Search results for: dynamic multi-objective optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6967

Search results for: dynamic multi-objective optimization

5317 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform

Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung

Abstract:

Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.

Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing

Procedia PDF Downloads 228
5316 Mapping Facial Emotions through Deep Neural Networks

Authors: Satyam Kumar, Lakshya Sharma, Purusharth Agarwal

Abstract:

Facial Expression Recognition (FER) has experienced significant advancements recently, driven by breakthroughs in machine learning, image processing, and cognitive sciences. This study aims to enhance the precision and effectiveness of FER by delving into the intricacies of facial movement features within static images. Our innovative approach utilizes patch-based Gabor features to automatically capture these nuances, providing a comprehensive understanding of static and dynamic characteristics crucial for robust FER. Notably, our results showcase exceptional performance, with VGG16 achieving an outstanding accuracy of 99.28% in the Emotion Detection Dataset. These findings validate the efficacy of our proposed methodology and emphasize the potential of integrating dynamic facial movement features for superior emotion recognition.

Keywords: facial emotion recognition, deep learning, MobileNetV2, VGG16, Xception, efficientNet, ResNet50, accuracy, precision, recall, F1-Score, multimodal integration, transfer learning

Procedia PDF Downloads 0
5315 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation

Authors: Vishwesh Kulkarni, Nikhil Bellarykar

Abstract:

Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.

Keywords: synthetic gene network, network identification, optimization, nonlinear modeling

Procedia PDF Downloads 164
5314 Methodology of Construction Equipment Optimization for Earthwork

Authors: Jaehyun Choi, Hyunjung Kim, Namho Kim

Abstract:

Earthwork is one of the critical civil construction operations that require large-quantities of resources due to its intensive dependency upon construction equipment. Therefore, efficient construction equipment management can highly contribute to productivity improvements and cost savings. Earthwork operation utilizes various combinations of construction equipment in order to meet project requirements such as time and cost. Identification of site condition and construction methods should be performed in advance in order to develop a proper execution plan. The factors to be considered include capacity of equipment assigned, the method of construction, the size of the site, and the surrounding condition. In addition, optimal combination of various construction equipment should be selected. However, in real world practice, equipment utilization plan is performed based on experience and intuition of management. The researchers evaluated the efficiency of various alternatives of construction equipment combinations by utilizing the process simulation model, validated the model from a case study project, and presented a methodology to find optimized plan among alternatives.

Keywords: earthwork operation, construction equipment, process simulation, optimization

Procedia PDF Downloads 434
5313 Adsorption of Cerium as One of the Rare Earth Elements Using Multiwall Carbon Nanotubes from Aqueous Solution: Modeling, Equilibrium and Kinetics

Authors: Saeb Ahmadi, Mohsen Vafaie Sefti, Mohammad Mahdi Shadman, Ebrahim Tangestani

Abstract:

Carbon nanotube has shown great potential for the removal of various inorganic and organic components due to properties such as large surface area and high adsorption capacity. Central composite design is widely used method for determining optimal conditions. Also due to the economic reasons and wide application, the rare earth elements are important components. The analyses of cerium (Ce(III)) adsorption as one of the Rare Earth Elements (REEs) adsorption on Multiwall Carbon Nanotubes (MWCNTs) have been studied. The optimization process was performed using Response Surface Methodology (RSM). The optimum amount conditions were pH of 4.5, initial Ce (III) concentration of 90 mg/l and MWCNTs dosage of 80 mg. Under this condition, the optimum adsorption percentage of Ce (III) was obtained about 96%. Next, at the obtained optimum conditions the kinetic and isotherm studied and result showed the pseudo-second order and Langmuir isotherm are more fitted with experimental data than other models.

Keywords: cerium, rare earth element, MWCNTs, adsorption, optimization

Procedia PDF Downloads 169
5312 Optimization of Temperature for Crystal Violet Dye Adsorption Using Castor Leaf Powder by Response Surface Methodology

Authors: Vipan Kumar Sohpal

Abstract:

Temperature effect on the adsorption of crystal violet dye (CVD) was investigated using a castor leaf powder (CLP) that was prepared from the mature leaves of castor trees, through chemical reaction. The optimum values of pH (8), adsorbent dose (10g/L), initial dye concentration (10g/L), time (2hrs), and stirrer speed (120 rpm) were fixed to investigate the influence of temperature on adsorption capacity, percentage of removal of dye and free energy. A central composite design (CCD) was successfully employed for experimental design and analysis of the results. The combined effect of temperature, absorbance, and concentration on the dye adsorption was studied and optimized using response surface methodology. The optimum values of adsorption capacity, percentage of removal of dye and free energy were found to be 0.965(mg/g), 93.38 %, -8202.7(J/mol) at temperature 55.97 °C having desirability > 90% for removal of crystal violet dye respectively. The experimental values were in good agreement with predicted values.

Keywords: crystal violet dye, CVD, castor leaf powder, CLP, response surface methodology, temperature, optimization

Procedia PDF Downloads 140
5311 Effect of Impact Load on the Bond between Steel and CFRP Laminate

Authors: Alaa Al-Mosawe, Riadh Al-Mahaidi

Abstract:

Carbon fiber reinforced polymers have been wildly used to strengthen steel structural elements. Those structural elements are normally subjected to static, dynamic, fatigue loadings during their life time. CFRP laminate is one of the common methods to strengthen these structures under the subjected loads. A number of researches have been focused on the bond characteristics of CFRP sheets to steel members under static, dynamic and fatigue loadings. There is a lack in understanding the behavior of the CFRP laminates under impact loading. This paper is showing the effect of high load rate on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joint by using Araldite 420 epoxy. The results showed that applying high load rate has a significant effect on the bond strength while a little influence on the effective bond length.

Keywords: adhesively bonded joints, bond strength, CFRP laminate, impact tensile loading

Procedia PDF Downloads 363
5310 Optimal Scheduling of Trains in Complex National Scale Railway Networks

Authors: Sanat Ramesh, Tarun Dutt, Abhilasha Aswal, Anushka Chandrababu, G. N. Srinivasa Prasanna

Abstract:

Optimal Schedule Generation for a large national railway network operating thousands of passenger trains with tens of thousands of kilometers of track is a grand computational challenge in itself. We present heuristics based on a Mixed Integer Program (MIP) formulation for local optimization. These methods provide flexibility in scheduling new trains with varying speed and delays and improve utilization of infrastructure. We propose methods that provide a robust solution with hundreds of trains being scheduled over a portion of the railway network without significant increases in delay. We also provide techniques to validate the nominal schedules thus generated over global correlated variations in travel times thereby enabling us to detect conflicts arising due to delays. Our validation results which assume only the support of the arrival and departure time distributions takes an order of few minutes for a portion of the network and is computationally efficient to handle the entire network.

Keywords: mixed integer programming, optimization, railway network, train scheduling

Procedia PDF Downloads 162
5309 Optimization of 3D Printing Parameters Using Machine Learning to Enhance Mechanical Properties in Fused Deposition Modeling (FDM) Technology

Authors: Darwin Junnior Sabino Diego, Brando Burgos Guerrero, Diego Arroyo Villanueva

Abstract:

Additive manufacturing, commonly known as 3D printing, has revolutionized modern manufacturing by enabling the agile creation of complex objects. However, challenges persist in the consistency and quality of printed parts, particularly in their mechanical properties. This study focuses on addressing these challenges through the optimization of printing parameters in FDM technology, using Machine Learning techniques. Our aim is to improve the mechanical properties of printed objects by optimizing parameters such as speed, temperature, and orientation. We implement a methodology that combines experimental data collection with Machine Learning algorithms to identify relationships between printing parameters and mechanical properties. The results demonstrate the potential of this methodology to enhance the quality and consistency of 3D printed products, with significant applications across various industrial fields. This research not only advances understanding of additive manufacturing but also opens new avenues for practical implementation in industrial settings.

Keywords: 3D printing, additive manufacturing, machine learning, mechanical properties

Procedia PDF Downloads 60
5308 Multi-Objective Optimization (Pareto Sets) and Multi-Response Optimization (Desirability Function) of Microencapsulation of Emamectin

Authors: Victoria Molina, Wendy Franco, Sergio Benavides, José M. Troncoso, Ricardo Luna, Jose R. PéRez-Correa

Abstract:

Emamectin Benzoate (EB) is a crystal antiparasitic that belongs to the avermectin family. It is one of the most common treatments used in Chile to control Caligus rogercresseyi in Atlantic salmon. However, the sea lice acquired resistance to EB when it is exposed at sublethal EB doses. The low solubility rate of EB and its degradation at the acidic pH in the fish digestive tract are the causes of the slow absorption of EB in the intestine. To protect EB from degradation and enhance its absorption, specific microencapsulation technologies must be developed. Amorphous Solid Dispersion techniques such as Spray Drying (SD) and Ionic Gelation (IG) seem adequate for this purpose. Recently, Soluplus® (SOL) has been used to increase the solubility rate of several drugs with similar characteristics than EB. In addition, alginate (ALG) is a widely used polymer in IG for biomedical applications. Regardless of the encapsulation technique, the quality of the obtained microparticles is evaluated with the following responses, yield (Y%), encapsulation efficiency (EE%) and loading capacity (LC%). In addition, it is important to know the percentage of EB released from the microparticles in gastric (GD%) and intestinal (ID%) digestions. In this work, we microencapsulated EB with SOL (EB-SD) and with ALG (EB-IG) using SD and IG, respectively. Quality microencapsulation responses and in vitro gastric and intestinal digestions at pH 3.35 and 7.8, respectively, were obtained. A central composite design was used to find the optimum microencapsulation variables (amount of EB, amount of polymer and feed flow). In each formulation, the behavior of these variables was predicted with statistical models. Then, the response surface methodology was used to find the best combination of the factors that allowed a lower EB release in gastric conditions, while permitting a major release at intestinal digestion. Two approaches were used to determine this. The desirability approach (DA) and multi-objective optimization (MOO) with multi-criteria decision making (MCDM). Both microencapsulation techniques allowed to maintain the integrity of EB in acid pH, given the small amount of EB released in gastric medium, while EB-IG microparticles showed greater EB release at intestinal digestion. For EB-SD, optimal conditions obtained with MOO plus MCDM yielded a good compromise among the microencapsulation responses. In addition, using these conditions, it is possible to reduce microparticles costs due to the reduction of 60% of BE regard the optimal BE proposed by (DA). For EB-GI, the optimization techniques used (DA and MOO) yielded solutions with different advantages and limitations. Applying DA costs can be reduced 21%, while Y, GD and ID showed 9.5%, 84.8% and 2.6% lower values than the best condition. In turn, MOO yielded better microencapsulation responses, but at a higher cost. Overall, EB-SD with operating conditions selected by MOO seems the best option, since a good compromise between costs and encapsulation responses was obtained.

Keywords: microencapsulation, multiple decision-making criteria, multi-objective optimization, Soluplus®

Procedia PDF Downloads 134
5307 Resistivity Tomography Optimization Based on Parallel Electrode Linear Back Projection Algorithm

Authors: Yiwei Huang, Chunyu Zhao, Jingjing Ding

Abstract:

Electrical Resistivity Tomography has been widely used in the medicine and the geology, such as the imaging of the lung impedance and the analysis of the soil impedance, etc. Linear Back Projection is the core algorithm of Electrical Resistivity Tomography, but the traditional Linear Back Projection can not make full use of the information of the electric field. In this paper, an imaging method of Parallel Electrode Linear Back Projection for Electrical Resistivity Tomography is proposed, which generates the electric field distribution that is not linearly related to the traditional Linear Back Projection, captures the new information and improves the imaging accuracy without increasing the number of electrodes by changing the connection mode of the electrodes. The simulation results show that the accuracy of the image obtained by the inverse operation obtained by the Parallel Electrode Linear Back Projection can be improved by about 20%.

Keywords: electrical resistivity tomography, finite element simulation, image optimization, parallel electrode linear back projection

Procedia PDF Downloads 158
5306 Research on Dynamic Practical Byzantine Fault Tolerance Consensus Algorithm

Authors: Cao Xiaopeng, Shi Linkai

Abstract:

The practical Byzantine fault-tolerant algorithm does not add nodes dynamically. It is limited in practical application. In order to add nodes dynamically, Dynamic Practical Byzantine Fault Tolerance Algorithm (DPBFT) was proposed. Firstly, a new node sends request information to other nodes in the network. The nodes in the network decide their identities and requests. Then the nodes in the network reverse connect to the new node and send block information of the current network. The new node updates information. Finally, the new node participates in the next round of consensus, changes the view and selects the master node. This paper abstracts the decision of nodes into the undirected connected graph. The final consistency of the graph is used to prove that the proposed algorithm can adapt to the network dynamically. Compared with the PBFT algorithm, DPBFT has better fault tolerance and lower network bandwidth.

Keywords: practical byzantine, fault tolerance, blockchain, consensus algorithm, consistency analysis

Procedia PDF Downloads 134
5305 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 99
5304 Simulating the Dynamics of E-waste Production from Mobile Phone: Model Development and Case Study of Rwanda

Authors: Rutebuka Evariste, Zhang Lixiao

Abstract:

Mobile phone sales and stocks showed an exponential growth in the past years globally and the number of mobile phones produced each year was surpassing one billion in 2007, this soaring growth of related e-waste deserves sufficient attentions paid to it regionally and globally as long as 40% of its total weight is made from metallic which 12 elements are identified to be highly hazardous and 12 are less harmful. Different research and methods have been used to estimate the obsolete mobile phones but none has developed a dynamic model and handle the discrepancy resulting from improper approach and error in the input data. The study aim was to develop a comprehensive dynamic system model for simulating the dynamism of e-waste production from mobile phone regardless the country or region and prevail over the previous errors. The logistic model method combined with STELLA program has been used to carry out this study. Then the simulation for Rwanda has been conducted and compared with others countries’ results as model testing and validation. Rwanda is about 1.5 million obsoletes mobile phone with 125 tons of waste in 2014 with e-waste production peak in 2017. It is expected to be 4.17 million obsoletes with 351.97 tons by 2020 along with environmental impact intensity of 21times to 2005. Thus, it is concluded through the model testing and validation that the present dynamic model is competent and able deal with mobile phone e-waste production the fact that it has responded to the previous studies questions from Czech Republic, Iran, and China.

Keywords: carrying capacity, dematerialization, logistic model, mobile phone, obsolescence, similarity, Stella, system dynamics

Procedia PDF Downloads 349
5303 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 319
5302 Optimal Allocation of PHEV Parking Lots to Minimize Dstribution System Losses

Authors: Mohsen Mazidi, Ali Abbaspour, Mahmud Fotuhi-Firuzabad, Mohamamd Rastegar

Abstract:

To tackle the air pollution issues, Plug-in Hybrid Electric Vehicles (PHEVs) are proposed as an appropriate solution. Charging a large amount of PHEV batteries, if not controlled, would have negative impacts on the distribution system. The control process of charging of these vehicles can be centralized in parking lots that may provide a chance for better coordination than the individual charging in houses. In this paper, an optimization-based approach is proposed to determine the optimum PHEV parking capacities in candidate nodes of the distribution system. In so doing, a profile for charging and discharging of PHEVs is developed in order to flatten the network load profile. Then, this profile is used in solving an optimization problem to minimize the distribution system losses. The outputs of the proposed method are the proper place for PHEV parking lots and optimum capacity for each parking. The application of the proposed method on the IEEE-34 node test feeder verifies the effectiveness of the method.

Keywords: loss, plug-in hybrid electric vehicle (PHEV), PHEV parking lot, V2G

Procedia PDF Downloads 546
5301 Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin

Authors: T. Yılmaz, Ş. Tavman

Abstract:

In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions.

Keywords: hazelnut skin, optimization, polysaccharide, ultrasound assisted extraction

Procedia PDF Downloads 334
5300 A Comparison of Alternative Traffic Controls for Interchange Ramp Areas Using Synchro Software

Authors: Mohamed Mesbah, Bruce Janson

Abstract:

An interchange is the most important component of freeway and highway facilities. It is working as a connector between the highway’s elements. The main goal of designing interchanges is to provide an acceptable level of service and delay to make vehicles move smoothly when they are entering and exiting the interchange. There are many factors that can have a significant impact on the level of service; the main factors are traffic volumes, and type of interchange. This paper will discuss interchange with roundabouts under various values of traffic volumes to determine the level of service of the interchanges that will be studied in this paper and replace the system of interchange from roundabout to traffic signal to make a significant compression between these systems. A secondary goal is to propose improvements for scenarios where the level of service is deemed unacceptable. This will be achieved using Synchro traffic simulation software, which facilitates the simulation and optimization of interchanges to enhance operational efficiency and safety.

Keywords: interchange, roundabout, traffic signal, Synchro, delay, level of service, traffic volumes, vehicles, simulation, optimization, adjustment

Procedia PDF Downloads 45
5299 A Deterministic Approach for Solving the Hull and White Interest Rate Model with Jump Process

Authors: Hong-Ming Chen

Abstract:

This work considers the resolution of the Hull and White interest rate model with the jump process. A deterministic process is adopted to model the random behavior of interest rate variation as deterministic perturbations, which is depending on the time t. The Brownian motion and jumps uncertainty are denoted as the integral functions piecewise constant function w(t) and point function θ(t). It shows that the interest rate function and the yield function of the Hull and White interest rate model with jump process can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The method is calibrated for the U.S. treasury securities at 3-month data and is used to analyze several effects on interest rate prices, including interest rate variability, and the negative correlation between stock returns and interest rates. The numerical results illustrate that our approach essentially generates the yield functions with minimal fitting errors and small oscillation.

Keywords: optimization, interest rate model, jump process, deterministic

Procedia PDF Downloads 162
5298 A Practical Survey on Zero-Shot Prompt Design for In-Context Learning

Authors: Yinheng Li

Abstract:

The remarkable advancements in large language models (LLMs) have brought about significant improvements in natural language processing tasks. This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts, including discrete, continuous, few-shot, and zero-shot, and their impact on LLM performance. We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods, to optimize LLM performance across diverse tasks. Our review covers key research studies in prompt engineering, discussing their methodologies and contributions to the field. We also delve into the challenges faced in evaluating prompt performance, given the absence of a single ”best” prompt and the importance of considering multiple metrics. In conclusion, the paper highlights the critical role of prompt design in harnessing the full potential of LLMs and provides insights into the combination of manual design, optimization techniques, and rigorous evaluation for more effective and efficient use of LLMs in various Natural Language Processing (NLP) tasks.

Keywords: in-context learning, prompt engineering, zero-shot learning, large language models

Procedia PDF Downloads 88
5297 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization

Authors: Ramakrishna Rao Mamidi

Abstract:

It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.

Keywords: direct search, flux plot, fourier analysis, permanent magnets

Procedia PDF Downloads 220
5296 Understanding Retail Benefits Trade-offs of Dynamic Expiration Dates (DED) Associated with Food Waste

Authors: Junzhang Wu, Yifeng Zou, Alessandro Manzardo, Antonio Scipioni

Abstract:

Dynamic expiration dates (DEDs) play an essential role in reducing food waste in the context of the sustainable cold chain and food system. However, it is unknown for the trades-off in retail benefits when setting an expiration date on fresh food products. This study aims to develop a multi-dimensional decision-making model that integrates DEDs with food waste based on wireless sensor network technology. The model considers the initial quality of fresh food and the change rate of food quality with the storage temperature as cross-independent variables to identify the potential impacts of food waste in retail by applying s DEDs system. The results show that retail benefits from the DEDs system depend on each scenario despite its advanced technology. In the DEDs, the storage temperature of the retail shelf leads to the food waste rate, followed by the change rate of food quality and the initial quality of food products. We found that the DEDs system could reduce food waste when food products are stored at lower temperature areas. Besides, the potential of food savings in an extended replenishment cycle is significantly more advantageous than the fixed expiration dates (FEDs). On the other hand, the information-sharing approach of the DEDs system is relatively limited in improving sustainable assessment performance of food waste in retail and even misleads consumers’ choices. The research provides a comprehensive understanding to support the techno-economic choice of the DEDs associated with food waste in retail.

Keywords: dynamic expiry dates (DEDs), food waste, retail benefits, fixed expiration dates (FEDs)

Procedia PDF Downloads 121
5295 Optimization of Ultrasonic Assisted Extraction of Antioxidants and Phenolic Compounds from Coleus Using Response Surface Methodology

Authors: Reihaneh Ahmadzadeh Ghavidel

Abstract:

Free radicals such as reactive oxygen species (ROS) have detrimental effects on human health through several mechanisms. On the other hand, antioxidant molecules reduce free radical generation in biologic systems. Synthetic antioxidants, which are used in food industry, have also negative impact on human health. Therefore recognition of natural antioxidants such as anthocyanins can solve these problems simultaneously. Coleus (Solenostemon scutellarioides) with red leaves is a rich source of anthocyanins compounds. In this study we evaluated the effect of time (10, 20 and 30 min) and temperature (40, 50 and 60° C) on optimization of anthocyanin extraction using surface response method. In addition, the study was aimed to determine maximum extraction for anthocyanin from coleus plant using ultrasound method. The results indicated that the optimum conditions for extraction were 39.84 min at 69.25° C. At this point, total compounds were achieved 3.7451 mg 100 ml⁻¹. Furthermore, under optimum conditions, anthocyanin concentration, extraction efficiency, ferric reducing ability, total phenolic compounds and EC50 were registered 3.221931, 6.692765, 223.062, 3355.605 and 2.614045, respectively.

Keywords: anthocyanin, antioxidant, coleus, extraction, sonication

Procedia PDF Downloads 323
5294 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 82
5293 An Analytic Network Process Approach towards Academic Staff Selection

Authors: Nasrullah khan

Abstract:

Today business environment is very dynamic and most of organizations are in tough competition for their added values and sustainable hold in market. To achieve such objectives, organizations must have dynamic and creative people as optimized process. To get these people, there should strong human resource management system in organizations. There are multiple approaches have been devised in literature to hire more job relevant and more suitable people. This study proposed an ANP (Analytic Network Process) approach to hire faculty members for a university system. This study consists of two parts. In fist part, a through literature survey and universities interview are conducted in order to find the common criteria for the selection of academic staff. In second part the available candidates are prioritized on the basis of the relative values of these criteria. According to results the GRE & foreign language, GPA and research paper writing were most important factors for the selection of academic staff.

Keywords: creative people, ANP, academic staff, business environment

Procedia PDF Downloads 419
5292 Optimal Protection Coordination in Distribution Systems with Distributed Generations

Authors: Abdorreza Rabiee, Shahla Mohammad Hoseini Mirzaei

Abstract:

The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability.

Keywords: distributed generation, DG, distribution network, over current relay, OCR, protection coordination, pickup current, time dial setting, TDS

Procedia PDF Downloads 141
5291 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization

Procedia PDF Downloads 157
5290 Efficient Chess Board Representation: A Space-Efficient Protocol

Authors: Raghava Dhanya, Shashank S.

Abstract:

This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.

Keywords: chess, optimisation, encoding, bit manipulation

Procedia PDF Downloads 53
5289 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.

Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model

Procedia PDF Downloads 62
5288 Design and Development of High Strength Aluminium Alloy from Recycled 7xxx-Series Material Using Bayesian Optimisation

Authors: Alireza Vahid, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh, Thomas Dorin

Abstract:

Aluminum is the preferred material for lightweight applications and its alloys are constantly improving. The high strength 7xxx alloys have been extensively used for structural components in aerospace and automobile industries for the past 50 years. In the next decade, a great number of airplanes will be retired, providing an obvious source of valuable used metals and great demand for cost-effective methods to re-use these alloys. The design of proper aerospace alloys is primarily based on optimizing strength and ductility, both of which can be improved by controlling the additional alloying elements as well as heat treatment conditions. In this project, we explore the design of high-performance alloys with 7xxx as a base material. These designed alloys have to be optimized and improved to compare with modern 7xxx-series alloys and to remain competitive for aircraft manufacturing. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps making optimization often intensive and costly. In the present study, we used Bayesian optimization algorithm, a well-known adaptive design strategy, to optimize this multi-variable system. An Al alloy was proposed and the relevant heat treatment schedules were optimized, using the tensile yield strength as the output to maximize. The designed alloy has a maximum yield strength and ultimate tensile strength of more than 730 and 760 MPa, respectively, and is thus comparable to the modern high strength 7xxx-series alloys. The microstructure of this alloy is characterized by electron microscopy, indicating that the increased strength of the alloy is due to the presence of a high number density of refined precipitates.

Keywords: aluminum alloys, Bayesian optimization, heat treatment, tensile properties

Procedia PDF Downloads 123