Search results for: construction demolition waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6279

Search results for: construction demolition waste

4629 Utilization of Agro-wastes for Biotechnological Production of Edible Mushroom

Authors: Salami Abiodun Olusola, Bankole Faith Ayobami

Abstract:

Agro-wastes are wastes produced from various agricultural activities and include manures, corncob, plant stalks, hulls, leaves, sugarcane bagasse, oil-palm spadix, and rice bran. In farming situation, the agro-waste is often useless and, thus, discarded. Huge quantities of waste resources generated from Nigerian agriculture could be converted to more useful forms of energy, which could contribute to the country’s primary energy needs and reduce problems associated with waste management. Accumulation of agro-wastes may cause health, safety, and environmental concern. However, biotechnological use of agro-waste could enhance food security through its bioconversion to useful renewable energy. Mushrooms are saprophytes which feed by secreting extracellular enzymes, digesting food externally, and absorb the nutrients in net-like hyphae. Therefore, mushrooms could be exploited for bioconversion of the cheap and numerous agro-wastes for providing nutritious food for animals, human and carbon recycling. The study investigated the bioconversion potentials of Pleurotus florida on agro-wastes using a simple and cost-effective biotechnological method. Four agro-wastes; corncobs, oil-palm spadix, corn straw, and sawdust, were composted and used as substrates while the biological efficiency (BE) and the nutritional composition of P. florida grown on the substrates were determined. Pleurotus florida contained 26.28-29.91% protein, 86.90-89.60% moisture, 0.48-0.91% fat, 19.64-22.82% fibre, 31.37-38.17% carbohydrate and 5.18-6.39% ash. The mineral contents ranged from 342-410 mg/100g Calcium, 1009-1133 mg/100g Phosphorus, 17-21 mg/100g Iron, 277-359 mg/100g Sodium, and 2088-2281 mg/100g Potassium. The highest yield and BE were obtained on corncobs (110 g, 55%), followed by oil-palm spadix (76.05 g, 38%), while the least BE was recorded on corn straw substrate (63.12 g, 31.56%). Utilization of the composted substrates yielded nutritional and edible mushrooms. The study presents biotechnological procedure for bioconversion of agro-wastes to edible and nutritious mushroom for efficient agro-wastes’ management, utilization, and recycling.

Keywords: agrowaste, bioconversion, biotechnology, utilization, recycling

Procedia PDF Downloads 78
4628 Determining the Information Technologies Usage and Learning Preferences of Construction

Authors: Naci Büyükkaracığan, Yıldırım Akyol

Abstract:

Information technology is called the technology which provides transmission of information elsewhere regardless of time, location, distance. Today, information technology is providing the occurrence of ground breaking changes in all areas of our daily lives. Information can be reached quickly to millions of people with help of information technology. In this Study, effects of information technology on students for educations and their learning preferences were demonstrated with using data obtained from questionnaires administered to students of 2015-2016 academic year at Selcuk University Kadınhanı Faik İçil Vocational School Construction Department. The data was obtained by questionnaire consisting of 30 questions that was prepared by the researchers. SPSS 21.00 package programme was used for statistical analysis of data. Chi-square tests, Mann-Whitney U test, Kruskal-Wallis and Kolmogorov-Smirnov tests were used in the data analysis for Descriptiving statistics. In a study conducted with the participation of 61 students, 93.4% of students' reputation of their own information communication device (computer, smart phone, etc.) That have been shown to be at the same rate and to the internet. These are just a computer of itself, then 45.90% of the students. The main reasons for the students' use of the Internet, social networking sites are 85.24%, 13.11% following the news of the site, as seen. All student assignments in information technology, have stated that they use in the preparation of the project. When students acquire scientific knowledge in the profession regarding their preferred sources evaluated were seen exactly when their preferred internet. Male students showed that daily use of information technology while compared to female students was statistically significantly less. Construction Package program where students are eager to learn about the reputation of 72.13% and 91.80% identified in the well which they agreed that an indispensable element in the professional advancement of information technology.

Keywords: information technologies, computer, construction, internet, learning systems

Procedia PDF Downloads 298
4627 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants

Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver

Abstract:

This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.

Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants

Procedia PDF Downloads 352
4626 A Validated Estimation Method to Predict the Interior Wall of Residential Buildings Based on Easy to Collect Variables

Authors: B. Gepts, E. Meex, E. Nuyts, E. Knaepen, G. Verbeeck

Abstract:

The importance of resource efficiency and environmental impact assessment has raised the interest in knowing the amount of materials used in buildings. If no BIM model or energy performance certificate is available, material quantities can be obtained through an estimation or time-consuming calculation. For the interior wall area, no validated estimation method exists. However, in the case of environmental impact assessment or evaluating the existing building stock as future material banks, knowledge of the material quantities used in interior walls is indispensable. This paper presents a validated method for the estimation of the interior wall area for dwellings based on easy-to-collect building characteristics. A database of 4963 residential buildings spread all over Belgium is used. The data are collected through onsite measurements of the buildings during the construction phase (between mid-2010 and mid-2017). The interior wall area refers to the area of all interior walls in the building, including the inner leaf of exterior (party) walls, minus the area of windows and doors, unless mentioned otherwise. The two predictive modelling techniques used are 1) a (stepwise) linear regression and 2) a decision tree. The best estimation method is selected based on the best R² k-fold (5) fit. The research shows that the building volume is by far the most important variable to estimate the interior wall area. A stepwise regression based on building volume per building, building typology, and type of house provides the best fit, with R² k-fold (5) = 0.88. Although the best R² k-fold value is obtained when the other parameters ‘building typology’ and ‘type of house’ are included, the contribution of these variables can be seen as statistically significant but practically irrelevant. Thus, if these parameters are not available, a simplified estimation method based on only the volume of the building can also be applied (R² k-fold = 0.87). The robustness and precision of the method (output) are validated three times. Firstly, the prediction of the interior wall area is checked by means of alternative calculations of the building volume and of the interior wall area; thus, other definitions are applied to the same data. Secondly, the output is tested on an extension of the database, so it has the same definitions but on other data. Thirdly, the output is checked on an unrelated database with other definitions and other data. The validation of the estimation methods demonstrates that the methods remain accurate when underlying data are changed. The method can support environmental as well as economic dimensions of impact assessment, as it can be used in early design. As it allows the prediction of the amount of interior wall materials to be produced in the future or that might become available after demolition, the presented estimation method can be part of material flow analyses on input and on output.

Keywords: buildings as material banks, building stock, estimation method, interior wall area

Procedia PDF Downloads 30
4625 Preparation of Carbon Monoliths from PET Waste and Their Use in Solar Interfacial Water Evaporation

Authors: Andrea Alfaro Barajas, Arturo I. Martinez

Abstract:

3D photothermal structure of carbon was synthesized using PET bottles waste and sodium chloride through controlled carbonization. Characterization techniques such as X-ray photoelectron spectroscopy, X-ray diffraction, BET, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, spectrophotometry, and mechanical compression were carried out. The carbon showed physical integrity > 90%, an absorbance > 90% between 300-1000nm of the solar spectrum, and a high specific surface area from 450 to 620 m2/g. The X-ray was employed to examine the phase structure; the obtained pattern shows an amorphous material. A higher intensity of band D with respect to band G was confirmed by Raman Spectroscopy. C-OH, COOH, C-O, and C-C bonds were obtained from the deconvolution of the high-resolution C1s orbital. Macropores of 160 to 180µm and micropores of 0.5 to 2nm were observed by SEM and TEM images, respectively. Such combined characteristics of carbon confer efficient evaporation of water under 1 sun irradiation > 60%.

Keywords: solar-absorber, carbon, water-evaporation, interfacial

Procedia PDF Downloads 151
4624 Media Representation of China: A Content Analysis of Coverage of China-Related Energy in the New York Times

Authors: Lian Liu

Abstract:

By analyzing the content of the New York Times' China-related energy reports, this study aims to explore the construction of China's national image by the mainstream media in the United States. The study analyzes three aspects of the coverage: topics, reporting tendencies, and countries involved. The results of the study show that economic issues are the main focus of the New York Times’ China-related energy coverage, followed by political issues and environmental issues. Overall, the coverage tendency was mainly negative, but positive coverage was dominated by science and technology issues. In addition, the study found that U.S.-China relations and Sino-Russian relations were important contexts for the construction of China's national image in the NYT's China-related energy coverage. These stories highlight China's interstate interactions with the United States, Japan, and Russia, which serve as important links in the coverage. The findings of this study reveal some characteristics and trends of the U.S. mainstream media's country image of China, which are important for a deeper understanding of the U.S.-China relationship and the media's influence on the construction of the country's image.

Keywords: media coverage, China, content analysis, visualization technology

Procedia PDF Downloads 87
4623 Aligning the Sustainability Policy Areas for Decarbonisation and Value Addition at an Organisational Level

Authors: Bishal Baniya

Abstract:

This paper proposes the sustainability related policy areas for decarbonisation and value addition at an organizational level. General and public sector organizations around the world are usually significant in terms of consuming resources and producing waste – powered through their massive procurement capacity. However, these organizations also possess huge potential to cut resource use and emission as many of these organizations controls supply chain of goods/services. They can therefore be a trend setter and can easily lead other major economic sectors such as manufacturing, construction and mining, transportation, etc. in pursuit towards paradigm shift for sustainability. Whilst the environmental and social awareness has improved in recent years and they have identified policy areas to improve the organizational environmental performance, value addition to the core business of the organization hasn’t been understood and interpreted correctly. This paper therefore investigates ways to align sustainability policy measures in a way that it creates better value proposition relative to benchmark by accounting both eco and social efficiency. Preliminary analysis shows co-benefits other than resource and cost savings fosters the business cases for organizations and this can be achieved by better aligning the policy measures and engaging stakeholders.

Keywords: policy measures, environmental performance, value proposition, organisational level

Procedia PDF Downloads 150
4622 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures

Authors: Kimberly Samaha

Abstract:

In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.

Keywords: bio-economy, biomass energy, financing, metrics

Procedia PDF Downloads 156
4621 Advancing Environmental Remediation Through the Production of Functional Porous Materials from Phosphorite Residue Tailings

Authors: Ali Mohammed Yimer, Ayalew Assen, Youssef Belmabkhout

Abstract:

Environmental remediation is a pressing global concern, necessitating innovative strategies to address the challenges posed by industrial waste and pollution. This study aims to advance environmental remediation by developing cutting-edge functional porous materials from phosphorite residue tailings. Phosphorite mining activities generate vast amounts of waste, which pose significant environmental risks due to their contaminants. The proposed approach involved transforming these phosphorite residue tailings into valuable porous materials through a series of physico-chemical processes including milling, acid-base leaching, designing or templating as well as formation processes. The key components of the tailings were extracted and processed to produce porous arrays with high surface area and porosity. These materials were engineered to possess specific properties suitable for environmental remediation applications, such as enhanced adsorption capacity and selectivity for target contaminants. The synthesized porous materials were thoroughly characterized using advanced analytical techniques (XRD, SEM-EDX, N2 sorption, TGA, FTIR) to assess their structural, morphological, and chemical properties. The performance of the materials in removing various pollutants, including heavy metals and organic compounds, were evaluated through batch adsorption experiments. Additionally, the potential for material regeneration and reusability was investigated to enhance the sustainability of the proposed remediation approach. The outdoors of this research holds significant promise for addressing the environmental challenges associated with phosphorite residue tailings. By valorizing these waste materials into porous materials with exceptional remediation capabilities, this study contributes to the development of sustainable and cost-effective solutions for environmental cleanup. Furthermore, the utilization of phosphorite residue tailings in this manner offers a potential avenue for the remediation of other contaminated sites, thereby fostering a circular economy approach to waste management.

Keywords: functional porous materials, phosphorite residue tailings, adsorption, environmental remediation, sustainable solutions

Procedia PDF Downloads 59
4620 A New Suburb Renovation Concept

Authors: Anu Soikkelii, Laura Sorri

Abstract:

Finnish national research project, User- and Business-oriented Suburb Renovation Concept (KLIKK), was started in January 2012 and will end in June 2014. The perspective of energy efficiency is emphasised in the project, but also it addresses what improving the energy efficiency of suburban apartment buildings means from the standpoint of architecturally valuable buildings representing different periods. The project will also test the impacts of stricter energy efficiency requirements on renovation projects. The primary goal of the project is to develop a user-oriented, industrial, economic renovation concept for suburban apartment building renovation, extension and construction of additional storeys. The concept will make it possible to change from performance- and cost-based operation to novel service- and user-oriented, site-specifically tailored renovation methods utilizing integrated order and delivery chains.The present project is collaborating with Ministry of the Environment and participating cities in developing a new type of lighter town planning model for suburban renovations and in-fill construction. To support this, the project will simultaneously develop practices for environmental impact assessment tools in renovation and suburban supplementary and in-fill construction.

Keywords: energy efficiency, prefabrication, renovation concept, suburbs, sustainability, user-orientated

Procedia PDF Downloads 334
4619 Sludge and Compost Amendments in Tropical Soils: Impact on Coriander (Coriandrum sativum) Nutrient Content

Authors: M. López-Moreno, L. Lugo Avilés, F. Román, J. Lugo Rosas, J. Hernández-Viezcas Jr., Peralta-Videa, J. Gardea-Torresdey

Abstract:

Degradation of agricultural soils has increased rapidly during the last 20 years due to the indiscriminate use of pesticides and other anthropogenic activities. Currently, there is an urgent need of soil restoration to increase agricultural production. Utilization of sewage sludge or municipal solid waste is an important way to recycle nutrient elements and improve soil quality. With these amendments, nutrient availability in the aqueous phase might be increased and production of healthier crops can be accomplished. This research project aimed to achieve sustainable management of tropical agricultural soils, specifically in Puerto Rico, through the amendment of water treatment plant sludge’s. This practice avoids landfill disposal of sewage sludge and at the same time results cost-effective practice for recycling solid waste residues. Coriander sativum was cultivated in a compost-soil-sludge mixture at different proportions. Results showed that Coriander grown in a mixture of 25% compost+50% Voladora soi+25% sludge had the best growth and development. High chlorophyll content (33.01 ± 0.8) was observed in Coriander plants cultivated in 25% compost+62.5% Coloso soil+ 12.5% sludge compared to plants grown with no sludge (32.59 ± 0.7). ICP-OES analysis showed variations in mineral element contents (macro and micronutrients) in coriander plant grown I soil amended with sludge and compost.

Keywords: compost, Coriandrum sativum, nutrients, waste sludge

Procedia PDF Downloads 407
4618 The Effect of Collapse Structure on Economic Growth and Influence of Soil Investigation

Authors: Fatai Shola Afolabi

Abstract:

The study identified and evaluates the causes of building failure and examined the effects of building failure with respect to cost in Lagos State, Nigeria. The method employed in the collection of data includes the administration of questionnaire to professionals in the construction industry and case studies for the sites. A purposive sampling technique was used for selecting the sites visited, and selecting the construction professionals. Descriptive statistical techniques such as frequency distribution and percentages and mean response analysis were used to analyze data. The study revealed that the major causes of building failures were bad design, faulty construction, over loading, non-possession of approved drawings, Possession of approved drawings but non-compliance, and the use of quarks. In the two case studies considered, the total direct loss to the building owners was thirty eight million three hundred and eight five thousand, seven hundred and twenty one naira (38,385,721) which is about One hundred and ninety four thousand, eighty hundred and fifty one dollars ($194,851) at one hundred and ninety seven naira to one US dollars, central bank Nigeria of exchange rate as at 14th March, 2015.

Keywords: building structures, building failure, building collapse, structural failure, cost, direct loss

Procedia PDF Downloads 263
4617 Use of Residues from Water Treatment and Porcelain Coatings Industry for Producing Eco-Bricks

Authors: Flavio Araujo, Fabiolla Lima, Julio Lima, Paulo Scalize, Antonio Albuquerque, Heitor Reis

Abstract:

One of the great environmental problems in the management of water treatment (WTP) is on the disposal of waste generated during the treatment process. The same occurs with the waste generated during rectification of porcelain tiles. Despite environmental laws in Brazil the residues does not have an ecologically balanced destination. Thus, with the purpose to identify an environmentally sustainable disposal, residues were used to replace part of the soil, for production soil-cement bricks. It was used the residues from WTP and coatings industry Cecrisa (Brazil). Consequently, a greater amount of fine aggregate in the two samples of residues was found. The residue affects the quality of bricks produced, compared to the sample without residues. However, the results of compression and water absorption tests were obtained values that meet the standards, respectively 2.0 MPa and 20% absorption.

Keywords: water treatment residue, porcelain tile residue, WTP, brick

Procedia PDF Downloads 483
4616 Research on the Application of Renewability in the Construction Model of Zhejiang Rural Revitalization

Authors: Zheng Junchao, Wang Zhu

Abstract:

With the advancement of China's urbanization process, the Chinese government has put forward the strategy of rural revitalization which is aiming at realizing the comprehensive integration of urban and rural areas and the comprehensive revitalization of rural areas. The path of rural revitalization in Zhejiang province put forward a typical model from four dimensions: suburban area, plain, island and mountain area. Research methods include on-the-spot investigation, visiting a number of successful demonstration villages in Zhejiang and interviewing village officials. Based on the location conditions, resource endowments, industrial forms and development foundations of Zhejiang Province, this paper introduces in detail the model of rural revitalization in Zhejiang Province and the challenges it encounters, as well as the role of building construction. The rural development model of Zhejiang province makes the rural culture flourish. Taking the construction of rural scenic spots as the carrier, the rural culture, and natural landscape are constantly improved. It provides a model and template for the country's rural revitalization. The promotion of Zhejiang rural revitalization model will improve the current rural landscape, living standard and industrial structure, which will narrow the urban-rural gap greatly.

Keywords: comprehensive rural revitalization, Zhejiang model, reproducible, comprehensive integration

Procedia PDF Downloads 199
4615 Influence of Coatings on Energy Conservation in Construction Industry

Authors: Nancy Sakr, Mohamed Abou-Zeid

Abstract:

World energy consumption has increased rapidly in the past few years. Due to population growth, total energy consumption is increasing; a large amount of energy is wasted on the cooling and heating processes in buildings. However, using thermal heating management can minimize costs, heat consumption and create a management system for the heat insulation for buildings. This concept is being implemented through different approaches. Based on analysis and research, there is evidence in the energy consumption before and after testing and applying construction approaches for thermal heating management in building units. This investigation addresses the evaluation of the influence of external coatings on energy consumption. Coatings are considered one of the smart effective available approaches for energy efficiency. Unfortunately, this approach is not widely applied in the construction industry. It needs more data to prove effectiveness and credibility between people to use it as a smart thermal insulation approach. Two precedents have been analyzed in order to monitor buildings’ heat exposure, and how the buildings will be affected by thermal insulation materials. Data sheets from chemical companies which produce similar coatings are compared with the usual products and the protective thermal products.

Keywords: energy consumption, building envelope, thermal insulation, protective coatings

Procedia PDF Downloads 144
4614 Investigation on the Fire Resistance of Ultra-High Performance Concrete with Natural Fibers

Authors: Dong Zhang, Kang Hai Tan, Aravind Dasari

Abstract:

Increasing concern on environmental sustainability and waste management has driven the construction and building sector towards renewable materials. In this work, we have explored the usage of natural fibers as an alternative to synthetic fibers like polypropylene (PP) in ultra-high performance concrete (UHPC). PP fibers are incorporated into concrete to resist explosive thermal spalling of UHPC during a fire exposure scenario. Experimental studies on the effect of natural fiber on the mechanical properties and spalling resistance of UHCP were conducted. The residual mechanical properties of UHPC with natural fibers were tested after heating to different temperatures. Spalling behavior of UHPC with natural fibers is also assessed by heating the samples according to ISO 834 fire curve. A range of analytical, physical and microscopic characterization techniques was also used on the concrete samples before and after being subjected to elevated temperature to investigate the phase and microstructural change of the sample. The findings show that natural fibers are able to improve fire resistance of UHPC. Adding natural fibers can prevent UHPC from spalling at high temperature. This study provides an alternative, which is at low cost and environmentally friendly, to prevent spalling of UHPC.

Keywords: high temperature, natural fiber, spalling, ultra-high performance concrete

Procedia PDF Downloads 177
4613 Road Map to Health: Palestinian Workers in Israel's Construction Sector

Authors: Maya de Vries Kedem, Abir Jubran, Diana Baron

Abstract:

Employment in Israel offers Palestinian workers an income double what they can earn in the West Bank. The need to support their families leads many educated Palestinians to forgo finding work in their profession in the Palestinian Authority and instead look for employment in those sectors open to them in Israel, particularly the construction, agriculture, and industry sectors. The International Labor Organization estimated that about 1,200 workers in Israel die every year because of occupational diseases (diseases caused by working conditions). Construction workers in Israel are constantly exposed to dust, noise, chemical materials, and work in awkward postures, which require prolonged bending, repetitive motion, and other risk factors that can lead to illnesses and death. Occupational health is vastly neglected in Israel and construction workers are particularly at risk . As of June 2022, the Israeli quota in the construction sector for Palestinian workers stood at 80,000. Kav LaOved released a new study on the state of occupational health among Palestinian workers employed in construction in Israel. The study Roadmap to Health: Palestinian Workers in Israel's Construction Sector reviews the extent to which the health of Palestinian workers is protected at work in Israel. The report includes analysis of a survey administered to 256 workers as well as interviews with 10 workers and with 5 Israeli occupational health experts. Report highlights: • Among survey respondents, 63.9% stated that safety procedures to protect their health are rarely followed in their workplace (e.g., taking breaks, using protective gear, following restrictions on lifting heavy items, and having inspectors regularly on site to monitor safety). • All 256 Palestinian workers who participated to the survey said that their health has been directly or indirectly harmed by working in Israel and reported suffering from the following problems: orthopedic problems such as joint, hand, leg or knee problems (100%); headaches (75%); back problems (36.3%); eye problems (23.8%); breathing problems (17.6%); chronic pain (14.8%); heart problems (7.8%); and skin problems (3.5%). • Workers who are injured or do not feel well often continue working for fear of losing their payment for that day. About half of the 256 survey respondents reported that they pay brokerage fees to find an employer with a work permit, often paying between 2,000 and 3,000 NIS per month. “I have an obligation—I pay about NIS 120 a day for my permit, [and] I have to pay for it whether I work or not" a worker said. • Most Palestinian construction workers suffer from stress and mental health problems. Workers pointed to several issues that greatly affect their mood and mental state: daily crossings at crowded checkpoints where workers stand for hours; lack of sleep due to leaving home daily at 3:00-3:30 am; commuting two to four hours to work in each direction; and abusive work environments. A worker told KLO that the sight of thousands of workers standing together at the checkpoint causes “high blood pressure and the feeling that you are going to be squeezed.” Another said, “I felt that my bones would break.” In the survey workers reported suffering from insomnia (70.1%), breathing difficulties (35.8%), chest pressure (27.6%), or rapid pulse rate (12.2%).

Keywords: construction sector, palestinian workers, occupational health, Israel, occupation

Procedia PDF Downloads 88
4612 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites

Authors: B. Yaman, G. Acikbas, N. Calis Acikbas

Abstract:

Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.

Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties

Procedia PDF Downloads 195
4611 Information Construction of Higher Education in Teaching Practice

Authors: Yang Meng, James L. Patnao

Abstract:

With the rapid development of information technology and the impact of the epidemic environment, the traditional teaching model can’t longer meet the requirements of the development of the times. The development of teaching mechanism is the inevitable trend of the future development of higher education. We must further promote the informatization of higher education in teaching practice, let modern information technology penetrate and practice in classroom teaching, and provide promising opportunities for the high-quality development of higher education. This article mainly through the distribution of questionnaires to teachers of colleges and universities, so as to understand the degree of informatization in the teaching of colleges and universities. And on the basis of domestic and foreign scholars' research on higher education informatization, it analyzes the existing problems, and finds the optimal solution based on the needs of education and teaching development. According to the survey results, most college teachers will use information technology in teaching practice, but the information technology teaching tools used by teachers are relatively simple, and most of them only use slides. In addition, backward informatization infrastructure and less informatization training are the main challenges facing the current teaching informatization construction. If colleges and universities can make good use of information technology and multimedia technology and combine it with traditional teaching, it will definitely promote the development of college education and further promote the modernization and informatization of higher education.

Keywords: higher education, teaching practice, informatization construction, e-education

Procedia PDF Downloads 122
4610 Planning for Sustainability in the Built Environment

Authors: Adedayo Jeremiah Adeyekun, Samuel Oluwagbemiga Ishola

Abstract:

This paper aimed to identify the significance of sustainability in the built environment, the economic and environmental importance to building and construction projects. Sustainability in the built environment has been a key objective of research over the past several decades. Sustainability in the built environment requires reconciliation between economic, environmental and social impacts of design and planning decisions made during the life cycle of a project from inception to termination. Planning for sustainability in the built environment needs us to go beyond our individual disciplines to consider the variety of economic, social and environmental impacts of our decisions in the long term. A decision to build a green residential development in an isolated location may pass some of the test of sustainability through its reduction in stormwater runoff, energy efficiency, and ecological sustainability in the building, but it may fail to be sustainable from a transportation perspective. Sustainability is important to the planning, design, construction, and preservation of the built environment; because it helps these activities reflect multiple values and considerations. In fact, the arts and sciences of the built environment have traditionally integrated values and fostered creative expression, capabilities that can and should lead the sustainability movement as society seeks ways to live in dynamic balance with its own diverse needs and the natural world. This research aimed to capture the state-of-the-art in the development of innovative sustainable design and planning strategies for building and construction projects. Therefore, there is a need for a holistic selection and implication approach for identifying potential sustainable strategies applicable to a particular project and evaluating the overall life cycle impact of each alternative by accounting for different applicable impacts and making the final selection among various viable alternatives.

Keywords: sustainability, built environment, planning, design, construction

Procedia PDF Downloads 176
4609 Ranking of Optimal Materials for Building Walls from the Perspective of Cost and Waste of Electricity and Gas Energy Using AHP-TOPSIS 1 Technique: Study Example: Sari City

Authors: Seyedomid Fatemi

Abstract:

The walls of the building, as the main intermediary between the outside and the inside of the building, play an important role in controlling the environmental conditions and ensuring the comfort of the residents, thus reducing the heating and cooling loads. Therefore, the use of suitable materials is considered one of the simplest and most effective ways to reduce the heating and cooling loads of the building, which will also save energy. Therefore, in order to achieve the goal of the research "Ranking of optimal materials for building walls," optimal materials for building walls in a temperate and humid climate (case example: Sari city) from the perspective of embodied energy, waste of electricity and gas energy, cost and reuse been investigated to achieve sustainable architecture. In this regard, using information obtained from Sari Municipality, design components have been presented by experts using the Delphi method. Considering the criteria of experts' opinions (cost and reuse), the amount of embodied energy of the materials, as well as the amount of waste of electricity and gas of different materials of the walls, with the help of the AHP weighting technique and finally with the TOPSIS technique, the best type of materials in the order of 1- 3-D Panel 2-ICF-, 3-Cement block with pumice, 4-Wallcrete block, 5-Clay block, 6-Autoclaved Aerated Concrete (AAC), 7-Foam cement block, 8-Aquapanel and 9-Reinforced concrete wall for use in The walls of the buildings were proposed in Sari city.

Keywords: optimum materials, building walls, moderate and humid climate, sustainable architecture, AHP-TOPSIS technique

Procedia PDF Downloads 77
4608 Apparent Temperature Distribution on Scaffoldings during Construction Works

Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa

Abstract:

People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries

Keywords: apparent temperature, health, safety work, scaffoldings

Procedia PDF Downloads 182
4607 Fluoride Immobilization in Plaster Board Waste: A Safety Measure to Prevent Soil and Water Pollution

Authors: Venkataraman Sivasankar, Kiyoshi Omine, Hideaki Sano

Abstract:

The leaching of fluoride from Plaster Board Waste (PBW) is quite feasible in soil and water environments. The Ministry of Environment, Japan recommended the standard limit of 0.8 mgL⁻¹ or less for fluoride. Although the utilization of PBW as a substitute for cement is rather meritorious, its fluoride leaching behavior deteriorates the quality of soil and water and therefore envisaged as a demerit. In view of this fluoride leaching problem, the present research is focused on immobilizing fluoride in PBW. The immobilization experiments were conducted with four chemical systems operated by DAHP (diammonium hydrogen phosphate) and phosphoric acid carbonization of bamboo mass coupled with certain inorganic reactions using reagents such as calcium hydroxide, sodium hydroxide, and aqueous ammonia. The fluoride immobilization was determined after shaking the reactor contents including the plaster board waste for 24 h at 25˚C. In the DAHP system, the immobilization of fluoride was evident from the leaching of fluoride in the range 0.071-0.12 mgL⁻¹, 0.026-0.14 mgL⁻¹ and 0.068-0.12 mgL⁻¹ for the reaction temperatures at 30˚C, 50˚C, and 90˚C, respectively, with final pH of 6.8. The other chemical systems designated as PACCa, PACAm, and PACNa could immobilize fluoride in PBW, and the resulting solution was analyzed with the fluoride less than the Japanese environmental standard of 0.8 mgL⁻¹. In the case of PACAm and PACCa systems, the calcium concentration was found undetectable and witnessed the formation of phosphate compounds. The immobilization of fluoride was found inversely proportional to the increase in the volume of leaching solvent and dose of PBW. Characterization studies of PBW and the solid after fluoride immobilization was done using FTIR (Fourier transform infrared spectroscopy), Raman spectroscopy, FE-SEM ( Field Emission Scanning Electron Microscopy) with EDAX (Energy Dispersive Spectroscopy), XRD (X-ray diffraction), and XPS (X-ray photoelectron spectroscopy). The results revealed the formation of new calcium phosphate compounds such as apatite, monetite, and hydroxylapatite. The participation of such new compounds in fluoride immobilization seems indispensable through the exchange mechanism of hydroxyl and fluoride groups. Acknowledgment: First author thanks to Japanese Society for the Promotion of Science (JSPS) for the award of the fellowship (ID No. 16544).

Keywords: characterization, fluoride, immobilization, plaster board waste

Procedia PDF Downloads 157
4606 Tracing the Developmental Repertoire of the Progressive: Evidence from L2 Construction Learning

Authors: Tianqi Wu, Min Wang

Abstract:

Research investigating language acquisition from a constructionist perspective has demonstrated that language is learned as constructions at various linguistic levels, which is related to factors of frequency, semantic prototypicality, and form-meaning contingency. However, previous research on construction learning tended to focus on clause-level constructions such as verb argument constructions but few attempts were made to study morpheme-level constructions such as the progressive construction, which is regarded as a source of acquisition problems for English learners from diverse L1 backgrounds, especially for those whose L1 do not have an equivalent construction such as German and Chinese. To trace the developmental trajectory of Chinese EFL learners’ use of the progressive with respect to verb frequency, verb-progressive contingency, and verbal prototypicality and generality, a learner corpus consisting of three sub-corpora representing three different English proficiency levels was extracted from the Chinese Learners of English Corpora (CLEC). As the reference point, a native speakers’ corpus extracted from the Louvain Corpus of Native English Essays was also established. All the texts were annotated with C7 tagset by part-of-speech tagging software. After annotation all valid progressive hits were retrieved with AntConc 3.4.3 followed by a manual check. Frequency-related data showed that from the lowest to the highest proficiency level, (1) the type token ratio increased steadily from 23.5% to 35.6%, getting closer to 36.4% in the native speakers’ corpus, indicating a wider use of verbs in the progressive; (2) the normalized entropy value rose from 0.776 to 0.876, working towards the target score of 0.886 in native speakers’ corpus, revealing that upper-intermediate learners exhibited a more even distribution and more productive use of verbs in the progressive; (3) activity verbs (i.e., verbs with prototypical progressive meanings like running and singing) dropped from 59% to 34% but non-prototypical verbs such as state verbs (e.g., being and living) and achievement verbs (e.g., dying and finishing) were increasingly used in the progressive. Apart from raw frequency analyses, collostructional analyses were conducted to quantify verb-progressive contingency and to determine what verbs were distinctively associated with the progressive construction. Results were in line with raw frequency findings, which showed that contingency between the progressive and non-prototypical verbs represented by light verbs (e.g., going, doing, making, and coming) increased as English proficiency proceeded. These findings altogether suggested that beginning Chinese EFL learners were less productive in using the progressive construction: they were constrained by a small set of verbs which had concrete and typical progressive meanings (e.g., the activity verbs). But with English proficiency increasing, their use of the progressive began to spread to marginal members such as the light verbs.

Keywords: Construction learning, Corpus-based, Progressives, Prototype

Procedia PDF Downloads 128
4605 PPPs as Panacea to Delivery of Public Sector Construction Project in Zimbabwe

Authors: Ringisai Abigail Mawondo-Dhliwayo, Kahilu Kajimo-Shakantu

Abstract:

Due to financial challenges which governments in general face, it is becoming more difficult for many to continually use their limited resources to undertake infrastructural development. Governments increasingly now need other delivery approaches, in particular, the Public-Private Partnerships which make it possible for the public sector to achieve infrastructural development without incurring any/minimum cost. The literature reviewed outlined that benefits of PPPs include timely delivery of quality projects with cost limits. The methodology utilized for the empirical study comprised six interviews and sixty questionnaires which were undertaken and administered by construction consultants and government officials involved in PPPs projects. The results obtained showed that PPPs are not widely used in Zimbabwe although the need for their use exists. The study also found some challenges which prevent or derail the rate at which PPPs are utilized, of which the primary one was a political influence. It is concluded that despite limitations, PPPs remain the most effective and viable option for the delivery of government projects. The study recommends that policy and framework for the implementation of PPPs be developed. More useful information could have been obtained if final users of PPPs projects were included in the sample for data collection.

Keywords: construction projects, procurement, public private partnerships, public sector

Procedia PDF Downloads 258
4604 Fuel Properties of Distilled Tire Pyrolytic Oil and Its Blends with Biodiesel and Commercial Diesel Fuel

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

Tires are extremely challenging to recycle due to the available chemically cross-linked polymer which constitutes their nature and therefore, they are neither fusible nor soluble and consequently, cannot be remoulded into other shapes without serious degradation. Pyrolysis of tires produces four valuable products namely; char, steel, tire pyrolytic oil (TPO) and non-condensable gases. TPO has been reported to have similar properties to commercial diesel fuel (CDF). In this study, distillation of TPO was carried out in a batch distillation column and biodiesel was produced from waste cooking oil. FTIR analysis proved that TPO can be used as a fuel due to the available compounds detected and GC analysis displayed 94% biodiesel concentration from waste cooking oil. Different blends of TPO/biodiesel, TPO/CDF and biodiesel/CDF were prepared at different ratios. Fuel properties such as viscosity, density, flash point, and calorific value were studied. Viscosity and density models were also studied to measure the quality of different blends.

Keywords: biodiesel, distillation, pyrolysis, tire

Procedia PDF Downloads 161
4603 Refining Waste Spent Hydroprocessing Catalyst and Their Metal Recovery

Authors: Meena Marafi, Mohan S. Rana

Abstract:

Catalysts play an important role in producing valuable fuel products in petroleum refining; but, due to feedstock’s impurities catalyst gets deactivated with carbon and metal deposition. The disposal of spent catalyst falls under the category of hazardous industrial waste that requires strict agreement with environmental regulations. The spent hydroprocessing catalyst contains Mo, V and Ni at high concentrations that have been found to be economically significant for recovery. Metal recovery process includes deoiling, decoking, grinding, dissolving and treatment with complexing leaching agent such as ethylene diamine tetra acetic acid (EDTA). The process conditions have been optimized as a function of time, temperature and EDTA concentration in presence of ultrasonic agitation. The results indicated that optimum condition established through this approach could recover 97%, 94% and 95% of the extracted Mo, V and Ni, respectively, while 95% EDTA was recovered after acid treatment.

Keywords: atmospheric residue desulfurization (ARDS), deactivation, hydrotreating, spent catalyst

Procedia PDF Downloads 323
4602 Dynamic Modeling of the Green Building Movement in the U.S.: Strategies to Reduce Carbon Footprint of Residential Building Stock

Authors: Nuri Onat, Omer Tatari, Gokhan Egilmez

Abstract:

The U.S. buildings consume significant amount of energy and natural resources and they are responsible for approximately 40 % of the greenhouse gases emitted in the United States. Awareness of these environmental impacts paved the way for the adoption of green building movement. The green building movement is a rapidly increasing trend. Green Construction market has generated $173 billion dollars in GDP, supported over 2.4 million jobs, and provided $123 billion dollars in labor earnings. The number of LEED certified buildings is projected to be almost half of the all new, nonresidential buildings by 2015. National Science and Technology Council (NSTC) aims to increase number of net-zero energy buildings (NZB). The ultimate goal is to have all commercial NZB by 2050 in the US (NSTC 2008). Green Building Initiative (GBI) became the first green building organization that is accredited by American National Standards Institute (ANSI), which will also boost number of green buildings certified by Green Globes. However, there is much less focus on greening the residential buildings, although the environmental impacts of existing residential buildings are more than that of commercial buildings. In this regard, current research aims to model the residential green building movement with a dynamic model approach and assess the possible strategies to stabilize the carbon footprint of the U.S. residential building stock. Three aspects of sustainable development are considered in policy making, namely: high performance green building (HPGB) construction, NZB construction and building retrofitting. 19 different policy options are proposed and analyzed. Results of this study explored that increasing the construction rate of HPGBs or NZBs is not a sufficient policy to stabilize the carbon footprint of the residential buildings. Energy efficient building retrofitting options are found to be more effective strategies then increasing HPGBs and NZBs construction. Also, significance of shifting to renewable energy sources for electricity generation is stressed.

Keywords: green building movement, residential buildings, carbon footprint, system dynamics

Procedia PDF Downloads 428
4601 Observing Sustainability: Case Studies of Chandigarh Boutiques and Their Textile Waste Reuse

Authors: Prabhdip Brar

Abstract:

Since the ancient times recycling, reusing and upcycling has been strongly practiced in India. However, previously reprocess was common due to lack of resources and availability of free time, especially with women who were homemakers. The upward strategy of design philosophy and drift of sustainability is sustainable fashion which is also termed eco fashion, the aspiration of which is to craft a classification which can be supported ad infinitum in terms of environmentalism and social responsibility. The viable approach of sustaining fashion is part of the larger trend of justifiable design where a product is generated and produced while considering its social impact to the environment. The purpose of this qualitative research paper is to find out if the apparel design boutiques in Chandigarh, (an educated fashion-conscious city) are contributing towards making conscious efforts with the re-use of environmentally responsive materials to rethink about eco-conscious traditional techniques and socially responsible approaches of the invention. Observation method and case studies of ten renowned boutiques of Chandigarh were conducted to find out about the creativity of their waste management and social contribution. Owners were interviewed with open-ended questions to find out their understanding of sustainability. This paper concludes that there are many sustainable ideas existing within India from olden times that can be incorporated into modern manufacturing techniques. The results showed all the designers are aware of sustainability as a concept. In all practical purposes, a patch of fabric is being used for bindings or one over the other as surface ornamentation techniques. Plain Fabrics and traditional prints and fabrics are valued more by the owners for using on other garments. Few of them sort their leftover pieces according to basic colors. Few boutique owners preferred donating it to Non-Government organizations. Still, they have enough waste which is not utilized because of lack of time and labor. This paper discusses how the Indian traditional techniques still derive influences though design and techniques, making India one of the contributing countries to the sustainability of fashion and textiles.

Keywords: eco-fashion textile, sustainable textiles, sustainability in india, waste management

Procedia PDF Downloads 107
4600 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: B. Sajeena Beevi, P. P. Jose, G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L, and 20.32 g/L respectively.

Keywords: anaerobic digestion, biogas, optimization, response surface methodology

Procedia PDF Downloads 433