Search results for: clinical decision support systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20999

Search results for: clinical decision support systems

19349 Skin Manifestations in Children With Inborn Errors of Immunity in a Tertiary Care Hospital in Iran

Authors: Zahra Salehi Shahrbabaki, Zahra Chavoshzadeh, Fahimeh Abdollahimajd, Samin Sharafian, Tolue Mahdavi, Mahnaz Jamee

Abstract:

Background: Inborn errors of immunity (IEIs) are monogenic diseases of the immune the system with broad clinical manifestations. Despite the increasing genetic advancements, the diagnosis of IEIs still leans on clinical diagnosis. Dermatologic manifestations are observed in a large number of IEI patients and can lead to proper approach, prompt intervention and improved prognosis. Methods: This cross-sectional study was carried out between 2018 and 2020 on IEIs at a Children's tertiary care center in Tehran, Iran. Demographic details (including age, sex, and parental consanguinity), age at onset of symptoms and family history of IEI with were recorded. Results :212 patients were included. Cutaneous findings were reported in (95 ,44.8%) patients. and 61 of 95 (64.2%) reported skin lesions as the first clinical presentation. Skin infection (69, 72.6%) was the most frequent cutaneous manifestation, followed by an eczematous rash (24, 25 %). Conclusions: Skin manifestations are common feature in IEI patients and can be readily recognizable by healthcare providers. This study tried to provide information on prognostic consequences.

Keywords: primary immuno deficiency, inborn errror of metabolism, skin manifestation, skin infection

Procedia PDF Downloads 96
19348 Patient Advocates to Improve Access to Justice in Involuntary Hospitalisation

Authors: Zuzana Durajova, Natasa Diatkova, Shreya Bhardwaj

Abstract:

This paper introduces the project START, its activities, goals, evaluation and final results. Over the past few decades, the legal discourse surrounding mental health has resulted in improvement in patient rights (in Netherlands, etc.), the appointment of Ombudspersons for psychiatric patients (in Austria, Sweden) and facilitating the participation of patients in decision-making processes. Czech legislation already recognizes the position of “patient’s advocate” as a person of trust. However, this instrument is not very widely known and rarely used in practice. In the pilot study of the project, legal training for patient advocacy is provided to persons with experience with mental health problems/psychiatric hospitalization chosen from a Czech-based NGO. These persons (patient advocates) visit patients in involuntary hospitalization in one closed ward in the chosen psychiatric institution. During visits, the patient advocates inform patients about their legal standing, their procedural rights and also offer them individual support in contacting their counsel, family members etc. To understand the effect of the intervention, qualitative interviews and participant observations are conducted with the patients, advocates, the hospital management and staff and other identifiable stakeholders, such as government officials responsible for mental health care reform. The interviews are held before, during and after the intervention (support from patient advocates in hospitals). Given the ethical quandaries arising from using psychiatric wards as a field setting, we assume a participatory approach to ensure respect for patient boundaries and dignity. Through this project, we seek to establish a profession of patient advocates based on professional standards.

Keywords: patient advocacy, involuntary hospitalization, Czech Republic, patient Rights, professionalization

Procedia PDF Downloads 198
19347 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem

Procedia PDF Downloads 385
19346 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 21
19345 Do Career Expectancy Beliefs Foster Stability as Well as Mobility in One's Career? A Conceptual Model

Authors: Bishakha Majumdar, Ranjeet Nambudiri

Abstract:

Considerable dichotomy exists in research regarding the role of optimism and self-efficacy in work and career outcomes. Optimism and self-efficacy are related to performance, commitment and engagement, but also are implicated in seeing opportunities outside the firm and switching jobs. There is absence of research capturing these opposing strands of findings in the same model and providing a holistic understanding of how the expectancy beliefs operate in case of the working professional. We attempt to bridge this gap by proposing that career-decision self-efficacy and career outcome expectations affect intention to quit through the competitive mediation pathways of internal and external marketability. This model provides a holistic picture of the role of career expectancy beliefs on career outcomes, by considering perceived career opportunities both inside and outside one’s present organization. The understanding extends the application of career expectancy beliefs in the context of career decision-making by the employed individual. Further, it is valuable for reconsidering the effectiveness of hiring and retention techniques used by a firm, as selection, rewards and training programs need to be supplemented by interventions that specifically strengthen the stability pathway.

Keywords: career decision self-efficacy, career outcome expectations, marketability, intention to quit, job mobility

Procedia PDF Downloads 634
19344 The Effects of Perceived Organizational Support and Abusive Supervision on Employee’s Turnover Intention: The Mediating Roles of Psychological Contract and Emotional Exhaustion

Authors: Seung Yeon Son

Abstract:

Workers (especially, competent personnel) have been recognized as a core contributor to overall organizational effectiveness. Hence, verifying the determinants of turnover intention is one of the most important research issues. This study tested the influence of perceived organizational support and abusive supervision on employee’s turnover intention. In addition, mediating roles of psychological contract and emotional exhaustion were examined. Data from 255 Korean employees supported all hypotheses Implications for research and directions for future research are discussed.

Keywords: abusive supervision, emotional exhaustion, perceived organizational support, psychological contract, turnover intention

Procedia PDF Downloads 494
19343 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier

Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui

Abstract:

Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.

Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM

Procedia PDF Downloads 393
19342 Design of a Computational Model to Support the Calculation of a Structural Health Index for Bridges

Authors: Jeison Sánchez Araya, Cesar Garita, Giannina Ortiz

Abstract:

In many Latin American countries, including Costa Rica, the poor condition of national road bridges significantly hinders socioeconomic progress. Addressing this issue, this article introduces a computational method designed to evaluate and monitor bridge health over time. It outlines a business intelligence model that facilitates data storage from bridge inspections and supports structural health index calculations. A Power BI prototype displays crucial visualizations that improve decision making on infrastructure investments. This approach leverages business intelligence and hierarchical visualization techniques, offering a solution to quantitatively assess bridge health and prioritize investments in national infrastructure efficiently.

Keywords: bridges, business intelligence, structural health index, structural health monitoring

Procedia PDF Downloads 13
19341 Direct and Moderating Effect of Religious Activities, Sustainability and Peer Support on Job Performance

Authors: Fahad Alam

Abstract:

Work stress directly affects job performance, specifically in a worse environment. Consequently, a social provision plays a crucial part for enhancement. Therefore, the current research investigates the direct and moderating effect between religious activities, sustainability and peer support on job performance at hospitals in Khyber PakhtunKhwa (KPK), Pakistan. Both primary and secondary data are collected through 261 questionnaires of medical employees from four district hospitals in Khyber PakhtunKhwa, Pakistan, in 2018. The analysis was carried out by SPSS16 and SMART PLS3, to test the direct effect of religious activities, sustainability and social support on job performance and the effect of moderating variable 'work environment' on job performance. The finding confirmed that direct and moderating variables play a significant positive effect among religious activities, sustainability and peer support on job performance, the variables help to diminish the strain level or the stress level, consequently helps in the job completed. Affirmative social approaches produce desirable effects on job performance. The research revealed that social provisions are significant triggers for superior practices. Moreover, the results are stimulating because some of the past literature revealed an insignificant correlation between social provision and performance. This study found that there is a significant relationship which persuades health care organizations.

Keywords: job performance, peer’s support, religious activities, sustainability, work environment

Procedia PDF Downloads 116
19340 Evaluation of the Quality of Education Offered to Students with Special Needs in Public Schools in the City of Bauru, Brazil

Authors: V. L. M. F. Capellini, A. P. P. M. Maturana, N. C. M. Brondino, M. B. C. L. B. M. Peixoto, A. J. Broughton

Abstract:

A paradigm shift is a process. The process of implementing inclusive education, a system constructed to support all learners, requires planning, identification, experimentation, and evaluation. In this vein, the purpose of the present study was to evaluate the capacity of one Brazilian state school systems to provide special education students with a quality inclusive education. This study originated at the behest of concerned families of students with special needs who filed complaints with the Municipality of Bauru, São Paulo. These families claimed, 1) children with learning differences and educational needs had not been identified for services, and 2) those who had been identified had not received sufficient specialized educational assistance (SEA) in schools across the City of Bauru. Hence, the Office of Civil Rights for the state of São Paulo (Ministério Público de São Paulo) summoned the local higher education institution, UNESP, to design a research study to investigate these allegations. In this exploratory study, descriptive data were gathered from all elementary and middle schools including 58 state schools and 17 city schools, for a total of 75 schools overall. Data collection consisted of each school's annual strategic action plan, surveys and interviews with all school stakeholders to determine their perceptions of the inclusive education available to students with Special Education Needs (SEN). The data were collected as one of four stages in a larger study which also included field observations of a focal students' experience and a continuing education course for all teachers and administrators in both state and city schools. For the purposes of this study, the researchers were interested in understanding the perceptions of school staff, parents, and students across all schools. Therefore, documents and surveys from 75 schools were analyzed for adherence to federal legislation guaranteeing students with SEN the right to special education assistance within the regular school setting. Results shows that while some schools recognized the legal rights of SEN students to receive special education, the plans to actually deliver services were absent. In conclusion, the results of this study revealed both school staff and families have insufficient planning and accessibility resources, and the schools have inadequate infrastructure for full-time support to SEN students, i.e., structures and systems to support the identification of SEN and delivery of services within schools of Bauru, SP. Having identified the areas of need, the city is now prepared to take next steps in the process toward preparing all schools to be inclusive.

Keywords: inclusion, school, special education, special needs

Procedia PDF Downloads 160
19339 A Case Study on the Seismic Performance Assessment of the High-Rise Setback Tower Under Multiple Support Excitations on the Basis of TBI Guidelines

Authors: Kamyar Kildashti, Rasoul Mirghaderi

Abstract:

This paper describes the three-dimensional seismic performance assessment of a high-rise steel moment-frame setback tower, designed and detailed per the 2010 ASCE7, under multiple support excitations. The vulnerability analyses are conducted based on nonlinear history analyses under a set of multi-directional strong ground motion records which are scaled to design-based site-specific spectrum in accordance with ASCE41-13. Spatial variation of input motions between far distant supports of each part of the tower is considered by defining time lag. Plastic hinge monotonic and cyclic behavior for prequalified steel connections, panel zones, as well as steel columns is obtained from predefined values presented in TBI Guidelines, PEER/ATC72 and FEMA P440A to include stiffness and strength degradation. Inter-story drift ratios, residual drift ratios, as well as plastic hinge rotation demands under multiple support excitations, are compared to those obtained from uniform support excitations. Performance objectives based on acceptance criteria declared by TBI Guidelines are compared between uniform and multiple support excitations. The results demonstrate that input motion discrepancy results in detrimental effects on the local and global response of the tower.

Keywords: high-rise building, nonlinear time history analysis, multiple support excitation, performance-based design

Procedia PDF Downloads 285
19338 Improving the Emergency Medicine Teaching from the Perspective of Faculty Training

Authors: Qin-Min Ge, Shu-Ming Pan

Abstract:

Emergency clinicians usually get teaching qualification after graduating from medical universities without special faculty training in China mainland. Emergency departments are overcrowded places, with large numbers of patients suffering undifferentiated illness. In the field of emergency medicine (EM), improving the faculty competencies and developing the teaching skills are important for medical education, they could enhance learners outcomes and hence affect the patients prognosis indirectly. This article highlights the necessities of faculty training in EM, illustrates the qualities a good clinical educator should qualify, advances the skills as educators in an academic setting and discusses the ways to be good clinical teachers.

Keywords: emergency education, competence, faculty training, teaching, emergency medicine

Procedia PDF Downloads 596
19337 Does Clinical Guidelines Affect Healthcare Quality and Populational Health: Quebec Colorectal Cancer Screening Program

Authors: Nizar Ghali, Bernard Fortin, Guy Lacroix

Abstract:

In Quebec, colonoscopies volumes have continued to rise in recent years in the absence of effective monitoring mechanism for the appropriateness and the quality of these exams. In 2010, November, Quebec Government introduced the colorectal cancer-screening program in the objective to control for volume and cost imperfection. This program is based on clinical standards and was initiated for first group of institutions. One year later, Government adds financial incentives for participants institutions. In this analysis, we want to assess for the causal effect of the two components of this program: clinical pathways and financial incentives. Especially we assess for the reform effect on healthcare quality and population health in the context that medical remuneration is not directly dependent on this additional funding offered by the program. We have data on admissions episodes and deaths for 8 years. We use multistate model analog to difference in difference approach to estimate reform effect on the transition probability between different states for each patient. Our results show that the reform reduced length of stay without deterioration in hospital mortality or readmission rate. In the other hand, the program contributed to decrease the hospitalization rate and a less invasive treatment approach for colorectal surgeries. This is a sign of healthcare quality and population health improvement. We demonstrate in this analysis that physicians’ behavior can be affected by both clinical standards and financial incentives even if offered to facilities.

Keywords: multi-state and multi-episode transition model, healthcare quality, length of stay, transition probability, difference in difference

Procedia PDF Downloads 214
19336 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties

Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski

Abstract:

The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.

Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide

Procedia PDF Downloads 202
19335 Collect Meaningful Information about Stock Markets from the Web

Authors: Saleem Abuleil, Khalid S. Alsamara

Abstract:

Events represent a significant source of information on the web; they deliver information about events that occurred around the world in all kind of subjects and areas. These events can be collected and organized to provide valuable and useful information for decision makers, researchers, as well as any person seeking knowledge. In this paper, we discuss an ongoing research to target stock markets domain to observe and record changes (events) when they happen, collect them, understand the meaning of each one of them, and organize the information along with meaning in a well-structured format. By using Semantic Role Labeling (SRL) technique, we identified four factors for each event in this paper: verb of action and three roles associated with it, entity name, attribute, and attribute value. We have generated a set of rules and techniques to support our approach to analyze and understand the meaning of the events taking place in stock markets.

Keywords: natuaral language processing, Arabic language, event extraction and understanding, sematic role labeling, stock market

Procedia PDF Downloads 393
19334 Oral Examination: An Important Adjunct to the Diagnosis of Dermatological Disorders

Authors: Sanjay Saraf

Abstract:

The oral cavity can be the site for early manifestations of mucocutaneous disorders (MD) or the only site for occurrence of these disorders. It can also exhibit oral lesions with simultaneous associated skin lesions. The MD involving the oral mucosa commonly presents with signs such as ulcers, vesicles and bullae. The unique environment of the oral cavity may modify these signs of the disease, thereby making the clinical diagnosis an arduous task. In addition to the unique environment of oral cavity, the overlapping of the signs of various mucocutaneous disorders, also makes the clinical diagnosis more intricate. The aim of this review is to present the oral signs of dermatological disorders having common oral involvement and emphasize their importance in early detection of the systemic disorders. The aim is also to highlight the necessity of oral examination by a dermatologist while examining the skin lesions. Prior to the oral examination, it must be imperative for the dermatologists and the dental clinicians to have the knowledge of oral anatomy. It is also important to know the impact of various diseases on oral mucosa, and the characteristic features of various oral mucocutaneous lesions. An initial clinical oral examination is may help in the early diagnosis of the MD. Failure to identify the oral manifestations may reduce the likelihood of early treatment and lead to more serious problems. This paper reviews the oral manifestations of immune mediated dermatological disorders with common oral manifestations.

Keywords: dermatological investigations, genodermatosis, histological features, oral examination

Procedia PDF Downloads 358
19333 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi

Abstract:

During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.

Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization

Procedia PDF Downloads 510
19332 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction

Authors: Joy Cao, Min Zhou

Abstract:

Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.

Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.

Procedia PDF Downloads 90
19331 Biocellulose Template for 3D Mineral Scaffolds

Authors: C. Busuioc, G. Voicu, S. I. Jinga

Abstract:

The field of tissue engineering brings new challenges in terms of proposing original solutions for ongoing medical issues, improving the biological performances of existing clinical systems and speeding the healing process for a faster recovery and a more comfortable life as patient. In this context, we propose the obtaining of 3D porous scaffolds of mineral nature, dedicated to bone repairing and regeneration purposes or employed as bioactive filler for bone cements. Thus, bacterial cellulose - calcium phosphates composite materials have been synthesized by successive immersing of the polymeric membranes in the precursor solution containing Ca2+ and [PO4]3- ions. The mineral phase deposited on the surface of biocellulose fibers was varied as amount through the number of immersing cycles. The intermediary composites were subjected to thermal treatments at different temperatures in order to remove the organic part and provide the formation of a self-sustained 3D architecture. The resulting phase composition consists of common phosphates, while the morphology largely depends on the preparation parameters. Thus, the aspect of the 3D mineral scaffolds can be tuned from a loose microstructure composed of large grains connected via monocrystalline nanorods to a trabecular pattern crossed by parallel internal channels, just like the natural bone. The bioactivity and biocompatibility of the obtained materials have been also assessed, with encouraging results in the clinical use direction. In conclusion, the compositional, structural, morphological and biological characterizations sustain the suitability of the reported biostructures for integration in hard tissue engineering applications.

Keywords: bacterial cellulose, bone reconstruction, calcium phosphates, mineral scaffolds

Procedia PDF Downloads 195
19330 Development of National Guidelines for Conducting Research and Development of Herbal Medicine in Thailand According to International Standards

Authors: Patcharaporn Sudchada, Nuntika Prommee

Abstract:

Background: Herbal medicines constitute a vital component of Thailand's healthcare system and possess significant potential for international recognition. However, the absence of standardized clinical research guidelines aligned with international standards, coupled with unique local challenges, has hindered the development and registration of Thai herbal medicines in the global market. Objective: To establish comprehensive research and development guidelines for herbal medicine formulations that comply with international standards, with particular emphasis on enhancing research quality, scientific credibility, and facilitating both domestic registration and international market acceptance. Methods: The research methodology comprised eight sequential phases: (1) systematic collection and review of relevant documentation and regulatory frameworks; (2) development of preliminary content structure and template designs; (3) systematic analysis and synthesis of scientific evidence and regulatory data; (4) creation of detailed research guidelines and accompanying templates; (5) execution of domestic and international consultation meetings and study visits involving nine stakeholder groups; (6) systematic expert review of the draft guidelines; (7) incorporation of feedback from relevant regulatory and research agencies; and (8) finalization and validation of the comprehensive guidelines. Results: The study produced comprehensive research and development guidelines for herbal medicines that meet international standards, encompassing the complete development pathway from initial concept through pre-clinical studies, product development, preparation protocols, clinical trial conduct, and product registration procedures. The guidelines include standardized templates and forms specifically designed for clinical research documentation. Conclusion: The established guidelines represent a significant advancement in standardizing clinical research for Thai herbal medicines, enhancing their scientific credibility and potential for international acceptance. Nevertheless, Thailand continues to face specific challenges, including insufficient specialized personnel in herbal research (particularly in clinical trials), challenges in integrating traditional Thai medicine principles with modern scientific methodology, limited research infrastructure, inadequate funding mechanisms, complex registration procedures, and public skepticism toward herbal products. The policy recommendations outlined in this research provide a strategic framework for addressing these challenges and promoting sustainable development of Thai herbal medicines within the national context.

Keywords: herbal medicine, clinical research, international standards, research guidelines, drug development, traditional thai medicine, regulatory compliance

Procedia PDF Downloads 8
19329 Media Planning Decisions and Preferences through a Goal Programming Model: An Application to a Media Campaign for a Mature Product in Italy

Authors: Cinzia Colapinto, Davide La Torre

Abstract:

Goal Programming (GP) and its variants were applied to marketing and specific marketing issues, such as media scheduling problems in the last decades. The concept of satisfaction functions has been widely utilized in the GP model to explicitly integrate the Decision-Maker’s preferences. These preferences can be guided by the available information regarding the decision-making situation. A GP model with satisfaction functions for media planning decisions is proposed and then illustrated through a case study related to a marketing/media campaign in the Italian market.

Keywords: goal programming, satisfaction functions, media planning, tourism management

Procedia PDF Downloads 401
19328 Sustainability Assessment of Food Delivery with Last-Mile Delivery Droids, A Case Study at the European Commission's JRC Ispra Site

Authors: Ada Garus

Abstract:

This paper presents the outcomes of the sustainability assessment of food delivery with a last-mile delivery service introduced in a real-world case study. The methodology used in the sustainability assessment integrates multi-criteria decision-making analysis, sustainability pillars, and scenario analysis to best reflect the conflicting needs of stakeholders involved in the last mile delivery system. The case study provides an application of the framework to the food delivery system of the Joint Research Centre of the European Commission where three alternative solutions were analyzed I) the existent state in which individuals frequent the local cantine or pick up their food, using their preferred mode of transport II) the hypothetical scenario in which individuals can only order their food using the delivery droid system III) a scenario in which the food delivery droid based system is introduced as a supplement to the current system. The environmental indices are calculated using a simulation study in which decision regarding the food delivery is predicted using a multinomial logit model. The vehicle dynamics model is used to predict the fuel consumption of the regular combustion engines vehicles used by the cantine goers and the electricity consumption of the droid. The sustainability assessment allows for the evaluation of the economic, environmental, and social aspects of food delivery, making it an apt input for policymakers. Moreover, the assessment is one of the first studies to investigate automated delivery droids, which could become a frequent addition to the urban landscape in the near future.

Keywords: innovations in transportation technologies, behavioural change and mobility, urban freight logistics, innovative transportation systems

Procedia PDF Downloads 194
19327 Unlocking Synergy: Exploring the Impact of Integrating Knowledge Management and Competitive Intelligence for Synergistic Advantage for Efficient, Inclusive and Optimum Organizational Performance

Authors: Godian Asami Mabindah

Abstract:

The convergence of knowledge management (KM) and competitive intelligence (CI) has gained significant attention in recent years as organizations seek to enhance their competitive advantage in an increasingly complex and dynamic business environment. This research study aims to explore and understand the synergistic relationship between KM and CI and its impact on organizational performance. By investigating how the integration of KM and CI practices can contribute to decision-making, innovation, and competitive advantage, this study seeks to unlock the potential benefits and challenges associated with this integration. The research employs a mixed-methods approach to gather comprehensive data. A quantitative analysis is conducted using survey data collected from a diverse sample of organizations across different industries. The survey measures the extent of integration between KM and CI practices and examines the perceived benefits and challenges associated with this integration. Additionally, qualitative interviews are conducted with key organizational stakeholders to gain deeper insights into their experiences, perspectives, and best practices regarding the synergistic relationship. The findings of this study are expected to reveal several significant outcomes. Firstly, it is anticipated that organizations that effectively integrate KM and CI practices will outperform those that treat them as independent functions. The study aims to highlight the positive impact of this integration on decision-making, innovation, organizational learning, and competitive advantage. Furthermore, the research aims to identify critical success factors and enablers for achieving constructive interaction between KM and CI, such as leadership support, culture, technology infrastructure, and knowledge-sharing mechanisms. The implications of this research are far-reaching. Organizations can leverage the findings to develop strategies and practices that facilitate the integration of KM and CI, leading to enhanced competitive intelligence capabilities and improved knowledge management processes. Additionally, the research contributes to the academic literature by providing a comprehensive understanding of the synergistic relationship between KM and CI and proposing a conceptual framework that can guide future research in this area. By exploring the synergies between KM and CI, this study seeks to help organizations harness their collective power to gain a competitive edge in today's dynamic business landscape. The research provides practical insights and guidelines for organizations to effectively integrate KM and CI practices, leading to improved decision-making, innovation, and overall organizational performance.

Keywords: Competitive Intelligence, Knowledge Management, Organizational Performance, Incusivity, Optimum Performance

Procedia PDF Downloads 93
19326 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods

Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja

Abstract:

In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.

Keywords: alzheimer, machine learning, deep learning, EEG

Procedia PDF Downloads 129
19325 Groupthink: The Dark Side of Team Cohesion

Authors: Farhad Eizakshiri

Abstract:

The potential for groupthink to explain the issues contributing to deterioration of decision-making ability within the unitary team and so to cause poor outcomes attracted a great deal of attention from a variety of disciplines, including psychology, social and organizational studies, political science, and others. Yet what remains unclear is how and why the team members’ strivings for unanimity and cohesion override their motivation to realistically appraise alternative courses of action. In this paper, the findings of a sequential explanatory mixed-methods research containing an experiment with thirty groups of three persons each and interviews with all experimental groups to investigate this issue is reported. The experiment sought to examine how individuals aggregate their views in order to reach a consensual group decision concerning the completion time of a task. The results indicated that groups made better estimates when they had no interaction between members in comparison with the situation that groups collectively agreed on time estimates. To understand the reasons, the qualitative data and informal observations collected during the task were analyzed through conversation analysis, thus leading to four reasons that caused teams to neglect divergent viewpoints and reduce the number of ideas being considered. Reasons found were the concurrence-seeking tendency, pressure on dissenters, self-censorship, and the illusion of invulnerability. It is suggested that understanding the dynamics behind the aforementioned reasons of groupthink will help project teams to avoid making premature group decisions by enhancing careful evaluation of available information and analysis of available decision alternatives and choices.

Keywords: groupthink, group decision, cohesiveness, project teams, mixed-methods research

Procedia PDF Downloads 396
19324 The Relevance of PISA Tests in the Decentralization of the Educational System in Romania

Authors: Nitu Marilena Cristina

Abstract:

Decentralization of the education system is an educational policy option necessary from the perspective of democratizing internal life and streamlining service administration public. The experience of recent years has shown that decisions taken at central level do not to take into account all situations and especially all the specific needs and interests of the various institutions and individuals. A democratic society implies that the decision-making process is brought closer to the place of application, allowing citizens to take part in the decision-making that affects them directly or indirectly. Essentially decentralization of pre-university education is the transfer of authority, responsibility and resources in decision-making and general management, and financially to the educational units and the local community. This creates a frame of an effective collaboration between school and community. Modern theories on the leadership of education advocate the adoption of decentralization measures and participatory strategies. Numerous countries confronted with the educational impasse has appealed to these strategies. Reforming projects have begun application diversified and nuanced social decentralization models according to the specific social and educational situation. Analysis of legal provisions and measures adopted in the framework of the reform process indicates that, at least formally, decentralization is the solution chosen.

Keywords: decentralization, educational, management, reforming

Procedia PDF Downloads 170
19323 Formulating Model of Green Supply Chain Impact on Chain Operational Performance, Case Study: Rahbaran Foolad Aria, Steel Industry

Authors: Seyedeh Mersedeh Banijamali, Ali Rajabzadeh

Abstract:

Industrial development in recent centuries has been replaced by a sustainable development. The industry executives, particularly in the development countries are looking for procedures to protect the environment, improve their organization's performance. One of these approaches is the green supply chain management. Green supply chain management approach as a comprehensive approach to environmental management that contains all flows from suppliers to producers and ultimately to consumers, in many industries, particularly in the Steel industry, which has a strategic role in the country's industrial and economic development, has been receiving significant attention. The purpose of this study is examining the impact of green supply chain on chain operational performance in the Steel industry and formulating model for it. In this way, first the components of green supply chain (in 5 dimensions, planning, sourcing, making, delivery and return) have been prioritized through TOPSIS decision technique and then impact of these components on operational performance has been modeled with model dynamic systems and Vensim software. This research shows that green supply chain has a positive impact on operational performance and improve it.

Keywords: green supply chain, the dimensions of the green supply chain, operational performance, steel industry, dynamical systems

Procedia PDF Downloads 573
19322 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process

Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand

Abstract:

This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.

Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping

Procedia PDF Downloads 54
19321 Self-Stigma Regarding Mental Illness: An Empirical Study

Authors: Linta Koka

Abstract:

Aim: The way people with severe mental disorders deal with self-stigma and how it affects their self-esteem is a problem that has gained much attention in recent years. The primary aim of this study was to empirically explore the link between self-stigma and self-esteem of individuals with the presence of a mental illness, offering a novel perspective by exploring the same variables amongst a sample without a mental illness. Methods: This study utilized a cross-sectional study. Participants with (N=85) and without (N=75) a mental health issue were included from Darlingdon's Mind organization. Participants completed two scales, one of Self-Stigma of Mental Illness Scale and one of Self-Esteem, following some demographics questions. Results: According to the primary hypothesis, self-stigma significantly correlates with self-esteem in the clinical population. Furthermore, gender and ethnicity, above all the demographics, positively correlates to the relationship of self-stigma with self-esteem in people who endure a mental health issue. Limitations: A significant limitation is that of the size of the sample of participants conducted in this study. The clinical population was limited to 85 participants, and the control group consisted of 76 participants. Since the sample was not representative. The small size used did not allow any comparisons between the group with mental illness and the control group. There was a restricted time to approach the participants since the online survey was released by the end of May. Conclusions: Individuals suffering from mental illnesses may internalize stigmatizing stereotypes on an explicit level. Efforts should be made to lessen the harmful impact stigma may have on mentally ill people, such as worsening symptoms or delays in receiving care. Further study is needed within this small research topic to improve awareness and regulate mental health among the general population. Undoubtedly, people with mental disorders are stigmatized; therefore, more research is required to explore all factors contributing to mentally ill patients' devaluation.

Keywords: self-stigma, mental illness, self-esteem, clinical population, non-clinical population

Procedia PDF Downloads 64
19320 Euthanasia Reconsidered: Voting and Multicriteria Decision-Making in Medical Ethics

Authors: J. Hakula

Abstract:

Discussion on euthanasia is a continuous process. Euthanasia is defined as 'deliberately ending a patient's life by administering life-ending drugs at the patient's explicit request'. With few exceptions, worldwide in most countries human societies have not been able to agree on some fundamental issues concerning ultimate decisions of life and death. Outranking methods in voting oriented social choice theory and multicriteria decision-making (MCDM) can be applied to issues in medical ethics. There is a wide range of voting methods, and using different methods the same group of voters can end up with different outcomes. In the MCDM context, decision alternatives can be substituted for candidates, and criteria for voters. The view chosen here is that of a single decision-maker. Initially, three alternatives and three criteria are chosen. Pairwise and basic positional voting rules - plurality, anti-plurality and the Borda count - are applied. In the MCDM solution, criteria are put weights by giving them the more 'votes'; the more important the decision-maker ranks them. A hypothetical example on evaluating properties of euthanasia consists of three alternatives A, B, and C, which are ranked according to three criteria - the patient’s willingness to cooperate, general action orientation (active/passive), and cost-effectiveness - the criteria having weights 7, 5, and 4, respectively. Using the plurality rule and the weights given to criteria, A is the best alternative, B and C thereafter. In pairwise comparisons, both B and C defeat A with weight scores 7 to 9. On the other hand, B is defeated by C with weights 11 to 5. Thus, C (i.e. the so-called Condorcet winner) defeats both A and B. The best alternative using the plurality principle is not necessarily the best in the pairwise sense, the conflict remaining unsolved with or without additional weights. Positional rules are sensitive to variations in alternative sets. In the example above, the plurality rule gives the rank ABC. If we leave out C, the plurality ranking between A and B results in BA. Withdrawing B or A the ranking is CA and CB, respectively. In pairwise comparisons an analogous problem emerges when the number of criteria is varied. Cyclic preferences may lead to a total tie, and no (rational) choice between the alternatives can be made. In conclusion, the choice of the best commitment to re-evaluate euthanasia, with criteria left unchanged, depends entirely on the evaluation method used. The right strategies matter, too. Future studies might concern the problem of an abstention - a situation where voters do not vote - and still their best candidate may win. Or vice versa, actively giving the ballot to their first rank choice might lead to a total loss. In MCDM terms, a decision might occur where some central criteria are not actively involved in the best choice made.

Keywords: medical ethics, euthanasia, voting methods, multicriteria decision-making

Procedia PDF Downloads 160