations.

Keywords: coping, challenging situations, stress, stressful situations, military professionals, resilience

Procedia PDF Downloads 316
1240 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 151
1239 Prediction of Rotating Machines with Rolling Element Bearings and Its Components Deterioration

Authors: Marimuthu Gurusamy

Abstract:

In vibration analysis (with accelerometers) of rotating machines with rolling element bearing, the customers are interested to know the failure of the machine well in advance to plan the spare inventory and maintenance. But in real world most of the machines fails before the prediction of vibration analyst or Expert analysis software. Presently the prediction of failure is based on ISO 10816 vibration limits only. But this is not enough to monitor the failure of machines well in advance. Because more than 50% of the machines will fail even the vibration readings are within acceptable zone as per ISO 10816.Hence it requires further detail analysis and different techniques to predict the failure well in advance. In vibration Analysis, the velocity spectrum is used to analyse the root cause of the mechanical problems like unbalance, misalignment and looseness etc. The envelope spectrum are used to analyse the bearing frequency components, hence the failure in inner race, outer race and rolling elements are identified. But so far there is no correlation made between these two concepts. The author used both velocity spectrum and Envelope spectrum to analyse the machine behaviour and bearing condition to correlated the changes in dynamic load (by unbalance, misalignment and looseness etc.) and effect of impact on the bearing. Hence we could able to predict the expected life of the machine and bearings in the rotating equipment (with rolling element bearings). Also we used process parameters like temperature, flow and pressure to correlate with flow induced vibration and load variations, when abnormal vibration occurs due to changes in process parameters. Hence by correlation of velocity spectrum, envelope spectrum and process data with 20 years of experience in vibration analysis, the author could able to predict the rotating Equipment and its component’s deterioration and expected duration for maintenance.

Keywords: vibration analysis, velocity spectrum, envelope spectrum, prediction of deterioration

Procedia PDF Downloads 451
1238 Fast and Robust Long-term Tracking with Effective Searching Model

Authors: Thang V. Kieu, Long P. Nguyen

Abstract:

Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.

Keywords: correlation filter, long-term tracking, random fern, real-time tracking

Procedia PDF Downloads 137
1237 The Effectiveness of Teaching Games for Understanding in Improving the Hockey Tactical Skills and State Self-Confidence among 16 Years Old Students

Authors: Wee Akina Sia Seng Lee, Shabeshan Rengasamy, Lim Boon Hooi, Chandrakalavaratharajoo, Mohd Ibrahim K. Azeez

Abstract:

This study was conducted to examine the effectiveness of Teaching Games For Understanding (TGFU) in improving the hockey tactical skills and state self-confidence among 16-year-old students. Two hundred fifty nine (259) school students were selected for the study based on the intact sampling method. One class was used as the control group (Boys=60, Girls=70), while another as the treatment group (Boys=60, Girls=69) underwent intervention with TGFU in physical education class conducted twice a week for four weeks. The Games Performance Assessment Instrument was used to observe the hockey tactical skills and The State Self-Confidence Inventory was used to determine the state of self-confidence among the students. After four weeks, ANCOVA analysis indicated the treatment groups had significant improvement in hockey tactical skills with F (1, 118) =313.37, p < .05 for school boys, and F (1, 136) =92.62, p < .05 for school girls. The Mann Whitney U test also showed the treatment groups had significant improvement in state self-confidence with U=428.50, z= -7.22, p < .05, r=.06 for school boys. ANCOVA analysis also showed the treatment group had significant improvement in state self-confidence with F (1, 136) =74.40, p < .05 for school girls. This indicates that TGFU in a 40 minute physical education class conducted twice a week for four weeks can significantly improve the hockey tactical skills and state self-confidence among 16-year-old students. The findings give new knowledge to PE teachers to implement the TGFU method as it enhances the hockey tactical skills and state self-confidence among 16-year-old students. Some recommendation was suggested for future research.

Keywords: Teaching Games For Understanding (TGFU), traditional teaching, hockey tactical skills, state self-confidence

Procedia PDF Downloads 354
1236 Static vs. Stream Mining Trajectories Similarity Measures

Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh

Abstract:

Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.

Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining

Procedia PDF Downloads 396
1235 Gaining Insight into Body Esteem through Time Perspective

Authors: Anthony Schmiedeler

Abstract:

Reliable measurements for body esteem and time perspective have been constructed to acquire additional knowledge into these two distinct and personal domains of individuals. The Body Esteem Scale (BES) assesses the multidimensional body self-esteems of males and females and produces a particular score. A higher BES score indicates an individual has strong positive feelings relating to particular aspects of the individual’s body. The Zimbardo Time Perspective Inventory (ZTPI) measures individuals’ time perspectives and identifies their dominant time perspective profiles. Higher scores in a time perspective profile, such as Past Positive (i.e., nostalgically remembering the past), suggest an individuals’ inclination toward that specific way of orienting oneself with respect to time. Both scales rely on measurements that are similarly grounded in personality traits and reveal valuable insight into individuals’ personalities. Studying the two scales could provide insight into a possible relationship and allow for a better comprehension and more nuanced understanding of the utilities of the instruments. In a completed study, 69 adults completed both the ZTPI and BES. Analyses show that adult females’ higher BES scores positively correlate with higher scores of the Past Positive and Present Hedonistic time perspective profiles of the ZTPI. Male participants also had higher overall BES scores positively correlate with the Present Hedonistic profile in addition to the Positive Future time perspective profile. The results of this study suggest that individuals with certain body esteem scores have a pattern of corresponding with certain time orientations. These correlations could help in explaining the rationales behind individuals’ varying levels of body esteem. With a foundation for better understanding of body esteem by incorporating these time perspectives, future research could be conducted to develop instruments that more accurately reflect individuals’ body esteem measurements.

Keywords: BES, body esteem, time perspective, ZTPI

Procedia PDF Downloads 123
1234 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: camera-based OCR, feature extraction, document, image processing, grocery products

Procedia PDF Downloads 406
1233 Stream Extraction from 1m-DTM Using ArcGIS

Authors: Jerald Ruta, Ricardo Villar, Jojemar Bantugan, Nycel Barbadillo, Jigg Pelayo

Abstract:

Streams are important in providing water supply for industrial, agricultural and human consumption, In short when there are streams there are lives. Identifying streams are essential since many developed cities are situated in the vicinity of these bodies of water and in flood management, it serves as basin for surface runoff within the area. This study aims to process and generate features from high-resolution digital terrain model (DTM) with 1-meter resolution using Hydrology Tools of ArcGIS. The raster was then filled, processed flow direction and accumulation, then raster calculate and provide stream order, converted to vector, and clearing undesirable features using the ancillary or google earth. In field validation streams were classified whether perennial, intermittent or ephemeral. Results show more than 90% of the extracted feature were accurate in assessment through field validation.

Keywords: digital terrain models, hydrology tools, strahler method, stream classification

Procedia PDF Downloads 272
1232 Possibility of Prediction of Death in SARS-Cov-2 Patients Using Coagulogram Analysis

Authors: Omonov Jahongir Mahmatkulovic

Abstract:

Purpose: To study the significance of D-dimer (DD), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen coagulation parameters (Fg) in predicting the course, severity and prognosis of COVID-19. Source and method of research: From September 15, 2021, to November 5, 2021, 93 patients aged 25 to 60 with suspected COVID-19, who are under inpatient treatment at the multidisciplinary clinic of the Tashkent Medical Academy, were retrospectively examined. DD, PT, APTT, and Fg were studied in dynamics and studied changes. Results: Coagulation disorders occurred in the early stages of COVID-19 infection with an increase in DD in 54 (58%) patients and an increase in Fg in 93 (100%) patients. DD and Fg levels are associated with the clinical classification. Of the 33 patients who died, 21 had an increase in DD in the first laboratory study, 27 had an increase in DD in the second and third laboratory studies, and 15 had an increase in PT in the third test. The results of the ROC analysis of mortality showed that the AUC DD was three times 0.721, 0.801, and 0.844, respectively; PT was 0.703, 0.845, and 0.972. (P<0:01). Conclusion”: Coagulation dysfunction is more common in patients with severe and critical conditions. DD and PT can be used as important predictors of mortality from COVID-19.

Keywords: Covid19, DD, PT, Coagulogram analysis, APTT

Procedia PDF Downloads 107
1231 Neural Nets Based Approach for 2-Cells Power Converter Control

Authors: Kamel Laidi, Khelifa Benmansour, Ouahid Bouchhida

Abstract:

Neural networks-based approach for 2-cells serial converter has been developed and implemented. The approach is based on a behavioural description of the different operating modes of the converter. Each operating mode represents a well-defined configuration, and for which is matched an operating zone satisfying given invariance conditions, depending on the capacitors' voltages and the load current of the converter. For each mode, a control vector whose components are the control signals to be applied to the converter switches has been associated. Therefore, the problem is reduced to a classification task of the different operating modes of the converter. The artificial neural nets-based approach, which constitutes a powerful tool for this kind of task, has been adopted and implemented. The application to a 2-cells chopper has allowed ensuring efficient and robust control of the load current and a high capacitors voltages balancing.

Keywords: neural nets, control, multicellular converters, 2-cells chopper

Procedia PDF Downloads 834
1230 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding

Authors: Emad A. Mohammed

Abstract:

Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.

Keywords: MMP, gas flooding, artificial intelligence, correlation

Procedia PDF Downloads 144
1229 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities

Authors: Mehmet Bulent Topkaya, Mustafa Yildirim

Abstract:

Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.

Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment

Procedia PDF Downloads 301
1228 Estimation of Exhaust and Non-Exhaust Particulate Matter Emissions’ Share from On-Road Vehicles in Addis Ababa City

Authors: Solomon Neway Jida, Jean-Francois Hetet, Pascal Chesse

Abstract:

Vehicular emission is the key source of air pollution in the urban environment. This includes both fine particles (PM2.5) and coarse particulate matters (PM10). However, particulate matter emissions from road traffic comprise emissions from exhaust tailpipe and emissions due to wear and tear of the vehicle part such as brake, tire and clutch and re-suspension of dust (non-exhaust emission). This study estimates the share of the two sources of pollutant particle emissions from on-roadside vehicles in the Addis Ababa municipality, Ethiopia. To calculate its share, two methods were applied; the exhaust-tailpipe emissions were calculated using the Europeans emission inventory Tier II method and Tier I for the non-exhaust emissions (like vehicle tire wear, brake, and road surface wear). The results show that of the total traffic-related particulate emissions in the city, 63% emitted from vehicle exhaust and the remaining 37% from non-exhaust sources. The annual roads transport exhaust emission shares around 2394 tons of particles from all vehicle categories. However, from the total yearly non-exhaust particulate matter emissions’ contribution, tire and brake wear shared around 65% and 35% emanated by road-surface wear. Furthermore, vehicle tire and brake wear were responsible for annual 584.8 tons of coarse particles (PM10) and 314.4 tons of fine particle matter (PM2.5) emissions in the city whereas surface wear emissions were responsible for around 313.7 tons of PM10 and 169.9 tons of PM2.5 pollutant emissions in the city. This suggests that non-exhaust sources might be as significant as exhaust sources and have a considerable contribution to the impact on air quality.

Keywords: Addis Ababa, automotive emission, emission estimation, particulate matters

Procedia PDF Downloads 129
1227 Detection of High Fructose Corn Syrup in Honey by Near Infrared Spectroscopy and Chemometrics

Authors: Mercedes Bertotto, Marcelo Bello, Hector Goicoechea, Veronica Fusca

Abstract:

The National Service of Agri-Food Health and Quality (SENASA), controls honey to detect contamination by synthetic or natural chemical substances and establishes and controls the traceability of the product. The utility of near-infrared spectroscopy for the detection of adulteration of honey with high fructose corn syrup (HFCS) was investigated. First of all, a mixture of different authentic artisanal Argentinian honey was prepared to cover as much heterogeneity as possible. Then, mixtures were prepared by adding different concentrations of high fructose corn syrup (HFCS) to samples of the honey pool. 237 samples were used, 108 of them were authentic honey and 129 samples corresponded to honey adulterated with HFCS between 1 and 10%. They were stored unrefrigerated from time of production until scanning and were not filtered after receipt in the laboratory. Immediately prior to spectral collection, honey was incubated at 40°C overnight to dissolve any crystalline material, manually stirred to achieve homogeneity and adjusted to a standard solids content (70° Brix) with distilled water. Adulterant solutions were also adjusted to 70° Brix. Samples were measured by NIR spectroscopy in the range of 650 to 7000 cm⁻¹. The technique of specular reflectance was used, with a lens aperture range of 150 mm. Pretreatment of the spectra was performed by Standard Normal Variate (SNV). The ant colony optimization genetic algorithm sample selection (ACOGASS) graphical interface was used, using MATLAB version 5.3, to select the variables with the greatest discriminating power. The data set was divided into a validation set and a calibration set, using the Kennard-Stone (KS) algorithm. A combined method of Potential Functions (PF) was chosen together with Partial Least Square Linear Discriminant Analysis (PLS-DA). Different estimators of the predictive capacity of the model were compared, which were obtained using a decreasing number of groups, which implies more demanding validation conditions. The optimal number of latent variables was selected as the number associated with the minimum error and the smallest number of unassigned samples. Once the optimal number of latent variables was defined, we proceeded to apply the model to the training samples. With the calibrated model for the training samples, we proceeded to study the validation samples. The calibrated model that combines the potential function methods and PLSDA can be considered reliable and stable since its performance in future samples is expected to be comparable to that achieved for the training samples. By use of Potential Functions (PF) and Partial Least Square Linear Discriminant Analysis (PLS-DA) classification, authentic honey and honey adulterated with HFCS could be identified with a correct classification rate of 97.9%. The results showed that NIR in combination with the PT and PLS-DS methods can be a simple, fast and low-cost technique for the detection of HFCS in honey with high sensitivity and power of discrimination.

Keywords: adulteration, multivariate analysis, potential functions, regression

Procedia PDF Downloads 125
1226 Sustaining the Social Memory in a Historic Neighborhood: The Case Study of Uch Dukkan Neighborhood in Ardabil City in Azerbaijani Region of Iran

Authors: Yousef Daneshvar Rouyandozagh, Ece. K. Açikgöz

Abstract:

Conservation of historical urban patterns in the traditional neighborhoods is a part of creating integrated urban environments that are socially more sustainable. Urbanization reflects on life conditions and social, physical, economical characteristics of the society. In this regard, historical zones and traditional regions are affected by dramatic interventions on these characteristics. This article focuses on the Uch Dukkan neighborhood located in Ardabil City in Azarbaijani region of Iran, which has been up to such interventions that leaded its transformation from the past to the present. After introducing a brief inventory of the main elements of the historical zone and the neighborhood; this study explores the changes and transformations in different periods; and their impacts on the quality of the environment and its social sustainability. The survey conducted in the neighborhood as part of this research study revealed that the Uch Dukkan neighborhood and the unique architectural heritage that it possesses have become more inactive physically and functionally in a decade. This condition requires an exploration and comparison of the present and the expected transformations of the meaning of social space from the most private unit to the urban scale. From this token, it is argued that an architectural point of view that is based on space order; use and meaning of space as a social and cultural image, should not be ignored. Based on the interplay between social sustainability, collective memory, and the urban environment, study aims to make the invisible portion of ignorance clear, that ends up with a weakness in defining the collective meaning of the neighborhood as a historic urban district. It reveals that the spatial possessions of the neighborhood are valuable not only for their historical and physical characteristics, but also for their social memory that is to be remembered and constructed further.

Keywords: urban integrity, social sustainability, collective memory, social decay

Procedia PDF Downloads 288
1225 Depression among University Students an Epidemiological Study on a Sample of University Students

Authors: Laid Fekih

Abstract:

Background: Depression affects people in all communities across the world and in all aspects of their lives. Its spread varies from one country to another, can happen at any age and get rid of it is not easy. There is no clear policy in Algeria's higher education institutions to detect and treat these disorders or pay particular attention to those at risk. Identifying the prevalence of depression among Algerian students, its correlation with different variables, and studying gender differences in the light of a range of variables is necessary to develop an appropriate plan to raise the level of hope and love of life among students. Method: Random samples of 1500 University of Tlemcen students (967 girls and 533 boys), aged 19 to 24 years completed a self-administered questionnaire that included Beck's Depression Inventory ®-II (BDI®-II), (School Health Promotion: The Mood part), Other questions included in this survey focused on demographic characteristics including gender, age and year of study, academic performance (Annual Average Score (0-20) AAS), were examined. Results: The rate of depression (moderate, severe and extreme) varied from 03% to 13% among university students in Tlemcen University. There was no difference in the rates of depression in male and female students, which means that male and female students do have similar rates of depression. The rate of depression in the first-year of the study shows a higher score relative to students of other years. Depression has a negative relationship with academic performance, which means that depressed students have many difficulties in academic tasks at university. Conclusion: Depression among university students is an important center of interest in the world, not only because of the ease with which they can be followed, or the difficulties encountered during their studies and their technical courses but for the link between the level of depression and the quality of care of mental health services, especially if many students with mood and emotional problems don't meet the criteria for psychotherapy.

Keywords: depression, epidemiology, university students, academic performance

Procedia PDF Downloads 144
1224 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 93
1223 The Complex Relationship Between IQ and Attention Deficit Hyperactivity Disorder Symptoms: Insights From Behaviors, Cognition, and Brain in 5,138 Children With Attention Deficit Hyperactivity Disorder

Authors: Ningning Liu, Gaoding Jia, Yinshan Wang, Haimei Li, Xinian Zuo, Yufeng Wang, Lu Liu, Qiujin Qian

Abstract:

Background: There has been speculation that a high IQ may not necessarily provide protection against attention deficit hyperactivity disorder (ADHD), and there may be a U-shaped correlation between IQ and ADHD symptoms. However, this speculation has not been validated in the ADHD population in any study so far. Method: We conducted a study with 5,138 children who have been professionally diagnosed with ADHD and have a wide range of IQ levels. General Linear Models were used to determine the optimal model between IQ and ADHD core symptoms with sex and age as covariates. The ADHD symptoms we looked at included the total scores (TO), inattention (IA) and hyperactivity/impulsivity (HI). Wechsler Intelligence scale were used to assess IQ [Full-Scale IQ (FSIQ), Verbal IQ (VIQ), and Performance IQ (PIQ)]. Furthermore, we examined the correlation between IQ and the execution function [Behavior Rating Inventory of Executive Function (BRIEF)], as well as between IQ and brain surface area, to determine if the associations between IQ and ADHD symptoms are reflected in executive functions and brain structure. Results: Consistent with previous research, the results indicated that FSIQ and VIQ both showed a linear negative correlation with the TO and IA scores of ADHD. However, PIQ showed an inverted U-shaped relationship with the TO and HI scores of ADHD, with 103 as the peak point. These findings were also partially reflected in the relationship between IQ and executive functions, as well as IQ and brain surface area. Conclusion: To sum up, the relationship between IQ and ADHD symptoms is not straightforward. Our study confirms long-standing academic hypotheses and finds that PIQ exhibits an inverted U-shaped relationship with ADHD symptoms. This study enhances our understanding of symptoms and behaviors of ADHD with varying IQ characteristics and provides some evidence for targeted clinical intervention.

Keywords: ADHD, IQ, execution function, brain imaging

Procedia PDF Downloads 64
1222 A Review on the Use of Salt in Building Construction

Authors: Vesna Pungercar, Florian Musso

Abstract:

Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope.

Keywords: salt, building material, hygrothermal properties, environment

Procedia PDF Downloads 168
1221 Teaching Critical Thinking in Post-Conflict Countries: The University of Liberia

Authors: Kamille Beye

Abstract:

Critical thinking is a topic that has been disputed in the field of education for decades, but many resulting debates have centered around strengthening critical thinking capabilities in the societies, workforces, and educational centers of the global north. In contrast, this paper provides an analysis of the teaching of critical thinking in Liberia, which has been ravaged by years of war and a recent Ebola outbreak. These crises have decimated the Liberian education sector, leading to a loss of teaching capacities that are essential to providing critical thinking education. Until recently, critical thinking had no seat at the table when the future needs of the country were discussed by the government and non-governmental agencies. Now, the University of Liberia has a bold goal to become one of the top twenty universities in West Africa in the next seven years, which has led to a focus on teaching critical thinking skills to improve learning. This paper argues that critical thinking is essential to strengthening not only the Liberian education system, but for promoting peace amongst community members, and yet it suggests that commitments to the teaching of critical thinking in Liberia have hitherto been overly superficial. Based on an initial scoping study, this paper will examine the potential impacts of teaching critical thinking skills to undergraduate students in the William V. S. Tubman School of Education at the University of Liberia on continued peacebuilding and reconstruction efforts of the country. The research contends that if critical thinking skills are taught, practiced and continually utilized, teachers and students will have the ability to engage with information and negotiate challenges to solutions in ways that are beneficial to the communities in which they live. The research will use a variety of methods, that include the California Critical Thinking Disposition Inventory. This research will demonstrate that critical thinking skills are not only needed for entering the workforce, but necessary for negotiating and expressing the needs and desires of local communities in a peaceful way.

Keywords: critical thinking, higher education, Liberia, peacebuilding, post-conflict

Procedia PDF Downloads 135
1220 Cervical Cell Classification Using Random Forests

Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh

Abstract:

The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.

Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features

Procedia PDF Downloads 526
1219 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils

Procedia PDF Downloads 305